Wireless Pers Commun
DOI 10.1007/s11277-013-1451-y

Detecting Anonymising Proxy Usage on the Internet

Ronan O’Flaherty - Kevin Curran

© Springer Science+Business Media New York 2013

Abstract Anonymising proxies are a growing problem for organisations as more people
become aware of their capabilities. These proxy sites enable users to bypass the network’s
filtering system leaving the network open to banned content and harmful threats. Network
administrators do try to block these online proxy sites, but with a growing number of new
sites created, this task is not a trivial one. Many existing solutions rely almost entirely on
Access Control Lists, which blacklist undesirable websites; the end result being that many
users learn that anonymous proxies allow them to easily bypass this filtering. While Access
Control Lists serve a purpose, there are lots of difficulties especially in detecting if users are
circumventing the policies and Access Control Lists. One possible solution is to focus on
detecting access to anonymous proxies. This paper outlines procedures required to discover
anonymous proxies on the Internet.

Keywords Security - Network security - Proxies - WWW

1 Introduction

In today’s world, technology is commonplace and has helped the world to become better
connected. Many of these technological advances are beneficial however there is a lot of
scope for the technology to be misused. Daily use of the Internet continues to grow and over
the last few years the increased popularity of social media sites such as Facebook, Twitter
and YouTube, has led to some detrimental effects on the working productivity of its users. As
a result the need for institutions to block access to such sites has grown. Existing measures
to combuat this issue have encouraged users to try and find alternative means to access these

R. O’Flaherty - K. Curran ()

School of Computing and Intelligent Systems, Faculty of Computing and Engineering,
University of Ulster, Londonderry, UK

e-mail: kj.curran @ulster.ac.uk

R. O’Flaherty
e-mail: oflaherty-r1 @email.ulster.ac.uk

Published online: 19 October 2013 @ Springer

R. O’Flaherty, K. Curran

and other sites. Aiding the problem is the vast amount of sites and programs freely available
which can be used to bypass the security measures in place and provide access to sites and
content that should not be available to these users.

Early attempts by network administrators were to block access to the websites by denying
the IP address of arange of websites. For a short time, this method worked in keeping network
users from accessing their favourite social sites from within their security enabled websites;
but now proxy websites can be used to view outside content. A proxy is a web-based script
that will allow anyone who is accessing it to view any website, as it masks the real IP address
of the source and fools the system into allowing the blocked website to be viewed. This has
become more troublesome as these PHP/CGI web scripts are freely available on the Internet
to download, and users can setup their own proxy site very easily, if their preferred choice is
ever detected and blocked.

Another option open to network users to bypass the security measures is to install an onion
routing browser application, which will use a different protocol layer to route the Internet
traffic through a different port than is standard (80 or 443) and allow access to blocked content
that way. In the same that way a website leaves a fingerprint when it has been accessed [1],
when a proxy script or onion routing application has been accessed this should also leave
its own fingerprint. This paper will detail how proxy and onion routing browsing use on
a network can be detected on the client-side and used to help block access to offending
websites, if some of the more traditional security measures have failed.

2 Existing Approaches to Detecting Proxies

Here we look at the processes used by network administrators to secure their network systems,
while also looking at procedures used to bypass these measures.

2.1 1P Blocking

IP blocking is the most basic technique used to combat potential threats to networks [2].
The network administrator can block an IP address (or range of IP addresses) from accessing
certain domain name IP addresses. This prevents a direct connection being made between the
local machine(s) within the given IP address range and the server of the blocked domain [3].
This can also work vice versa, where the website administrators of a site can block access
to a disruptive user by obtaining their IP address and blocking access to the site through the
administration panel for the domain name [4]. While noted as one of the more basic methods
of denying access to certain websites, it is also a very effective method, as it guarantees that
the site is blocked, enabling a safer network for its users.

2.2 Access Control Lists

Access Control Lists (ACL) are usually implemented along-side IP blocking techniques to
help secure a network [5]. They work by creating a list of accessible ports on the local machine
linked with what the ports it should be opening. Applications that run and their associated
ports are also noted. Any port not mentioned in the ACL will be considered ‘locked down’
and not usable. Security is crucial for an ACL to function correctly [6], so when a request is
received to open and use a port, the ACL is checked, firstly to see if the port is allowed to be
opened and secondly, if the application requesting the opening of the port is actually allowed
to use that port. If the two criteria are met, then the port will be opened for this functionality;

@ Springer

Proxy Usage on the Internet

if they are not met, then the port will remain blocked. The main downside to ACLs is that
genuine applications attempting to open ports might not get access if they are not included
in the list. In a case like this, a request must be sent to the network administrator to add the
port and application to the list. This can take up valuable time removing the administrator
from more important duties. Another downside is that the implementation of an ACL on a
larger scale can also prove troublesome [7].

2.3 Base64 Encoding

Base64 encoding is a form of encoding data into an ASCII string of characters, so that it
can be securely and safely sent along a transmission line that deals primarily with text [8].
This can be used within a web based PHP program to obfuscate the code of the program, so
that it is less understandable by humans. This means that it can be used maliciously to slip
code past security measures and potentially leaves networks vulnerable to attack, as it will
be executing commands that it cannot understand because of the base64 encoding [9].

Base64 takes each character, translates it to its ASCII value, stores the ASCII value in
binary, 8-bit format as 1s and Os, and then grabs 6 bit groups, these 6 bits are required to
represent all possible Base64 values. Base64 values are always expressed in 4-byte groupings
(three ASCII characters become four Base64 characters) so a Base64 value should always
be divisible by four. If the original string does not take up the entire four bytes, the Base 64
value is supposed to be padded with the ‘=" sign character, which represents a null value.

The disadvantage of base64 encoding of data is that it is complicated and time consuming
to encode and thus prone to mistakes. Despite possible misuse, there are legitimate reasons
for including it, such as encoding copyright notices into free website templates, so that most
users will not know how to decrypt the code that is in place, without massive changes to the
design of the template.

2.4 Onion Routing

Another method used to bypass a network’s security measures is using an onion routing
browser. This is an application that runs like any web browser, but offers its users the chance
to surfthe Internet anonymously and not tying the user down to one single IP address [10]. This
type of application works in two steps. The first is routing the web traffic to the Transmission
Control Protocol (TCP) over the default HTTP—this is where the onion part of the title comes
from. It allows the user to browse the Internet using a different layer in the TCP/IP stack.
The second step is that the application opens a different port to allow traffic in and out of
the machine. Normal Internet browsing uses port 80 (or 443 if it is secure connection), but
an onion routing application will open any one of a range of ports from 222, 9001-9004,
9030-9033 and 9100 [11]. This is where the second part of its name comes from, in that the
application will route Internet traffic to a different port. To make the use of the application
more secure, at some stage it will use the “TLSv1’ protocol as an alternative to opening the
443 port. To fully understand the workings of onion routings, it is necessary to analyse how
each section of the program plays its own part to allowing browsing [12]. A major advantage
of using onion routing applications, is that it that it allows its users to browse the Internet
not just securely, but also anonymously, so it does not tie them down to one IP address
and can potentially open content that would not necessarily be available to them. Reed’s
paper [13] provides a basic overview of how proxies and onion routing applications work
together.

@ Springer

R. O’Flaherty, K. Curran

2.5 Common Programs

Despite a raft of these measures currently in place on network systems, there are people who
feel that they should still be allowed to have access to websites that their network administrator
has deemed unsuitable for that network. The practice of bypassing these security measures
is now so widespread that organisations have been forced to ask those using their networks
to sign contracts stating that they will not attempt to counteract any security measures on the
network before they are even allowed onto the system. Web-based proxy servers have become
one of two standard methods for countering security enabled networks. These are PHP or CGI
website scripts that are readily available to downloadable from the Internet. All that is needed
to obtain the script is a quick search using one of the many search engines. These scripts
can be downloaded and installed on any web server (as long as it allows dynamic scripts
to be installed and executed on it). Two popular PHP backed web-based proxy services to
download are “PHP Proxy” [14] and “Glype” [15]. There is also a more secure proxy script
which can be downloaded which is CGI backed called “CGI Proxy” [16]. All of these web-
based scripts can be downloaded and setup at home, then used the next day on the security
enabled network. Then, if the proxy is detected and blocked, the script can be easily moved
to a new server, which is not blocked on the network.

For onion routing applications, the most common program of this nature is the “TOR
Browser” [17] and like the proxy scripts, it can be found after a simple Internet search. The
“TOR Browser” works like any other internet browsing application (“Internet Explorer”,
“Firefox”) and the executable file can be downloaded and installed on the hard drive and
used to bypass security measures that are in place. Some attempts recently to block the use of
such a program have been network administrations not allowing users to install programs on
their machines without prior consent, and the blocking of USB ports on the local machine so
that a portable version could not be installed on a USB stick and plugged in to allow access.
Compounding these reasons, the “TOR Browser” appears to work quite slowly (Fig. 1).

3 Proxy Detection System Design

This section outlines more aspects of the Intrusion Detection System (IDS) program (see
Fig. 2), which runs on the client to detect the use of proxy websites or onion routing browsers.

It is important for network administrators to monitor for proxy and onion routing appli-
cation use as these scripts and applications can be used to bypass security measures that
are in place on a network. This poses additional risks to the network and that is why most
network administrators will want to know if this is happened. Naturally, there are some more
legitimate reasons why someone could use a proxy site [18], including masking their actual
location if checking out a competitors website or to filter certain types of web scripts from
running. The main concern is that if someone is using a web-based proxy script, there is a
high possibility that they are not using it for legitimate means.

Initially, the system ‘sniffs’ the network traffic. The only way to accomplish this on the
client-side of a network is to detect proxy or onion routing browsing at the source. Programs
such as “Wireshark” [19], Httpfox (see Fig. 1) or “Snort” [20] can be used to monitor the
traffic movement on a network in real-time. A useful feature of these programs is their ability
to log the detected traffic movement to a text (.txt) file. For the creation of the IDS program,
this log file will become the output for the first stage of the detection.

The cornerstone of the program is the log file produced from the network monitoring
platform. This will be “read” into a detection program—which is the second stage of the

@ Springer

Proxy Usage on the Internet

fwhyze fuatstics Telephomy Tcols Intemats ~ Help
WA BEXRE AeveT2 ([@E ecaD a¥n% B

Fiter - | Epeession... Clesr apply Save
Time Squrce Destinstion Protoc * L Info -
ez L i MUK L DU R LIRS Shir TRAGES
831 18.1661680 23.65,22.51 10.75.9. 60 WP 1414 WTTP/1.1 200 Ox (IPEG IFIF Tmage)
834 18. H?lmm?&ﬂ.“ 23.65.22.24 WP 508 GET Jemp/raleases /wor |owide,/revisions /T40603_740269_740444_6/enbed. jsTeediaset=Journalis
835 18.3937810 23.65.22. 10.75.9.60 HTTR 321 HTTR/1.1 304 wot Modified
836 n_asnmm.?s.a.on 23.85.22.91 TR 439 GET /media/images 70493000/ {pg/_70493199_70491853. Jpg HITP/1.1
837 18.4002230 10.75. 9. 60 23.65.22.51 TR 439 GET /media/images, 70475000, {pg/_70479652_T0437499. jpg HITP/1.1
22051 WTTR 440 GET /media/images 70140000, fpg/ 70140279 guer 11142, fpg WTTR 1.1
2.5 WITR 446 GET /media/images 70501000/ Ipq/_T0501702_batesan_resized. fpg WITP/1.1
. 60 WP 996 HTTP/1.1 200 ox (IPEG IFIF 1)
- . 60 WP 636 HTTP/1.1 200 0K (IPEG IFIF image)
859 l!»lmm?’ %!2 51 10.75.9. 60 HTTR 1324 HTTP/1.1 200 0% (IPEG IFIF image)
18.4195500 23.65.22.51 -9.60. HTTP 638 HTTP/1.1 200 OK IFTF 4
N 22,51 HTTP 433 GET /media/images /70498000, Jpg/ 70498247 _mo. Jpg HTTP/1.1
. 9. 60 HTTR 612 HTTP/L.1 200 O (IPEG IFIF §
22,51 IR 437 GeT Jmediaimages 70494000/ 1po/T044350_cheeky, Jpg WITP/L.1
TR e 433 FoT madtaimanac MY catns 3 134 fna wrre s 4 i

prored (3312 bits) on incerface O

1
Arrival Time: oct 16, 2013 07:53:28.250603000 T Daylight Time

[Time shift for this packet: 0.000000000 seconds]

Epoch Time: 1381906408, 250603000 seconds

[vime delta from previous captured frase: 0.003191000 seconds]

[Time delta from previous displayed frase: 0,003190000 seconds]

[Time since reference or first frame: 18.400213000 seconds.

Frame Nusber: 837

Frame Length: 439 bytes (3512 bits)

Capture Length: 439 bytes (3512 bits)

Frase is marked: False]

Frase is fgnored: False]

protocols in frase: eth:ip:top:hocp]

coloring Rule Mame: WETP]

[coloring Rule String: http || tcp.port == 50]

® Ethernet IT, Src: 0ell_72:1d:d7 ($c:26:0a:72:1d:d7), Dst: Ciscodbi0cicd (00:26:0a:4b:0c:ic3)
Internet Protocol version 4, Sre: 10, 60 (10.75.9.60), Dst: 23.65.22.51 (?!
= Transmission control Prmml Sre POFt: 14170 (14170), DSt Port: http (80). Seq: 150!. ack: 23780, Len: 385

Fig. 1 Hittpfox for examining packets

User connects to the Internet
via a proxy / onion browser
from inside a secure network.

Internet access provided
via a proxy or onion
routing browser.

Fig. 2 System architecture

design. The IDS program will be acommand line based C-program which will run by scanning
the text log file line-by-line. As the program reads through the file, a series of pre-defined
characteristic strings will be matched against the file being read in. These characteristic strings
will be unique to the various web based proxy sites and onion routing browsing traffic. As
each characteristic string set is found, this will toggle a flag within the program.

The final stage of the IDS program is the rule-base. This produces an on-screen notification
as to the outcome of the analysis of the traffic monitoring output file. The rule base will be
setup with several rules to match the flags. As the program will be used to detect the use of
multiple systems at any one time, potentially a few of the flags could be toggled during one
file. The rule-base within the program checks to see if any of the detection flags have been

@ Springer

R. O’Flaherty, K. Curran

toggled. The rule-base will be setup to determine if flag 1, flag 3 and flag 5 for example, have
all been toggled, then this will indicate the use of a web-based proxy script. Various rules
are put in place and if any series of toggles have been met, a message will be displayed on
the command line indicating that a proxy or onion routing browsing use has been detected,
or if no such use is suspected. The network administrator will be able to see that proxy or
onion routing browsing has been detected, track down its use and prevent future misuse of
their system. Ideally, the time taken from the log file being read into the intrusion detection
system, to the decision output being displayed on the screen should only be a few seconds. To
catch and trap proxy or onion routing use on a network, the key is analysing and comparing
to ‘normal’ traffic flows.

Even though the proxy scripts and onion routing applications are described as anonymous,
suggesting that it creates an invisible user who can access the web, any scripts when executed,
will have their tell-tale signs of execution and for a web-based proxy (or onion routing
browser) this is no different. When one of these scripts or programs makes a user anonymous;
this masks the location and the identity of the computer from the website it is attempting to
access. This is why the network traffic is monitored to determine the various tell-tale signs
of the proxy scripts in action as they are being run client-side, no matter what the developer
attempts to do; there is no way this can be masked.

4 Proxy Detection System Implementation

Before any part of the intrusion detection system can be developed, there is some software
which has to be installed. Firstly, the program for analysing and monitoring network traffic
“Wireshark™ has to be installed; this can be obtained from their website [19]. The Windows
installer for this also includes the “WinPcap” program, which enables the packet analyzing
functionality. Next, the first of the anonymous browsing programs should also be installed.
The “TOR Browser” can be downloaded from its official website [17]. These programs should
be tested to make sure they function as expected before attempting to log any of the network
traffic for analysis. The web scripts also need to be implemented on the server. The three
different scripts which were used for testing were “PHP Proxy” [14], “Glype” [15] and “CGI
Proxy” [16]. These are available as ZIP files to download. Before files are uploaded to a server,
PHP and CGI functionality must be enabled. An Internet browser can be used to access the
scripts directly and perform any installation procedure that needs to be undertaken. When
this has been completed, the web scripts can be used to anonymously browse the Internet.

To monitor the movement of traffic on the client-side, the network protocol analysing
program “Wireshark™ is used. “Wireshark” listens to the network and logs the packets that it
captures to an output file. For practicality and to reduce the size of the log file that will be fed to
the IDS program, “Wireshark™ saves a packet summary line and any packet details displayed
on the live capture window in a log file (see Fig. 3). A database of web-based proxy scripts for
testing was created. This included “PHP Proxy”, “Glype” and “CGI Proxy”, and the onion
routing application, the “TOR Browser”. For each section, two log files were created to help
discover a pattern of strings common to each proxy site.

Analysing the logs for the first proxy site (PHP Proxy), it was noted that when this proxy
service was executed, the “HTTP” protocol was used. At the same time, a “GET” command
was issued on the proxy server; each time this web based proxy was used the “GET” command
had an attached URL, which contained the string “index.php?q=aHR0c”. As the index file
can be called anything—as long as it is suffixed with ‘.php’—this was removed from the
detection string (Table 1).

@ Springer

Proxy Usage on the Internet

- _
[E Wiresharks Export File S s S Sm—" - S——

Savein: [Deskiop - 02 A
T =
- | Libraries Ronan OFlaherty
o= = || System Folder & System Folder
Recent Places W
- ' | Computer e , Network
L | System Folder | System Folder
Desktop .
= i
g_n—'lb] I
Libraries !
[
A
Computer
@ |
Network
File pame: PacketCapture] v [save
Save as type: [Plu-:teﬂ () v] [Cancel]
[b]
Packet Range Packet Format
© Captured () Displayed [¥] Packet summary line
©) All packets 335 : [V] Packet detais:
") Selected packet 1 1 As displayed =
Marked packets e
First to last marked I '_: SRR
Range: 0 || Each packet on a new page
Remove Ignored packets I

Fig. 3 Capturing packets

Table 1 Proxy One—PHP proxy

characteristics Protocol HTTP
Command GET
Detection String .php?q=aHROc

Coding the IDS program, three new string values where added, set with the three charac-
teristic values outlined above. Each variable also has its own flag, so that when the string is
found the flag can be toggled to reflect the found value. For the output of the program, an
“IF statement” is initialized, so that if the flag for each of the three characteristic values has
been toggled, then a message will be displayed warning that proxy use was detected. This
rule set was then tested again; the log files for proxy one use and no proxy use—with a 100 %
success rate. The message displayed on the terminal screen is shown in Fig. 4.

For the second proxy site (Glype), a thorough investigation was started to find a series of
patterns recurring through the two test log files when this proxy was in use. It was discovered
that in a similar way to the first proxy, the “HTTP” protocol was called, along with the “GET”
command. The difference for this proxy was that as part of the “GET” command, there was a

@ Springer

R. O’Flaherty, K. Curran

C:\Detection Program>detection

No proxy or onion routing is being used.

C:\Detection Program>_

Fig. 4 No proxy detected message

Table 2 Proxy 2—Glype

characteristics Protocol HTTP
Command GET
Detection String .php?u=

C:\Detection Program>detection

Warning - web based proxy use has been detected.

C:\Detection Program>_

Fig. 5 Proxy detected message

Table 3 Proxy 3—CGI proxy

characteristics Port 443
Protocol TLSv1
Command GET
Detection String .cgi/

slightly different URL attached to it: “browse.php ?u="" (see Table 2). As happened in the first
case, the ‘browse’ filename can be changed to anything and still function, so the detection
string has this removed.

The search strings for the protocol and command are already in place with their respective
flags in the program, so a second detection string was added to the program. As before, the
rule base was established that if the flags for detection of the protocol and command were
toggled, along with the new detection string, then a web-based proxy site was being used. If
all the flags are detected, the message shown in Fig. 5 will be displayed. The updated IDS
program was tested using the two test log files for the second proxy site and the log files
showing that no proxy was being used and again, there was a 100 % success rate.

The third proxy site (CGI Proxy) differs from the previous two in that it was a CGI script,
which utilises the secure sockets layer (SSL) protocol. For this web-based proxy, it was
discovered that there was four strings that were required to be matched to denote its use.
Firstly, as this is a SSL proxy, the secure web port of the computer would have to be opened,
“(443)”. The transport layer security “TLSvI” protocol is also applied when this proxy is
executed and, just like in the first two proxy sites, the “GET” command is called, but this
time the URL attached contains the string “.cgi/” (see Table 3).

Building on the IDS program structure, three new search strings have to be added to
the program—the port number, the new protocol and the detection string—along with flags

@ Springer

Proxy Usage on the Internet

Table 4 TOR browser

characteristics Port 222, 9100,
9001-9004,
9030-9033
Protocol TCP

C:\Detection Program>detection

Warning - onion routing has been detected.

C:\Detection Program>_

Fig. 6 Proxy detected message

which are toggled if the respective strings that have been found. The warning if this proxy
is in use stems from a rule base near the end of the program which queries if all the four
flags are toggled. This was initially tested on the two test scenario log files and the two logs
of when no proxy was being used—there was a 100 % success for this program. So far, the
IDS program has been used to detect web-based proxy scripts. An onion routing browser is
a program that works in a similar way to any Internet browser, but offers the user the chance
to browse anonymously. The “TOR Browser” works by routing the Internet browsing from
where it usually works. Analysing the two log files for the “TOR Browser” identified that
the “TCP” protocol is used for web browsing and then the TOR browser opens up one of ten
different ports (222, 9001 to 9004, 9030 to 9033 and 9100). The port numbers opened are a
set standard for onion routing browsers and would not usually be used for standard Internet
browsing (Table 4).

Onion routing browsing is detected by searching for the protocol string and matching
it with one of the ten possible ports that could be opened. Once again, detection flags are
initialised and toggled if the protocol and one of the port strings have been found; if they are
found, a warning message is printed to the screen to indicate that onion routing use has been
detected. The final part of the IDS program was tested with the two TOR log files and the
two log files for normal Internet use it provided a 100 % success rate. Once again, a message
is displayed on the screen, as shown in Fig. 6, to warn if onion routing use has been detected
from the log file.

To complete the implementation, the entire program was tested using the eight example
log files. Each of the log files were run through the IDS program and the program’s output
was checked to ensure that it printed the correct message to the screen—discovering if there
were any bugs in the system. As expected, all eight files were processed by the IDS program
and displayed their correct outputs printed on the screen. A more rigorous test of the system
was now able to be carried out.

5 Proxy Detection System Testing

The system was tested to verify its effectiveness at detecting proxy or onion routing browsing.
Testing was carried out on a number of ‘Normal’ Internet activities (see Table 5).

@ Springer

R. O’Flaherty, K. Curran

Table 5 Testing scenarios

Test Activity

01 Browsing and shopping on Amazon

02 Logging in and using Facebook

03 Searching for and watching a YouTube video
04 Logging in and using Twitter

05 Browsing and watching videos on BBC news
06 Making a post on a message board

07 Logging in and sending an e-mail

08 Windows Media stream of a radio station

09 Search Google and using Wikipedia

10 Locating and downloading a ZIP file

[
[=]

Pass Fail

O = MW s N 0 W

Fig. 7 IDS program’s results for when no proxy site was used

Testing was carried out from the home page of the browser for the “TOR Browser” and
from the execution page of one of the web-based proxy sites. There was also a control
experiment where no proxy or onion routing application was used. In total, 50 log files were
created to test the IDS program.

5.1 Expected Outcomes

To begin the testing phase, a log was taken for each of the ten activities, with no proxy site
or onion routing browser being used to perform the activities (see Fig. 7). The traffic was
monitored using “Wireshark™ and the log file for each was saved. Individually, each file was
read into the IDS program and tested against the rule base established in the implementation
section. For each of the ten cases, the message “No proxy or onion routing is in use” appeared
on the screen, indicating a 100 % success rate for the first batch of testing. This is the expected
outcome.

With confirmation that the initial testing of the system worked and correctly determined
when no proxy script or onion routing application was being used, testing continued using
the first proxy website (PHP Proxy).

@ Springer

Proxy Usage on the Internet

10
u Pass
9
= Fail
8
7
6
5
4
3
2
1
0

PHP Proxy Glype

Fig. 8 Pass and fail rates for the tests performed using PHP and Glype

“Wireshark” was again used to log each of the ten scenarios and these log files were then
analysed by the program. For the ten cases tested while using the web based proxy, all ten
were correctly identified by the program as having a proxy in use, with the following message
displayed on the screen, “Warning—web based proxy use has been detected”.

So far, the testing has proven to be very accurate—with no fails in the first twenty testing
cases. It was now the turn of the second proxy site (Glype) and, like the previous tests, here
ten log files were created from a “Wireshark” capture of the proxy in use. When run through
the IDS program, all but one of the log files was identified as using a proxy. The test that
failed to show up as using a proxy was the sixth test scenario—posting on a message board.
Having analysed the log file by hand, it is believed that the “Wireshark “trace began a few
seconds too late, as it was completing another process and it did not pick up the web-based
proxy beginning to run. This reduced the success rate of the IDS program for this batch of
tests down to 90 %, shown in Fig. 8. A retest of this case was later performed, and the IDS
program detected that a proxy was in use.

The testing continued with the third proxy site (CGI Proxy), which styles itself as a proxy
that uses the SSL layer to be more secure. The ten activities were logged by “Wireshark™ and
the output text files analysed by the IDS program. For each file processed by the program, a
message to inform the user that a proxy was being used was shown on the screen, providing
this batch of test log files with a 100 % success rate, as shown in the green graph in Fig. 9.

The final tests were carried out with “Wireshark” monitoring the use the “TOR Browser”
to undertake the ten tasks. The onion routing browser is self-advertised as useable to “defend
against a form of network surveillance that threatens personal freedom and privacy” and so
makes the user anonymous while the browser runs. From the ten initial activities monitored,
two of the test cases failed to be detected by the IDS program, signifying an 80 % success
rate for the program.

Bringing all the testing together provides a very telling picture of the accuracy of the
IDS program that was created (see Fig. 10). Of the five batches of log files examined by the
system, which was 50 log files in total, three batches were identified fully correct for their
type of Internet use, while of the other two batches the lowest success rate obtained was 80 %.
Overall, this means that the intrusion detection system created has a healthy 94 % success
rate, with an average of only 6 % of analysed files being incorrectly identified, therefore
slipping through the security net.

@ Springer

R. O’Flaherty, K. Curran

10 -
B Pass

H Fail

cal

Fig. 9 Pass and fail rates for the tests performed using CGI and TOR

Fig. 10 Overall performance Fail, 6%
result of the IDS program

5.2 Unexpected Outcomes

Until now, all the testing of the IDS program has been performed on tasks where the outcome
has been expected. These tests have been carried out under very controlled circumstances,
where the IDS program has been designed specifically to identify the fingerprints from the
use of the three web based scripts and the onion browser. During the earlier testing we have
seen how some of the “TOR Browser” activity was misidentified by the IDS program and
provided a false negative outcome. These unexpected tests are designed to attempt to see if
the system can be broken and how it handles the execution of scripts that it has not been
specifically designed to identify. The system was then tested to see if there were any other
false positive or false negative decisions that can be produced.

A test of the program was carried out using a secure HTTP connection. Several tests
were run including purchasing a MP3 file from Amazon, downloading the file from their
secure server and sending and receiving e-mails from the secure university e-mail system.
The reason behind these tests was that the computer would be forced to open the secure port
(443) and use the “TLSv1” protocol; so this might trigger the system to have detected the
standard and acceptable Internet use as unwanted use. When the log files for this Internet use
were run through the detection system program, it correctly identified these logs as normal
Internet access.

@ Springer

Proxy Usage on the Internet

Another test utilising a secure Internet connection was using a Secure Socket Layer (SSL)

proxy sites, other than the “CGI Proxy” that the IDS program was implemented with and
designed specifically to locate its character strings. There were three separate tests of SSL
proxy sites, all using web-based SSL scripts. Theoretically, a SSL proxy should use the
“TCP” protocol and possibly the port 443—but SSL is unique in that it can secure any
port that it opens [21]. When an analysis of the log files was completed by the system, all
three were incorrectly identified as not using a web-based proxy script. This means that
if a user was to execute these scripts on their machine, then the IDS program would not
detect its use, and deem this acceptable Internet use. Closer inspection of the log file for
the SSL proxies shows that they only just missed out on a correct classification, using the
characteristics determined for “CGI Proxy” (see Table 3). The log files show that the port
443 was opened, along with the “TLSv1” protocol (although this can be changed to “TCP” to
match up with how the proxy should work) and the “GET” command was called. Where the
identification failed, no string containing “.cgi/” was found in the log details attached to the
“GET” command. The “CGI Proxy” detection string was not discovered, but for these types
of web-based proxies the detection string of “ssI” was attached to the “GET” command in
two of the three log files. This means that with a small edit to the IDS program, the detection
success rate for this type of proxy script greatly increases. An additional, unexpected test
was run on the IDS program for the use of the voice over IP messaging and the social
program “Skype”. A “Skype” conversation is secure between the two or more connections
involved in a conversation. An analysis of the log file correctly detects no proxy or onion
routing use from the traffic monitor. A closer inspection of the log reveals that a secure
port 443 was opened, along with the “TLSvI” protocol; there was even a “GET” command
but the detection string was not found. “Skype” uses the UDP protocol to allow the secure
connection between the running Skype applications [22], so the IDS program’s rule base
would not misidentify it.

To examine the rule base for the “TOR Browser” more closely, a test had to be performed
that would require the use of the “TCP” protocol. For this test, a simple JPEG image file was
uploaded to a webserver and downloaded again from the server. The “TCP” protocol would
be needed to make the connection and there was a possibility that it could open one of the ten
ports shortlisted for onion routing detection. The traffic log file of the transfers was analysed
by the IDS program and it identified correctly that no onion routing or proxy application
was in use. The log file shows that it opened the FTP port (port 21) along with the randomly
selected port 5167 to allow the connection to occur. If the FTP program was unlucky enough
to select one of the ten listed ports, then this log would have been misidentified as having an
onion routing browser application in use. The method most users will use to discover a proxy
site is by using “Google” to search for the term ‘proxy sites’ or ‘php proxy sites’. Both of these
searches produce well over 12 million results each, so the next step in testing the IDS program
is to establish if the program can identify the use of some of these randomly selected web-
based proxy scripts revealed through the search. The IDS program was specifically designed
to detect the fingerprint of three of the bigger proxy scripts available to download from the
Internet; now the program will be tested to see how closely these sets of fingerprints can be
used to detect unknown web-based proxy scripts.

Five web-based proxy sites were chosen at random from the selection available through
the Google search. The first proxy site used the “HTTP” protocol along with the “GET”
command, but for this site the “GET” command’s detection string was not one of the defined
strings in the IDS program and therefore the program misidentified the log file. The second
and fifth proxy site’s log files were both correctly identified as using a proxy, as the “HTTP”
protocol was found along with the “GET” command and attached to the detection string

@ Springer

R. O’Flaherty, K. Curran

“.php?u=". Although these sites appear different, the back-end script running the two proxy
sites is the “Glype” script. Finally, the log for proxy sites three and four were analysed and
correctly identified as having a proxy in use. This is because the logs matched the detection
strings for a “PHP Proxy” script using the “HTTP” protocol, the “GET” command and the
“.php?q=aHRO0c” detection string. From this we can determine that from the four out of the
five tests conducted for unknown proxy sites from “Google”, were correctly identified as
having a proxy in use, and would be flagged up to a network administrator.

6 Conclusion

The aim of this project was to research, design and develop an intrusion detection system
(IDS) program, which would alert a network administrator to the use of a web-based proxy
script or onion routing browser being used on their network. The program analyses a log file
produced from a network protocol analyser. From the rule base established in the program,
a determination is made whether an effort is being made to bypass the security measures
currently in place on a network. The log file obtained for processing by the IDS program
included a selection of ‘normal’ Internet tasks such as sending e-mails, accessing “Google”
and “Wikipedia”, logging into and updating social media sites and shopping on “Amazon”.
The reason behind gathering logs for when no proxy was being used, was to attempt to see if
the IDS program could be tricked into a false reading and display a warning that a proxy or
onion routing browser is being used, when it was not in use. From this perspective, the program
worked exactly as it should, as not once during the rigorous testing did the program provide
a false positive output message. Looking at the three web-based proxy scripts together, the
IDS program was able to detect when the proxy sites were being executed to run various
tasks.

The final detection that the IDS program had to deal with was to pick up the use of an
onion routing browser. This was always going to be the toughest section to complete and the
part of the program that stood to have the highest fail rate attached to it, as any onion routing
browser is designed to make its users anonymous on the Internet—and therefore tougher to
detect. So, it was not surprising to see from the results that in the original ten testing cases,
the log file was incorrectly identified and instead was deemed normal Internet use. Overall,
the IDS program was able to detect the use of an onion routing application and web based
proxy website use by monitoring the network traffic on the client-side of a network with a
94 % detection success rate.

References

1. Gong, X., Kiyavash, N., & Borisov, N. (2010). Fingerprinting websites using remote traffic analysis. In
Proceedings of the 17th ACM conference on computer and communications (vol. 1(1), p. 684).

2. Thomas, K., Grier, C., Ma, J., Paxson, V., & Song, D. (2011). Monarch: Providing real-time URL spam
filtering as a service. In Proceedings of the IEEE symposium on security and privacy, Oakland, CA, USA.

3. Hamade, S. (2008). Internet filtering and censorship. In 5th International conference on information
technology: New generations (vol. 1(1), p. 1081).

4. Murdoch, S., & Anderson, R. (2008). Tools and technology of Internet filtering. Access Denied: The
Practice and Policy of Global Internet Filtering, 1(1), 58.

5. Caloyannides, M., Memon, N., & Venema, W. (2009). Digital forensics. IEEE Security & Privacy, 7(2),
16-17.

6. Sandhu, R., & Samarati, P. (1994). Access control: Principles and practice. IEEE Communications Mag-
azine, 1(1), 40.

@ Springer

Proxy Usage on the Internet

Lee, K., Jiang, Z., Kim, S., Kim, S., & Kim, S. (2005). Access control list mediation system for large-scale
network. In 6th International conference on parallel and distributed computing (vol. 1(1), p. 483).
Knickerbocker, P., Yu, D., & Li, J. (2009). Humboldt: A distributed phishing disruption system. In
Proceedings of the IEEE eCrime researchers summit (pp. 1-12), Tacoma, USA.

Raynal, F., Ahmad, M., Shaikhli, I., & Ahmad, H. (2012). Protection of the texts using Base64 and MD5.
Journal of Advanced Computer Science and Technology Research, 2(1), 22.

Reed, M., Syverson, P., & Goldschlag, D. (1998). Anonymous connections and onion routing. /EEE
Journal on Selected Areas in Communications, 16(4), 482—-494.

. Rennhard, M., Rafaeli, S., Mathy, L., Plattner, B., & Hutchison, D. (June 2002) Analysis of an anonymity

network for Web browsing. In IEEE 7th international workshop on enterprise security (WET ICE 2002),
Pittsburgh, USA.

Chaabane, A., Pere Manils, P., & Kaafar, M. (2010). Digging into anonymous traffic: A deep analysis of
the Tor anonymizing network. In 4th International conference on network and system security (vol. 1(1),
p. 167).

Reed, M., Syverson, P., & Goldschlag, D. (1996) Proxies for anonymous routing. In 12th Annual computer
security applications conference (vol. 1(1), pp. 95-102).

PHP Proxy. (2002). SourceForge project. http://sourceforge.net/projects/php-proxy.

. Glype. (2007). Glype proxy script. http://www.glype.com.

CGI Proxy. (1996). CGI Proxy 2.1.4. http://www.jmarshall.com/tools/cgiproxy.

TOR Browser. (2002). TOR project. http://www.torproject.org.

Han, F,, Chen, Z., Xu, H., & Liang, Y. (2012). A collaborative botnets suppression system based on
overlay network. International Journal of Security and Networks, 7(4), 24-32.

Wireshark. (1998). Official site. www.wireshark.org.

Snort. (1998). Official site. http://www.snort.org.

. Stallings, W. (1998) SSL: Web security. Internet protocol Journal, 1(1), 1998. http://www.cisco.com/

web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html.
Rossi, D., Mellia, M., & Meo, M. (2009). Understanding skype signalling. The International Journal of
Computer and Telecommunications Networking, 53(2), 130-140.

Author Biographies

Ronan O’Flaherty has an MSc in Computing and Intelligence Sys-
tems from the University of Ulster. His research interests include Inter-
net security and detection of anonymous proxies on the Internet. He
currently works as a Software Engineer in the Northern Ireland soft-
ware industry.

@ Springer

http://sourceforge.net/projects/php-proxy
http://www.glype.com
http://www.jmarshall.com/tools/cgiproxy
http://www.torproject.org
www.wireshark.org
http://www.snort.org
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html

R. O’Flaherty, K. Curran

Kevin Curran is a Reader in Computer Science at the University of
Ulster and group leader for the Ambient Intelligence Research Group.
His achievements include winning and managing UK & European
Framework projects and Technology Transfer Schemes. Dr Curran has
made significant contributions to advancing the knowledge and under-
standing of computer networking and systems, evidenced by over 800
published works. He is perhaps most well-known for his work on loca-
tion positioning within indoor environments, pervasive computing and
internet security. His expertise has been acknowledged by invitations
to present his work at international conferences, overseas universities
and research laboratories. He is a regular contributor to BBC radio &
TV news in the UK and is currently the recipient of an Engineering and
Technology Board Visiting Lectureship for Exceptional Engineers and
is an IEEE Technical Expert for Internet/Security matters. He is a mem-
ber of the EPSRC Peer Review College. He is the Editor in Chief of
the International Journal of Ambient Computing and Intelligence and is
also a member of numerous Journal Editorial boards and international

conference organising committees. He has authored a number of books and is the holder of various patents.

@ Springer

	Detecting Anonymising Proxy Usage on the Internet
	Abstract
	1 Introduction
	2 Existing Approaches to Detecting Proxies
	2.1 IP Blocking
	2.2 Access Control Lists
	2.3 Base64 Encoding
	2.4 Onion Routing
	2.5 Common Programs

	3 Proxy Detection System Design
	4 Proxy Detection System Implementation
	5 Proxy Detection System Testing
	5.1 Expected Outcomes
	5.2 Unexpected Outcomes

	6 Conclusion
	References

