
30 March/April 2016 Copublished by the IEEE Computer and Reliability Societies  1540-7993/16/$33.00 © 2016 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Analysis and Mitigation of NoSQL Injections

Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov | IBM

NoSQL (not only SQL) data storage systems have become very popular due to their scalability and ease 
of use. Although NoSQL data stores’ new data models and query formats make old attacks, such as SQL 
injections, irrelevant, they give attackers new opportunities to insert malicious code. 

Database security is a critical aspect of information 
security. Access to enterprise databases grants 

a�ackers great control over critical data. For example, 
SQL injection a�acks insert malicious code into the 
statements the application passes to the database layer. 
�is enables a�ackers to do almost anything with the 
data, including accessing unauthorized data and alter-
ing, deleting, and inserting data. Although SQL injec-
tion exploitation has declined steadily over the years 
owing to secure frameworks and improved awareness, 
it remains a high-impact means to exploit system vul-
nerabilities. For example, Web applications receive 
four or more Web a�ack campaigns per month, and 
SQL injections are the most popular a�acks on retail-
ers.1 Furthermore, SQL injection vulnerabilities a�ect 
32 percent of all Web applications.2

NoSQL (not only SQL) is a trending term in mod-
ern data stores; it refers to nonrelational databases that 
rely on di�erent storage mechanisms such as docu-
ment store, key-value store, and graph. �e wide adop-
tion of these databases has been facilitated by the new 
requirements of modern large-scale applications, such 
as Facebook, Amazon, and Twi�er, which need to dis-
tribute data across a huge number of servers. Tradi-
tional relational databases don’t meet these scalability 

requirements; they require a single database node to 
execute all operations of the same transaction.1

As a result, a growing number of distributed, 
NoSQL key-value stores satisfy the scalability require-
ments of modern large-scale applications. �ese data 
stores include NoSQL databases such as MongoDB and 
Cassandra as well as in-memory stores and caches such 
as Redis and Memcached. Indeed, the popularity of 
NoSQL databases has grown consistently over the past 
several years, and MongoDB is ranked fourth among 
the 10 most popular databases, as Figure 1 illustrates. 

In this article, we provide an analysis of NoSQL threats 
and techniques as well as their mitigation mechanisms. 

NoSQL Vulnerabilities
Like almost every new technology, NoSQL databases 
lacked security when they �rst emerged.3–5

�ey su�ered from a lack of encryption, proper 
authentication, role management, and �ne-grained 
authorization.6 Furthermore, they allowed dangerous 
network exposure and denial-of-service a�acks.3
Today, the situation is be�er, and popular databases 
have introduced built-in protection mechanisms.7

NoSQL databases use di�erent query languages, 
which makes traditional SQL injection techniques 
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irrelevant. But does this mean that NoSQL systems 
are immune to injections? Our study shows that 
although the security of the query language and 
drivers has largely improved, there are still techniques 
for injecting malicious queries. Some works already 
provide reports of NoSQL injection techniques.1,3,4

Some initial application-scanning projects have 
emerged (for example, nosqlproject.com), and the 
Open Web Application Security Project has published 
recommendations for testing NoSQL injection code. 
However, these are only initial results; the problem 
hasn’t been sufficiently studied or received the 
required attention. 

NoSQL Attack Vectors
Web applications and services commonly use NoSQL 
databases to store customer data. Figure 2 illustrates a 
typical architecture in which a NoSQL database is used 
to store the data accessed via a Web application. Access 
to the database is performed via a driver—an access 
protocol wrapper that provides libraries for database 
clients in multiple programming languages. Although the 
drivers themselves might not be vulnerable, sometimes 
they present unsafe APIs that, when used incorrectly by 
the application developer, could introduce vulnerabilities 
in the application that allow arbitrary operations on the 
database. As Figure 2 shows, attackers can craft a Web 
access request with an injection that, when processed 
by the database client/protocol wrapper, will allow the 
desired illegal database operation. 

The main mechanisms of SQL attacks relevant in 
NoSQL can be divided into five classes.

Tautologies. These attacks allow bypassing authentica-
tion or access mechanisms by injecting code in con-
ditional statements, generating expressions that are 
always true (tautologies). For example, in this article, we 
show how attackers can exploit the syntax of the $ne
(not equal) operator, which lets them illegally log in to 
the system without appropriate credentials. 

Union queries. Union query is a well-known SQL injec-
tion technique in which attackers exploit a vulnerable 
parameter to change the dataset returned for a given 
query. The most common uses of union queries are to 
bypass authentication pages and extract data. In this 
article, we show an example attack exploiting Boolean 
OR operators by adding expressions that are always true 
(for instance, an empty query {}), which leads to the 
incorrect evaluation of the entire statement and allows 
illegal data extraction. 

JavaScript injections. This new class of vulnerabilities 
introduced by NoSQL databases allows execution of 

JavaScript in the database context. JavaScript enables 
complicated transactions and queries on the database 
engine. Passing unsanitized user input to these queries 
might allow for injection of arbitrary JavaScript code, 
which could result in illegal data extraction or alteration. 

Piggybacked queries. In piggybacked queries, attack-
ers exploit assumptions in the interpretation of 
escape sequences’ special characters (such as termi-
nation characters like carriage return and line feed 
[CRLF]) to insert additional queries to be executed 
by the database, which could lead to arbitrary code 
execution by attackers.

Origin violation. HTTP REST APIs are a popular mod-
ule in NoSQL databases; however, they introduce a new 

Figure 1. Top 10 most popular databases according to db-engines.com 
popularity ranking, August 2015. NoSQL (not only SQL) databases among the 
top 10 are MongoDB, Cassandra, and Redis; all three are growing in popularity.
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Figure 2. A typical Web application architecture. A NoSQL database is used 
to store the data accessed via a Web application. Access to the database is 
performed via a driver—an access protocol wrapper that provides libraries 
for database clients in multiple programming languages. Although the drivers 
themselves might not be vulnerable, sometimes they present unsafe APIs 
that, when used incorrectly by the application developer, could introduce 
vulnerabilities in the application.
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class of vulnerabilities that lets attackers target the data-
base even from another domain. In cross-origin attacks, 
attackers exploit legitimate users and their Web brows-
ers to perform an unwanted action. In this article, we 
show such violations in the form of a cross-site request 
forgery (CSRF) attack in which the trust that a site 
has in a user’s browser is exploited to perform an ille-
gal operation on a NoSQL database. By injecting an 
HTML form into a vulnerable website or tricking a user 
into the attacker’s own website, an attacker can perform 
a post action on the target database, thus compromis-
ing the database. 

JavaScript Object Notation Queries and 
Data Formats
Although relatively safe, the popular JavaScript Object 
Notation ( JSON) representation format allows new 
types of injection attacks. We illustrate this with an 
example attack in MongoDB—a document-oriented 
database that multiple large vendors, including eBay, 
Foursquare, and LinkedIn, have adopted.

In MongoDB, queries and data are represented in 
JSON format, which is better than SQL in terms of 
security because it is more well-defined, is simple to 
encode and decode, and has good native implemen-
tations in every programming language. Breaking the 
query structure, as has been done in SQL injection, is 
more difficult with a JSON structured query. A typical 
insert statement in MongoDB could be the following:

db.books.insert({
  title: ‘The Hobbit’,
  author: ‘J.R.R. Tolkien’ 
  })

This inserts a new document into the books collection 
with a title and author field. A typical query could be

db.books.find({ title: ‘The Hobbit’ })

Queries can also include regular expressions and condi-
tions as well as limit which fields are queried.

PHP Tautology Injections 
Let’s examine the architecture depicted in Figure 
3, where a Web application is implemented with a 
PHP back end, which encodes the requests to the 
JSON format used to query the data store. Let’s use 
a MongoDB example to show an array injection 
vulnerability— an attack similar to SQL injection in 
its technique and results.

PHP encodes arrays to JSON natively. So, for 
example, the array

array(‘title’ => ‘The Hobbit’, 
  ‘author’ => ‘J.R.R. Tolkien’);

would be encoded by PHP to the following JSON:

{“title”: “The Hobbit”, “author”: 
  “J.R.R. Tolkien”}

If a PHP application has a login mechanism in which 
the username and password are sent from the user’s 
browser via HTTP POST (the vulnerability is appli-
cable to HTTP get as well), a typical post URL–
encoded payload would look like this:

username=Tolkien&password=hobbit

The back-end PHP code to process it and query 
Mongo DB for the user would look like the following:

db->logins->find(array(“username”=>$_ 
  POST[“username”], 
  “password”=>$_POST[“password”]));

This makes perfect sense and is intuitively what the 
developer is likely to do, intending a query of

db.logins.find({ username: ‘tolkien’, 
  password: ‘hobbit’})

However, PHP has a built-in mechanism for associa-
tive arrays that lets attackers send the following mali-
cious payload:

username[$ne]=1&password[$ne]=1

PHP translates this input into:

array(“username” => array(“$[ne] “ => 
  1), “password” => 
  array(“$ne” => 1));,

Figure 3. PHP application with MongoDB. A Web application is implemented 
with a PHP back end, which encodes the requests to the JavaScript Object 
Notation (JSON) format used to query the data store.
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 which is encoded into the MongoDB query

db.logins.find({ username: {$ne:1 }, 
  password {$ne: 1 })

Because $ne is MongoDB’s not equals condition, 
it queries all entries in the logins collection for which 
the username is not equal to 1 and the password is not 
equal to 1. Thus, this query will return all users in the 
logins collection. In SQL terminology, this is equiva-
lent to:

SELECT * FROM logins WHERE username <> 
  1 AND password <> 1

In this scenario, the vulnerability gives attackers a 
way to log in to the application without valid creden-
tials. In other variants, the vulnerability might lead to 
illegal data access or privileged actions performed by an 
unprivileged user. To mitigate this issue, we need to cast 
the parameters received from the request to the proper 
type, in this case, using the string

db->logins->find(
  array(“username”=>(string)$_ 
   POST[“username”],
  “password”=>(string)$_ 
   POST[“password”]));

NoSQL Union Query Injection
SQL injection vulnerabilities are often a result of a 
query being built from string literals that include user 
input without proper encoding. The JSON query struc-
ture makes attacks more difficult in modern data stores 
such as MongoDB. Nevertheless, it’s still possible. 

Let’s examine a login form that sends its username 
and password parameters via an HTTP post to the 
back end, which constructs the query by concatenat-
ing strings. For example, the developer would do some-
thing like the following:

string query = “{ username: ‘” + post_ 
  username + “’, password: 
  ‘” + post_passport + ‘ “ }”

With valid input (tolkien + hobbit), this would build 
the query:

{ username: ‘tolkien’, password:  
  ‘hobbit’ }

 But with malicious input, this query can be turned 
to ignore the password and log in to a user account 
without the password. An example of malicious input is

username=tolkien’, $or: [ {}, {‘a’: 
  ‘a&password=’ }],

$comment: ‘successful MongoDB 
  injection’

This input would be constructed into the query

{ username: ‘tolkien’, $or: [ {}, { 
  ‘a’: ‘a’, password ‘’ }
], $comment: ‘successful MongoDB 
  injection’ }

This query would succeed as long as the username is 
correct. In SQL terminology, this query is similar to

SELECT * FROM logins WHERE username =  
  ‘tolkien’ AND (TRUE OR
(‘a’=’a’ AND password = ‘’))  
  #successful MongoDB injection

The password becomes a redundant part of the query 
because an empty query {} is always true and the end 
comment doesn’t affect the query. 

How did this happen? The following constructed 
query shows user input in bold and the rest in plain text:

{ username: ‘tolkien’, $or: [ {}, {  
  ‘a’: ‘a’, password ‘’ }
], $comment: ‘successful MongoDB  
  injection’ }

This attack will succeed in any case in which the user-
name is correct—a valid assumption as harvesting user-
names isn’t difficult. 

NoSQL JavaScript Injection
A common feature of NoSQL databases is the ability to 
run JavaScript in the database engine to perform com-
plicated queries or transactions such as MapReduce. 
Popular databases that allow this include MongoDB 
and CouchDB and its descendants, Cloudant and 
BigCouch. JavaScript execution exposes a dangerous 
attack surface if unsanitized user input finds its way to 
the query. For example, consider a complicated transac-
tion that demands JavaScript code and includes unsani-
tized user input as a parameter in the query. Let’s take 
a model of a store that has a collection of items; each 
item has a price and an amount. To get the sum or aver-
age of these fields, the developer writes a MapReduce
function that takes the field name that it should act on 
(amount or price) as a parameter from the user. In 
PHP, such code can look like this (where $param is 
user input):
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$map = “function() { 
for (var i = 0; i < this.items.length; 
  i++) {
emit(this.name, this.items[i].$param); 
   } }”; 
$reduce = “function(name, sum) {  
  return Array.sum(sum); }”; 
$opt = “{ out: ‘totals’ }”; 
$db->execute(“db.stores. 
  mapReduce($map, $reduce, $opt);”);

This code sums the field given by $param for each 
item by name. Then, $param is expected to receive 
either amount or price for this code to behave as 
expected. But, because user input isn’t being escaped 
here, a malicious input (that might include arbitrary 
JavaScript) will execute. 

Consider the following input:

a);}},function(kv) { return 1; }, {  
  out: ‘x’ 
});db.injection. 
  insert({success:1});return 
1;db.stores.mapReduce(function() { {  
  emit(1,1

In the first section, the payload closes the original 
MapReduce function; attackers can then execute any 
desired JavaScript on the database (in bold). Finally, the 
last part calls a new MapReduce to balance the injected 
code into the original statement. After combining this 
user input into the string that gets executed, we get the 
following (injected user input is in bold):

db.stores.mapReduce(function() { 
for (var i = 0; i < this.items.length; 
  i++) { 
emit(this.name, this.items[i].a); } 
},function(kv) { return 1; }, { out: 
  ‘x’ }); 
db.injection.insert({success:1}); 
return 1;db.stores. 
  mapReduce(function() { { emit(1,1); 
  } }, 
function(name, sum) { return Array. 
  sum(sum); }, { out: 
‘totals’ });”

This injection looks very similar to classic SQL injec-
tions. The defense against such an attack is to disable the 
use of JavaScript execution in the database configura-
tion. If JavaScript is required, it’s best practice not to use 
any user input in its formation. 

Key-Value Data Stores
Key-value data stores such as Memcached, Redis, and 
Tachyon are in-memory data stores, designed to speed 
up the performance of applications, cloud infrastructure 
and platforms, and big data frameworks. These platforms 
allow for storage and retrieval of data that’s accessed 
repeatedly and frequently (for example, a cache). They’re 
commonly located in front of the data storage, as Figure 
4 depicts. Cache platforms often store authentication 
tokens and container access control lists), which must be 
revalidated for each subsequent user request.

Although cache APIs are usually very simple because 
key-value queries are simple, we found a possible injec-
tion attack on Memcached, the second most popular 
key-value store, owing to a vulnerability in the Mem-
cached driver on certain PHP versions. The following 
conditions must occur to conduct the attack: 

■ information from the user request (for instance, the 
HTTP header) is used as an attribute (for instance, a 
value) passed to a cache set/get request, 

■ the received string is passed as is and is not sani-
tized, and

■ cached attributes include sensitive information that 
will cause the query execution to behave differently 
than intended.

If these conditions are met, attackers can inject que-
ries or manipulate query logic, such as a piggyback 
query attack.

Piggybacked Queries
A set operation adds a key and its corresponding value 
to the database using Memcached. When called from 
the command line interface, the set function uses two 
lines of input. The first is

set <KEY> <FLAG> <EXPIRE_TIME> 
  <LENGTH>,

and the second consists of the data that should be stored. 
When the PHP driver’s set function is called, it 

receives two parameters and will look like this:

$memcached->set(‘key’, ‘value’);

Researchers have shown that the driver fails to sani-
tize the ASCII characters carriage return \r(0x0D)
and line feed \n(0x0A), resulting in an opportunity 
for attackers to inject a new line in the key parameter and 
append another unintended command to the cache.8

Consider the following code in which $param is 
user input and is used as the key:
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$memcached=new Memcached(); 
$memcached 
->addServer(‘localhost’,11211); 
$memcached->set($param, “some value”);

Attackers can supply the following input that will result 
in an injection:

“key1 0 3600 4\r\nabcd\r\nset key2 0 
3600 4\r\ninject\r\n”

In this example, the first key added to the database is 
key1, with the value some value. Attackers can add 
another, unintended key to the database, key2, with 
the value inject.

This injection can also take place from the get com-
mand. Let’s examine the example on Memcached’s 
homepage, which starts with these three lines:

Function get_foo(foo_id) 
foo = memcached_get(“foo: “ . foo_id) 
return foo if defined foo

This example shows a typical use of Memcached; it 
checks whether the input exists in the database before 
processing it. Assume similar code is used to check 
authentication tokens received from users to verify 
whether they’re logged in. This can be exploited by 
passing the following string as the token (the injection 
is highlighted in bold):

“random_token\r\nset my_crafted_token 
0 3600 4\r\nroot\r\n” 

When this string is passed as a token, the database will 
be checked for the existence of random_token and 

will add my_crafted_token with the value root. 
Later, attackers can send my_crafted_token and 
will be recognized as root. 

Other instructions might be injected using this 
technique: 

incr <Key> <Amount> 
decr <Key> <Amount> 
delete <Key>

where incr is used to increment a key, decr is used 
to decrement a key, and delete is used to delete a 
key. Attackers can also use these three functions with 
their key parameter in the same manner as the set
and get functions.

Attackers can perform the same injections using the 
multiple-item functions: deleteMulti, getMulti, 
and setMulti, where the injection should occur in 
one of the key fields.

The CRLF injection can be used to concatenate sev-
eral get requests. In a test we conducted, the maximum 
value of such concatenation was 17, including the origi-
nal get key. The result that returns from such injection 
is the first key that has an associated value. 

This driver vulnerability was fixed in PHP 5.5 
but unfortunately exists in all prior PHP versions. 
According to W3Techs.com statistics on PHP ver-
sions of websites in production, more than 86 per-
cent of PHP websites use a version older than 5.5, 
which means they’re vulnerable to this injection if 
they use Memcached.

Cross-Origin Violations
Another common feature of NoSQL databases is that 
they can often expose an HTTP REST API that enables 
database query from client applications. Databases that 

Figure 4. Distributed in-memory data store architecture. The attacked webserver uses a key-value data store for quick 
data retrieval. Queries to the data store are constructed on the webserver from user-supplied data. If handled wrong, user 
data can cause an injection of an illegal query that will be processed by the key-value data store and cause a failure in 
application logic and hence bypass of credentials or unwanted retrieval of data. 
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expose a REST API include MongoDB, CouchDB, 
and HBase. The exposure of a REST API enables sim-
ple exposure of the database to applications—even 
HTML5 only–based applications—because it termi-
nates the need for a mediate driver and lets any pro-
gramming language perform HTTP queries on the 
database. The advantages are clear, but does this feature 
come with a security risk? We answer this in the affir-
mative: the REST API exposes the database to CSRF 
attacks, letting attackers bypass firewalls and other 
perimeter defenses. 

As long as a database is deployed in a secure network 
behind security measures such as firewalls, to compro-
mise the database, attackers must either find a vulnerabil-
ity that will let them into the secure network or perform 
an injection that will let them execute arbitrary queries. 
When a database exposes a REST API inside the secured 
network, anyone with access to the secured network can 
perform queries on the database using HTTP only, thus 
allowing such queries to be initiated from the browser. 
If attackers can inject an HTML form into a website or 
trick users into the attackers’ own website, they can per-
form any post action on the database by submitting the 
form. Post actions include adding documents. 

In our research, we inspected Sleepy Mongoose, a 
full-featured HTTP interface for MongoDB. The Sleepy 
Mongoose API is defined by the URL as http://
{host name}/{db name}/{collection 
name}/{action}. Parameters for finding a docu-
ment can be included as query parameters, and new 
documents can be added as request data. For example, 
if we want to add the new document { username: 
‘attacker’ } to the collection admins in the data-
base called hr on the safe.internal.db host, we 
would send a post HTTP request to http://safe 
.internal.db/hr/admins/_insert with the 
URL encoded data username=attacker.

Now let’s see how a CSRF attack uses this function-
ality to add a new document to the admins collection, 
thus adding a new admin user to the hr database (which 
is located in the supposedly safe internal network), as 
Figure 5 depicts. For the attack to succeed, a few con-
ditions must be met. First, attackers must have control 
over a website either of their own or from exploiting a 
benign, unsecured website. Attackers place an HTML 
form in the website and a JavaScript that will submit the 
form automatically, such as

<form action=” http://safe.internal.
db/hr/admins/_insert” method=”POST” 
name=”csrf”> 
<input type=”text” name=”docs” value=”
[{&quot;username&quot;:attacker}]” /> 
</form> 

<script> 
document.forms[0].submit(); 
</script>

Second, attackers must trick users into entering the 
infected site by means of phishing or inject an infection 
into a site that users visit regularly. Finally, users must have 
permissions and access to the Mongoose HTTP interface. 

In this manner, attackers can perform actions—in 
this case, inserting new data into the database located 
in the internal network—without having access to the 
internal network. This attack is simple to execute but 
demands that attackers perform reconnaissance to iden-
tify the names of the host, database, and so on.

Mitigation
Mitigating security risks in NoSQL deployments is 
important in light of the attack vectors we present in this 
article. Unfortunately, code analysis of the application 
layer alone is insufficient to ensure that all threats are 
mitigated. Three trends make this problem even more 
challenging than before. First, the emerging cloud and 
big data systems typically execute multiple complex 
applications that use heterogeneous open source tools 
and platforms. These are commonly developed by open 
source communities and, in most cases, don’t undergo 
comprehensive security testing. Another challenge is 
the speed of modern code development with DevOps 
methodologies, which aim to shorten the time between 
development and production. Finally, most application 
security testing tools can’t keep up with the fast pace 
with which new programming languages are adopted; 
for instance, most security products don’t support Gol-
ang, Scala, and Haskel. 

Development and Testing
To fully address the threats introduced by the applica-
tion layer, we need to consider the entire software devel-
opment life cycle (see Figure 6).

Awareness. Obviously, building secure software that 
prevents injections and other potential exploits is the 
best and least expensive solution. It’s recommended 
that those involved in the software life cycle receive 
appropriate security training for their role. For example, 
a developer who already understands weaknesses is less 
likely to introduce one into the software.

Design. An application’s security aspects must be 
thought of and defined in the early development stages. 
Defining what needs to be protected in the applica-
tion and how this will occur ensures this functional-
ity is translated to tasks in the development phase and 
receives the right amount of attention.
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Best practices for code. Utilizing shared libraries that 
have undergone a security validation process, thus 
narrowing the window of security mistakes, is recom-
mended. For example, using well-validated libraries for 
encryption reduces the risk of developers implement-
ing encryption on their own and introducing vulner-
abilities into an algorithm. Another example is the use 
of sanitization libraries. All injection attacks are a result 
of poor sanitization. Using a well-tested sanitization 
library greatly reduces the risk of introducing gaps in a 
self-developed sanitization method.

Privilege isolation. In the past, NoSQL didn’t support 
proper authentication and role management.9 Today, 
managing proper authentication and role-based access 
control authorization on most popular NoSQL data-
bases is possible. These mechanisms are important for 
two reasons. First, they allow enforcement of the prin-
ciple of least privilege, thus preventing privilege esca-
lation attacks by legitimate users. Second, similarly to 
SQL injection attacks,10 proper privilege isolation can 
minimize the damage in the case of data store exposure 
via the injections we describe in this article.

Security scanning. Running dynamic and static appli-
cation security testing (DAST and SAST, respectively) 

on the application or source code to find injection 
vulnerabilities is recommended. The problem is that 
many tools in the market today lack rules for detect-
ing NoSQL injections. The DAST methodology is 
considered more reliable than SAST,11 especially if used 
with a back-end inspection technology that improves 
detection reliability—a methodology referred to as 
interactive application security testing.9,12 It’s also rec-
ommended to integrate these scans into the continu-
ous build and deployment systems such that they run 
every cycle or check-in, and bugs are captured and 
fixed immediately— not just during the security test-
ing phase. 

This might reduce the effort of fixing security bugs 
for two reasons. First, the cost of fixing a bug in the 
development phase is much cheaper than later in the 
life cycle, especially because security testing tends to 
occur after functional testing, and fixing security bugs 
might introduce the need to repeat the functional test-
ing. Second, developers might learn from their bugs in 
an early stage and not repeat them in similar places in 
later code development. 

Security testing. A professional security tester should 
test the application. These tests should validate that all 
the security requirements have been met as were defined 

Figure 5. Diagram of a cross-site request forgery attack on a NoSQL HTTP REST API. A user inside an internal network 
behind a firewall is tricked into visiting a malicious Internet page, which causes unwanted execution of queries in the 
NoSQL database’s REST API in the internal network. 
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in the design phase and should include penetration test-
ing on the application and hosting infrastructure, which 
is recommended to resemble the production infrastruc-
ture as much as possible.

Secure Deployment
An important part of protecting the application is 
ensuring a secure deployment. Efforts invested in secur-
ing the application code might be wasted if the deploy-
ment is insecure. This stage is sometimes overlooked.

Network isolation. The concept of a secure internal 
network has been invalidated in countless attacks on 
enterprises such as the Adobe password breach, RSA 
Security, and Sony. The internal network is bound to be 
infiltrated at some point, and it’s our duty to make it as 
difficult as possible for attackers to gain advantages from 
that point on. This is especially true for some NoSQL 
databases that are relatively new and lack role-based 
permissions, which means anyone can execute anything 
on them (as was the case for Memcached). For this, a 
strict network configuration is recommended to ensure 
that the database is accessible only to relevant hosts, 
such as the application server.

Protection of APIs. To mitigate the risks of REST API 
exposure and CSRF attacks, there’s a need to control the 
requests, limiting their format. For example, CouchDB 
has adopted some important security measures that 
mitigate the risk resulting from an exposed REST API. 
These measures include accepting only JSON in con-
tent type. HTML forms are limited to URL-encoded 
content type, so attackers can’t use HTML forms for 
CSRF. Another alternative is using Ajax requests, which 
are blocked by the browser thanks to the same origin 
policy. It’s also important to ensure JSONP ( JSON with 
padding) and cross-origin resource sharing are disabled 
in the server API, so no actions can be made directly 
from a browser. Some databases, such as MongoDB, 

have many third-party REST APIs; many lack the secu-
rity measures we describe here.

Monitoring and Attack Detection 
Humans are error prone; even after following all the 
secure development best practices, vulnerabilities 
might still be found in the software after deployment. In 
addition, new attack vectors might be found that were 
unknown at the time of development testing. Therefore, 
monitoring and defending the application at runtime is 
recommended. Although such systems might be good 
at finding and blocking certain attacks, they aren’t aware 
of the application logic and the rules under which the 
application is supposed to work, and they won’t find 
100 percent of the vulnerabilities.

Web application firewalls. Web application firewalls 
(WAFs) are security tools that inspect HTTP data 
streams and detect malicious HTTP transactions. 
They can be implemented as appliances, network sniff-
ers, proxies, or webserver modules and are specifically 
designed to provide an independent security layer for 
Web applications, detecting attacks such as SQL injec-
tions. Although it’s known that attackers can bypass 
WAFs,13 we advocate adding rules for detecting NoSQL 
injections to these systems as well. 

Intrusion detection systems. Similar to firewalls that 
can detect attacks at the network level, host-based 
intrusion detection systems (HIDSs) guard the exe-
cution of the application and workloads on servers. 
HIDSs typically learn an application’s normal behav-
ior and provide alerts of activities that don’t conform 
to the expected behavior, which can point to an attack. 
Such tools can detect vulnerabilities that propagate to 
the OS but won’t be relevant for a SQL injection or 
CSRF attack.

Data activity monitoring. Database activity monitoring 
tools became a common requirement for organizations’ 
data protection. They control access to databases, moni-
tor activities with customizable security alerts, and cre-
ate auditable reports of data access and security events. 
Although most solutions target relational databases, 
initial solutions to monitoring NoSQL data stores have 
already started to appear.10 We hope that these will con-
tinue to improve and will become a common practice 
for NoSQL activity monitoring. These tools are the 
most useful monitoring and detection systems relevant 
for injection attacks, as we demonstrate in this article.

SIEM systems and threat intelligence. Security infor-
mation and event management (SIEM) systems 
aggregate and correlate logs to help attack detection. 

Figure 6. Life cycle of application and deployment security. To address fully 
the threats introduced by the application layer, we need to consider the entire 
software development life cycle.
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Furthermore, threat intelligence tools can assist in pro-
viding data on malicious IP addresses and domains as 
well as other indicators of compromise, which can help 
detect injections.  

Runtime application self-protection. Runtime applica-
tion self-protection (RASP) introduces a new applica-
tion security approach in which the defense mechanism 
is embedded into the application at runtime, allowing it 
to monitor itself. The benefit of RASP over other secu-
rity technologies lies in its ability to inspect the flow of 
the program and data being processed internally. Plac-
ing inspection points at key positions in the applica-
tion allows detecting more issues with higher accuracy. 
On the down side, RASP takes a toll on performance, 
is tightly coupled with the programming language, and 
might break the application in production.

N oSQL databases suffer from the same security 
risks as their SQL counterparts. Some low-level 

techniques and protocols have changed, but the risks 
of injection, improper access control management, and 
unsafe network exposure remain high. We recommend 
using mature databases with built-in security mea-
sures. However, even using the most secure data store 
doesn’t prevent injection attacks that leverage vulnera-
bilities in the Web applications accessing the data store. 
One way to prevent these is via careful code examina-
tion and static analysis. However, these are difficult 
to conduct and might have high false-positive rates. 
Although dynamic analysis tools were shown to be use-
ful in detecting SQL injection attacks,9 they should be 
adjusted to detect the specific NoSQL database vul-
nerabilities that we describe in this article. In addition, 
monitoring and defense systems that are relevant to 
NoSQL risks should be used. 
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