
30 March/April 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

Analysis and Mitigation of NoSQL Injections

Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov | IBM

NoSQL (not only SQL) data storage systems have become very popular due to their scalability and ease
of use. Although NoSQL data stores’ new data models and query formats make old attacks, such as SQL
injections, irrelevant, they give attackers new opportunities to insert malicious code.

Database security is a critical aspect of information
security. Access to enterprise databases grants

a�ackers great control over critical data. For example,
SQL injection a�acks insert malicious code into the
statements the application passes to the database layer.
�is enables a�ackers to do almost anything with the
data, including accessing unauthorized data and alter-
ing, deleting, and inserting data. Although SQL injec-
tion exploitation has declined steadily over the years
owing to secure frameworks and improved awareness,
it remains a high-impact means to exploit system vul-
nerabilities. For example, Web applications receive
four or more Web a�ack campaigns per month, and
SQL injections are the most popular a�acks on retail-
ers.1 Furthermore, SQL injection vulnerabilities a�ect
32 percent of all Web applications.2

NoSQL (not only SQL) is a trending term in mod-
ern data stores; it refers to nonrelational databases that
rely on di�erent storage mechanisms such as docu-
ment store, key-value store, and graph. �e wide adop-
tion of these databases has been facilitated by the new
requirements of modern large-scale applications, such
as Facebook, Amazon, and Twi�er, which need to dis-
tribute data across a huge number of servers. Tradi-
tional relational databases don’t meet these scalability

requirements; they require a single database node to
execute all operations of the same transaction.1

As a result, a growing number of distributed,
NoSQL key-value stores satisfy the scalability require-
ments of modern large-scale applications. �ese data
stores include NoSQL databases such as MongoDB and
Cassandra as well as in-memory stores and caches such
as Redis and Memcached. Indeed, the popularity of
NoSQL databases has grown consistently over the past
several years, and MongoDB is ranked fourth among
the 10 most popular databases, as Figure 1 illustrates.

In this article, we provide an analysis of NoSQL threats
and techniques as well as their mitigation mechanisms.

NoSQL Vulnerabilities
Like almost every new technology, NoSQL databases
lacked security when they �rst emerged.3–5

�ey su�ered from a lack of encryption, proper
authentication, role management, and �ne-grained
authorization.6 Furthermore, they allowed dangerous
network exposure and denial-of-service a�acks.3
Today, the situation is be�er, and popular databases
have introduced built-in protection mechanisms.7

NoSQL databases use di�erent query languages,
which makes traditional SQL injection techniques

� 31

irrelevant. But does this mean that NoSQL systems
are immune to injections? Our study shows that
although the security of the query language and
drivers has largely improved, there are still techniques
for injecting malicious queries. Some works already
provide reports of NoSQL injection techniques.1,3,4

Some initial application-scanning projects have
emerged (for example, nosqlproject.com), and the
Open Web Application Security Project has published
recommendations for testing NoSQL injection code.
However, these are only initial results; the problem
hasn’t been sufficiently studied or received the
required attention.

NoSQL Attack Vectors
Web applications and services commonly use NoSQL
databases to store customer data. Figure 2 illustrates a
typical architecture in which a NoSQL database is used
to store the data accessed via a Web application. Access
to the database is performed via a driver—an access
protocol wrapper that provides libraries for database
clients in multiple programming languages. Although the
drivers themselves might not be vulnerable, sometimes
they present unsafe APIs that, when used incorrectly by
the application developer, could introduce vulnerabilities
in the application that allow arbitrary operations on the
database. As Figure 2 shows, attackers can craft a Web
access request with an injection that, when processed
by the database client/protocol wrapper, will allow the
desired illegal database operation.

The main mechanisms of SQL attacks relevant in
NoSQL can be divided into five classes.

Tautologies. These attacks allow bypassing authentica-
tion or access mechanisms by injecting code in con-
ditional statements, generating expressions that are
always true (tautologies). For example, in this article, we
show how attackers can exploit the syntax of the $ne
(not equal) operator, which lets them illegally log in to
the system without appropriate credentials.

Union queries. Union query is a well-known SQL injec-
tion technique in which attackers exploit a vulnerable
parameter to change the dataset returned for a given
query. The most common uses of union queries are to
bypass authentication pages and extract data. In this
article, we show an example attack exploiting Boolean
OR operators by adding expressions that are always true
(for instance, an empty query {}), which leads to the
incorrect evaluation of the entire statement and allows
illegal data extraction.

JavaScript injections. This new class of vulnerabilities
introduced by NoSQL databases allows execution of

JavaScript in the database context. JavaScript enables
complicated transactions and queries on the database
engine. Passing unsanitized user input to these queries
might allow for injection of arbitrary JavaScript code,
which could result in illegal data extraction or alteration.

Piggybacked queries. In piggybacked queries, attack-
ers exploit assumptions in the interpretation of
escape sequences’ special characters (such as termi-
nation characters like carriage return and line feed
[CRLF]) to insert additional queries to be executed
by the database, which could lead to arbitrary code
execution by attackers.

Origin violation. HTTP REST APIs are a popular mod-
ule in NoSQL databases; however, they introduce a new

Figure 1. Top 10 most popular databases according to db-engines.com
popularity ranking, August 2015. NoSQL (not only SQL) databases among the
top 10 are MongoDB, Cassandra, and Redis; all three are growing in popularity.

Oracle
MySQL
Microsoft SQL Server
MongoDB
PostgreSQL
DB2
Microsoft Access
Cassandra
SQLite
Redis

1.
2.
3.
5.
4.
6.
7.
9.
8.

11.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Rank Database
management systemNov.

2015
Nov.
2014

Oct.
2015

Figure 2. A typical Web application architecture. A NoSQL database is used
to store the data accessed via a Web application. Access to the database is
performed via a driver—an access protocol wrapper that provides libraries
for database clients in multiple programming languages. Although the drivers
themselves might not be vulnerable, sometimes they present unsafe APIs
that, when used incorrectly by the application developer, could introduce
vulnerabilities in the application.

Client/protocol
wrapper

Attacked
webserver

Injection
added

Injection
processed

Data

Data

Attacker’s Web
browser

NoSQL data
store

	 � March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

class of vulnerabilities that lets attackers target the data-
base even from another domain. In cross-origin attacks,
attackers exploit legitimate users and their Web brows-
ers to perform an unwanted action. In this article, we
show such violations in the form of a cross-site request
forgery (CSRF) attack in which the trust that a site
has in a user’s browser is exploited to perform an ille-
gal operation on a NoSQL database. By injecting an
HTML form into a vulnerable website or tricking a user
into the attacker’s own website, an attacker can perform
a post action on the target database, thus compromis-
ing the database.

JavaScript Object Notation Queries and
Data Formats
Although relatively safe, the popular JavaScript Object
Notation (JSON) representation format allows new
types of injection attacks. We illustrate this with an
example attack in MongoDB—a document-oriented
database that multiple large vendors, including eBay,
Foursquare, and LinkedIn, have adopted.

In MongoDB, queries and data are represented in
JSON format, which is better than SQL in terms of
security because it is more well-defined, is simple to
encode and decode, and has good native implemen-
tations in every programming language. Breaking the
query structure, as has been done in SQL injection, is
more difficult with a JSON structured query. A typical
insert statement in MongoDB could be the following:

db.books.insert({
 title: ‘The Hobbit’,
 author: ‘J.R.R. Tolkien’
 })

This inserts a new document into the books collection
with a title and author field. A typical query could be

db.books.find({ title: ‘The Hobbit’ })

Queries can also include regular expressions and condi-
tions as well as limit which fields are queried.

PHP Tautology Injections
Let’s examine the architecture depicted in Figure
3, where a Web application is implemented with a
PHP back end, which encodes the requests to the
JSON format used to query the data store. Let’s use
a MongoDB example to show an array injection
vulnerability— an attack similar to SQL injection in
its technique and results.

PHP encodes arrays to JSON natively. So, for
example, the array

array(‘title’ => ‘The Hobbit’,
 ‘author’ => ‘J.R.R. Tolkien’);

would be encoded by PHP to the following JSON:

{“title”: “The Hobbit”, “author”:
 “J.R.R. Tolkien”}

If a PHP application has a login mechanism in which
the username and password are sent from the user’s
browser via HTTP POST (the vulnerability is appli-
cable to HTTP get as well), a typical post URL–
encoded payload would look like this:

username=Tolkien&password=hobbit

The back-end PHP code to process it and query
Mongo DB for the user would look like the following:

db->logins->find(array(“username”=>$_
 POST[“username”],
 “password”=>$_POST[“password”]));

This makes perfect sense and is intuitively what the
developer is likely to do, intending a query of

db.logins.find({ username: ‘tolkien’,
 password: ‘hobbit’})

However, PHP has a built-in mechanism for associa-
tive arrays that lets attackers send the following mali-
cious payload:

username[$ne]=1&password[$ne]=1

PHP translates this input into:

array(“username” => array(“$[ne] “ =>
 1), “password” =>
 array(“$ne” => 1));,

Figure 3. PHP application with MongoDB. A Web application is implemented
with a PHP back end, which encodes the requests to the JavaScript Object
Notation (JSON) format used to query the data store.

PHP client

Attacked
webserver

Injection
added

JSON

Data

Data

Attacker’s Web
browser

MongoDB

� 33

 which is encoded into the MongoDB query

db.logins.find({ username: {$ne:1 },
 password {$ne: 1 })

Because $ne is MongoDB’s not equals condition,
it queries all entries in the logins collection for which
the username is not equal to 1 and the password is not
equal to 1. Thus, this query will return all users in the
logins collection. In SQL terminology, this is equiva-
lent to:

SELECT * FROM logins WHERE username <>
 1 AND password <> 1

In this scenario, the vulnerability gives attackers a
way to log in to the application without valid creden-
tials. In other variants, the vulnerability might lead to
illegal data access or privileged actions performed by an
unprivileged user. To mitigate this issue, we need to cast
the parameters received from the request to the proper
type, in this case, using the string

db->logins->find(
 array(“username”=>(string)$_
 POST[“username”],
 “password”=>(string)$_
 POST[“password”]));

NoSQL Union Query Injection
SQL injection vulnerabilities are often a result of a
query being built from string literals that include user
input without proper encoding. The JSON query struc-
ture makes attacks more difficult in modern data stores
such as MongoDB. Nevertheless, it’s still possible.

Let’s examine a login form that sends its username
and password parameters via an HTTP post to the
back end, which constructs the query by concatenat-
ing strings. For example, the developer would do some-
thing like the following:

string query = “{ username: ‘” + post_
 username + “’, password:
 ‘” + post_passport + ‘ “ }”

With valid input (tolkien + hobbit), this would build
the query:

{ username: ‘tolkien’, password:
 ‘hobbit’ }

 But with malicious input, this query can be turned
to ignore the password and log in to a user account
without the password. An example of malicious input is

username=tolkien’, $or: [{}, {‘a’:
 ‘a&password=’ }],

$comment: ‘successful MongoDB
 injection’

This input would be constructed into the query

{ username: ‘tolkien’, $or: [{}, {
 ‘a’: ‘a’, password ‘’ }
], $comment: ‘successful MongoDB
 injection’ }

This query would succeed as long as the username is
correct. In SQL terminology, this query is similar to

SELECT * FROM logins WHERE username =
 ‘tolkien’ AND (TRUE OR
(‘a’=’a’ AND password = ‘’))
 #successful MongoDB injection

The password becomes a redundant part of the query
because an empty query {} is always true and the end
comment doesn’t affect the query.

How did this happen? The following constructed
query shows user input in bold and the rest in plain text:

{ username: ‘tolkien’, $or: [{}, {
 ‘a’: ‘a’, password ‘’ }
], $comment: ‘successful MongoDB
 injection’ }

This attack will succeed in any case in which the user-
name is correct—a valid assumption as harvesting user-
names isn’t difficult.

NoSQL JavaScript Injection
A common feature of NoSQL databases is the ability to
run JavaScript in the database engine to perform com-
plicated queries or transactions such as MapReduce.
Popular databases that allow this include MongoDB
and CouchDB and its descendants, Cloudant and
BigCouch. JavaScript execution exposes a dangerous
attack surface if unsanitized user input finds its way to
the query. For example, consider a complicated transac-
tion that demands JavaScript code and includes unsani-
tized user input as a parameter in the query. Let’s take
a model of a store that has a collection of items; each
item has a price and an amount. To get the sum or aver-
age of these fields, the developer writes a MapReduce
function that takes the field name that it should act on
(amount or price) as a parameter from the user. In
PHP, such code can look like this (where $param is
user input):

	 � March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

$map = “function() {
for (var i = 0; i < this.items.length;
 i++) {
emit(this.name, this.items[i].$param);
 } }”;
$reduce = “function(name, sum) {
 return Array.sum(sum); }”;
$opt = “{ out: ‘totals’ }”;
$db->execute(“db.stores.
 mapReduce($map, $reduce, $opt);”);

This code sums the field given by $param for each
item by name. Then, $param is expected to receive
either amount or price for this code to behave as
expected. But, because user input isn’t being escaped
here, a malicious input (that might include arbitrary
JavaScript) will execute.

Consider the following input:

a);}},function(kv) { return 1; }, {
 out: ‘x’
});db.injection.
 insert({success:1});return
1;db.stores.mapReduce(function() { {
 emit(1,1

In the first section, the payload closes the original
MapReduce function; attackers can then execute any
desired JavaScript on the database (in bold). Finally, the
last part calls a new MapReduce to balance the injected
code into the original statement. After combining this
user input into the string that gets executed, we get the
following (injected user input is in bold):

db.stores.mapReduce(function() {
for (var i = 0; i < this.items.length;
 i++) {
emit(this.name, this.items[i].a); }
},function(kv) { return 1; }, { out:
 ‘x’ });
db.injection.insert({success:1});
return 1;db.stores.
 mapReduce(function() { { emit(1,1);
 } },
function(name, sum) { return Array.
 sum(sum); }, { out:
‘totals’ });”

This injection looks very similar to classic SQL injec-
tions. The defense against such an attack is to disable the
use of JavaScript execution in the database configura-
tion. If JavaScript is required, it’s best practice not to use
any user input in its formation.

Key-Value Data Stores
Key-value data stores such as Memcached, Redis, and
Tachyon are in-memory data stores, designed to speed
up the performance of applications, cloud infrastructure
and platforms, and big data frameworks. These platforms
allow for storage and retrieval of data that’s accessed
repeatedly and frequently (for example, a cache). They’re
commonly located in front of the data storage, as Figure
4 depicts. Cache platforms often store authentication
tokens and container access control lists), which must be
revalidated for each subsequent user request.

Although cache APIs are usually very simple because
key-value queries are simple, we found a possible injec-
tion attack on Memcached, the second most popular
key-value store, owing to a vulnerability in the Mem-
cached driver on certain PHP versions. The following
conditions must occur to conduct the attack:

■ information from the user request (for instance, the
HTTP header) is used as an attribute (for instance, a
value) passed to a cache set/get request,

■ the received string is passed as is and is not sani-
tized, and

■ cached attributes include sensitive information that
will cause the query execution to behave differently
than intended.

If these conditions are met, attackers can inject que-
ries or manipulate query logic, such as a piggyback
query attack.

Piggybacked Queries
A set operation adds a key and its corresponding value
to the database using Memcached. When called from
the command line interface, the set function uses two
lines of input. The first is

set <KEY> <FLAG> <EXPIRE_TIME>
 <LENGTH>,

and the second consists of the data that should be stored.
When the PHP driver’s set function is called, it

receives two parameters and will look like this:

$memcached->set(‘key’, ‘value’);

Researchers have shown that the driver fails to sani-
tize the ASCII characters carriage return \r(0x0D)
and line feed \n(0x0A), resulting in an opportunity
for attackers to inject a new line in the key parameter and
append another unintended command to the cache.8

Consider the following code in which $param is
user input and is used as the key:

� 35

$memcached=new Memcached();
$memcached
->addServer(‘localhost’,11211);
$memcached->set($param, “some value”);

Attackers can supply the following input that will result
in an injection:

“key1 0 3600 4\r\nabcd\r\nset key2 0
3600 4\r\ninject\r\n”

In this example, the first key added to the database is
key1, with the value some value. Attackers can add
another, unintended key to the database, key2, with
the value inject.

This injection can also take place from the get com-
mand. Let’s examine the example on Memcached’s
homepage, which starts with these three lines:

Function get_foo(foo_id)
foo = memcached_get(“foo: “ . foo_id)
return foo if defined foo

This example shows a typical use of Memcached; it
checks whether the input exists in the database before
processing it. Assume similar code is used to check
authentication tokens received from users to verify
whether they’re logged in. This can be exploited by
passing the following string as the token (the injection
is highlighted in bold):

“random_token\r\nset my_crafted_token
0 3600 4\r\nroot\r\n”

When this string is passed as a token, the database will
be checked for the existence of random_token and

will add my_crafted_token with the value root.
Later, attackers can send my_crafted_token and
will be recognized as root.

Other instructions might be injected using this
technique:

incr <Key> <Amount>
decr <Key> <Amount>
delete <Key>

where incr is used to increment a key, decr is used
to decrement a key, and delete is used to delete a
key. Attackers can also use these three functions with
their key parameter in the same manner as the set
and get functions.

Attackers can perform the same injections using the
multiple-item functions: deleteMulti, getMulti,
and setMulti, where the injection should occur in
one of the key fields.

The CRLF injection can be used to concatenate sev-
eral get requests. In a test we conducted, the maximum
value of such concatenation was 17, including the origi-
nal get key. The result that returns from such injection
is the first key that has an associated value.

This driver vulnerability was fixed in PHP 5.5
but unfortunately exists in all prior PHP versions.
According to W3Techs.com statistics on PHP ver-
sions of websites in production, more than 86 per-
cent of PHP websites use a version older than 5.5,
which means they’re vulnerable to this injection if
they use Memcached.

Cross-Origin Violations
Another common feature of NoSQL databases is that
they can often expose an HTTP REST API that enables
database query from client applications. Databases that

Figure 4. Distributed in-memory data store architecture. The attacked webserver uses a key-value data store for quick
data retrieval. Queries to the data store are constructed on the webserver from user-supplied data. If handled wrong, user
data can cause an injection of an illegal query that will be processed by the key-value data store and cause a failure in
application logic and hence bypass of credentials or unwanted retrieval of data.

Protocol
wrapper

Attacked
webserver

Injection
added

Injection
processed

Data

Data

Attacker’s Web
browser

C
ac

he
/i

n-
m

em
or

y
da

ta
 st

or
e

	 � March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

expose a REST API include MongoDB, CouchDB,
and HBase. The exposure of a REST API enables sim-
ple exposure of the database to applications—even
HTML5 only–based applications—because it termi-
nates the need for a mediate driver and lets any pro-
gramming language perform HTTP queries on the
database. The advantages are clear, but does this feature
come with a security risk? We answer this in the affir-
mative: the REST API exposes the database to CSRF
attacks, letting attackers bypass firewalls and other
perimeter defenses.

As long as a database is deployed in a secure network
behind security measures such as firewalls, to compro-
mise the database, attackers must either find a vulnerabil-
ity that will let them into the secure network or perform
an injection that will let them execute arbitrary queries.
When a database exposes a REST API inside the secured
network, anyone with access to the secured network can
perform queries on the database using HTTP only, thus
allowing such queries to be initiated from the browser.
If attackers can inject an HTML form into a website or
trick users into the attackers’ own website, they can per-
form any post action on the database by submitting the
form. Post actions include adding documents.

In our research, we inspected Sleepy Mongoose, a
full-featured HTTP interface for MongoDB. The Sleepy
Mongoose API is defined by the URL as http://
{host name}/{db name}/{collection
name}/{action}. Parameters for finding a docu-
ment can be included as query parameters, and new
documents can be added as request data. For example,
if we want to add the new document { username:
‘attacker’ } to the collection admins in the data-
base called hr on the safe.internal.db host, we
would send a post HTTP request to http://safe
.internal.db/hr/admins/_insert with the
URL encoded data username=attacker.

Now let’s see how a CSRF attack uses this function-
ality to add a new document to the admins collection,
thus adding a new admin user to the hr database (which
is located in the supposedly safe internal network), as
Figure 5 depicts. For the attack to succeed, a few con-
ditions must be met. First, attackers must have control
over a website either of their own or from exploiting a
benign, unsecured website. Attackers place an HTML
form in the website and a JavaScript that will submit the
form automatically, such as

<form action=” http://safe.internal.
db/hr/admins/_insert” method=”POST”
name=”csrf”>
<input type=”text” name=”docs” value=”
[{"username":attacker}]” />
</form>

<script>
document.forms[0].submit();
</script>

Second, attackers must trick users into entering the
infected site by means of phishing or inject an infection
into a site that users visit regularly. Finally, users must have
permissions and access to the Mongoose HTTP interface.

In this manner, attackers can perform actions—in
this case, inserting new data into the database located
in the internal network—without having access to the
internal network. This attack is simple to execute but
demands that attackers perform reconnaissance to iden-
tify the names of the host, database, and so on.

Mitigation
Mitigating security risks in NoSQL deployments is
important in light of the attack vectors we present in this
article. Unfortunately, code analysis of the application
layer alone is insufficient to ensure that all threats are
mitigated. Three trends make this problem even more
challenging than before. First, the emerging cloud and
big data systems typically execute multiple complex
applications that use heterogeneous open source tools
and platforms. These are commonly developed by open
source communities and, in most cases, don’t undergo
comprehensive security testing. Another challenge is
the speed of modern code development with DevOps
methodologies, which aim to shorten the time between
development and production. Finally, most application
security testing tools can’t keep up with the fast pace
with which new programming languages are adopted;
for instance, most security products don’t support Gol-
ang, Scala, and Haskel.

Development and Testing
To fully address the threats introduced by the applica-
tion layer, we need to consider the entire software devel-
opment life cycle (see Figure 6).

Awareness. Obviously, building secure software that
prevents injections and other potential exploits is the
best and least expensive solution. It’s recommended
that those involved in the software life cycle receive
appropriate security training for their role. For example,
a developer who already understands weaknesses is less
likely to introduce one into the software.

Design. An application’s security aspects must be
thought of and defined in the early development stages.
Defining what needs to be protected in the applica-
tion and how this will occur ensures this functional-
ity is translated to tasks in the development phase and
receives the right amount of attention.

� 37

Best practices for code. Utilizing shared libraries that
have undergone a security validation process, thus
narrowing the window of security mistakes, is recom-
mended. For example, using well-validated libraries for
encryption reduces the risk of developers implement-
ing encryption on their own and introducing vulner-
abilities into an algorithm. Another example is the use
of sanitization libraries. All injection attacks are a result
of poor sanitization. Using a well-tested sanitization
library greatly reduces the risk of introducing gaps in a
self-developed sanitization method.

Privilege isolation. In the past, NoSQL didn’t support
proper authentication and role management.9 Today,
managing proper authentication and role-based access
control authorization on most popular NoSQL data-
bases is possible. These mechanisms are important for
two reasons. First, they allow enforcement of the prin-
ciple of least privilege, thus preventing privilege esca-
lation attacks by legitimate users. Second, similarly to
SQL injection attacks,10 proper privilege isolation can
minimize the damage in the case of data store exposure
via the injections we describe in this article.

Security scanning. Running dynamic and static appli-
cation security testing (DAST and SAST, respectively)

on the application or source code to find injection
vulnerabilities is recommended. The problem is that
many tools in the market today lack rules for detect-
ing NoSQL injections. The DAST methodology is
considered more reliable than SAST,11 especially if used
with a back-end inspection technology that improves
detection reliability—a methodology referred to as
interactive application security testing.9,12 It’s also rec-
ommended to integrate these scans into the continu-
ous build and deployment systems such that they run
every cycle or check-in, and bugs are captured and
fixed immediately— not just during the security test-
ing phase.

This might reduce the effort of fixing security bugs
for two reasons. First, the cost of fixing a bug in the
development phase is much cheaper than later in the
life cycle, especially because security testing tends to
occur after functional testing, and fixing security bugs
might introduce the need to repeat the functional test-
ing. Second, developers might learn from their bugs in
an early stage and not repeat them in similar places in
later code development.

Security testing. A professional security tester should
test the application. These tests should validate that all
the security requirements have been met as were defined

Figure 5. Diagram of a cross-site request forgery attack on a NoSQL HTTP REST API. A user inside an internal network
behind a firewall is tricked into visiting a malicious Internet page, which causes unwanted execution of queries in the
NoSQL database’s REST API in the internal network.

NoSQL

Employee

Set all items’
price to zero

<form
 method=“post”
 action=“http://nosql.internal.com/items/price”>
 <input type=“number” name=“price” value-“0” />
</form>
<script>
 document.forms[0].submit();
</script>

Malicious website

Internet (public network)
Intranet

(secure network)

1

3

2

	 � March/April 2016

IEEE SYMPOSIUM ON SECURITY AND PRIVACY

in the design phase and should include penetration test-
ing on the application and hosting infrastructure, which
is recommended to resemble the production infrastruc-
ture as much as possible.

Secure Deployment
An important part of protecting the application is
ensuring a secure deployment. Efforts invested in secur-
ing the application code might be wasted if the deploy-
ment is insecure. This stage is sometimes overlooked.

Network isolation. The concept of a secure internal
network has been invalidated in countless attacks on
enterprises such as the Adobe password breach, RSA
Security, and Sony. The internal network is bound to be
infiltrated at some point, and it’s our duty to make it as
difficult as possible for attackers to gain advantages from
that point on. This is especially true for some NoSQL
databases that are relatively new and lack role-based
permissions, which means anyone can execute anything
on them (as was the case for Memcached). For this, a
strict network configuration is recommended to ensure
that the database is accessible only to relevant hosts,
such as the application server.

Protection of APIs. To mitigate the risks of REST API
exposure and CSRF attacks, there’s a need to control the
requests, limiting their format. For example, CouchDB
has adopted some important security measures that
mitigate the risk resulting from an exposed REST API.
These measures include accepting only JSON in con-
tent type. HTML forms are limited to URL-encoded
content type, so attackers can’t use HTML forms for
CSRF. Another alternative is using Ajax requests, which
are blocked by the browser thanks to the same origin
policy. It’s also important to ensure JSONP (JSON with
padding) and cross-origin resource sharing are disabled
in the server API, so no actions can be made directly
from a browser. Some databases, such as MongoDB,

have many third-party REST APIs; many lack the secu-
rity measures we describe here.

Monitoring and Attack Detection
Humans are error prone; even after following all the
secure development best practices, vulnerabilities
might still be found in the software after deployment. In
addition, new attack vectors might be found that were
unknown at the time of development testing. Therefore,
monitoring and defending the application at runtime is
recommended. Although such systems might be good
at finding and blocking certain attacks, they aren’t aware
of the application logic and the rules under which the
application is supposed to work, and they won’t find
100 percent of the vulnerabilities.

Web application firewalls. Web application firewalls
(WAFs) are security tools that inspect HTTP data
streams and detect malicious HTTP transactions.
They can be implemented as appliances, network sniff-
ers, proxies, or webserver modules and are specifically
designed to provide an independent security layer for
Web applications, detecting attacks such as SQL injec-
tions. Although it’s known that attackers can bypass
WAFs,13 we advocate adding rules for detecting NoSQL
injections to these systems as well.

Intrusion detection systems. Similar to firewalls that
can detect attacks at the network level, host-based
intrusion detection systems (HIDSs) guard the exe-
cution of the application and workloads on servers.
HIDSs typically learn an application’s normal behav-
ior and provide alerts of activities that don’t conform
to the expected behavior, which can point to an attack.
Such tools can detect vulnerabilities that propagate to
the OS but won’t be relevant for a SQL injection or
CSRF attack.

Data activity monitoring. Database activity monitoring
tools became a common requirement for organizations’
data protection. They control access to databases, moni-
tor activities with customizable security alerts, and cre-
ate auditable reports of data access and security events.
Although most solutions target relational databases,
initial solutions to monitoring NoSQL data stores have
already started to appear.10 We hope that these will con-
tinue to improve and will become a common practice
for NoSQL activity monitoring. These tools are the
most useful monitoring and detection systems relevant
for injection attacks, as we demonstrate in this article.

SIEM systems and threat intelligence. Security infor-
mation and event management (SIEM) systems
aggregate and correlate logs to help attack detection.

Figure 6. Life cycle of application and deployment security. To address fully
the threats introduced by the application layer, we need to consider the entire
software development life cycle.

Development
and testing

Secure
deployment

Monitoring
and protection

Continuous mitigation

� 39

Furthermore, threat intelligence tools can assist in pro-
viding data on malicious IP addresses and domains as
well as other indicators of compromise, which can help
detect injections.

Runtime application self-protection. Runtime applica-
tion self-protection (RASP) introduces a new applica-
tion security approach in which the defense mechanism
is embedded into the application at runtime, allowing it
to monitor itself. The benefit of RASP over other secu-
rity technologies lies in its ability to inspect the flow of
the program and data being processed internally. Plac-
ing inspection points at key positions in the applica-
tion allows detecting more issues with higher accuracy.
On the down side, RASP takes a toll on performance,
is tightly coupled with the programming language, and
might break the application in production.

N oSQL databases suffer from the same security
risks as their SQL counterparts. Some low-level

techniques and protocols have changed, but the risks
of injection, improper access control management, and
unsafe network exposure remain high. We recommend
using mature databases with built-in security mea-
sures. However, even using the most secure data store
doesn’t prevent injection attacks that leverage vulnera-
bilities in the Web applications accessing the data store.
One way to prevent these is via careful code examina-
tion and static analysis. However, these are difficult
to conduct and might have high false-positive rates.
Although dynamic analysis tools were shown to be use-
ful in detecting SQL injection attacks,9 they should be
adjusted to detect the specific NoSQL database vul-
nerabilities that we describe in this article. In addition,
monitoring and defense systems that are relevant to
NoSQL risks should be used.

References
1. Imperva Web Application Attack Report, 4th ed., Imperva,

2013; www.imperva.com/docs/HII_Web_Application
_Attack_Report_Ed4.pdf.

2. State of Software Security Report, Varacode, 2013; www
.veracode.com/blog/2013/04/changing-the-future
-state-of-software-security-report-2013.

3. A. Lane, “No SQL and No Security,” blog, 9 Aug. 2011;
www.securosis.com/blog/nosql-and-no-security.

4. L. Okman et al. “Security Issues in NoSQL Databases,”
Proc. IEEE 10th Int’l Conf. Trust, Security and Privacy
in Computing and Communications (TrustCom), 2011,
pp. 541–547.

5. E. Sahafizadeh and M.A. Nematbakhsh. “A Survey on
Security Issues in Big Data and NoSQL,” Int’l J. Advances
in Computer Science, vol. 4, no. 4, 2015, pp. 2322–5157.

6. M. Factor et al. “Secure Logical Isolation for Multi-
tenancy in Cloud Storage,” Proc. IEEE 29th Symp. Mass
Storage Systems and Technologies (MSST), 2013, pp. 1–5.

7. “Security,” MongoDB 3.2 Manual, 2016; http://docs
.mongodb.org/manual/core/security-introduction.

8. I. Novikov, “The New Page of Injections Book: Memcached
Injections,” Proc. Black Hat USA, 2014; www.blackhat.com
/docs/us-14/materials/us-14-Novikov-The-New-Page
-Of-Injections-Book-Memcached-Injections-WP.pdf.

9. J. Williams, “7 Advantages of Interactive Application
Security Testing (IAST) over Static (SAST) and Dynamic
(DAST) Testing,” blog, 30 June 2015; https://www
.contrastsecurity.com/security-influencers/9-reasons
-why-interactive-tools-are-better-than-static-or-dynamic
-tools-regarding-application-security.

10. K. Zeidenstein, “Organizations Ramp up on NoSQL
Databases, but What about Security?,” blog, 1 June 2015;
https://securityintelligence.com/organizations-ramp
-up-on-nosql-databases-but-what-about-security.

11. V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint
Propagation for Java,” Proc. IEEE 21st Computer Security
Applications Conf., 2005, pp. 303–311.

12. S.M. Kerner, “Glass Box: The Next Phase of Web Appli-
cation Security Testing?,” blog, 3 Feb. 2012; www
.esecurityplanet.com/network-security/glass-box-the
-next-phase-of-web-application-security-testing.html.

13. I. Ristic, “Protocol-Level Evasion of Web Application
Firewalls,” Proc. Black Hat USA, 2012, https://media
.blackhat.com/bh-us-12/Briefings/Ristic/BH_US_12
_Ristic_Protocol_Level_Slides.pdf.

Aviv Ron is a security researcher for the IBM Cyber
Security Center of Excellence. His research interests
include application security, specifically in cloud envi-
ronments. Ron has a BSc in computer science from
Ben Gurion University. Contact him at aviv1ron1@
gmail.com.

Alexandra Shulman-Peleg is a cloud security domain
lead in the innovation center of Citibank. During the
preparation of this article, she was a senior research
scientist at the IBM Cyber Security Center of Excel-
lence. Her research interests include cloud security.
Shulman-Peleg has a PhD in computer science from
Tel Aviv University. She has more than 30 scientific
publications in leading journals, conferences, and
books. Contact her at shulman.peleg@gmail.com.

Anton Puzanov is a security researcher for the IBM
Cyber Security Center of Excellence. His research
interests include application security testing prod-
ucts. Puzanov has a BSc in communication systems
engineering from Ben Gurion University. Contact
him at antonp@il.ibm.com.

