

Table of Contents
Preface	 1
Chapter 1: Installing a 'Vanilla' Asterisk	 7

Downloading Asterisk	 8
Zaptel—Zapata Telephony Driver	 9
DAHDI—Digium Asterisk Hardware Device Interface	 10
Libpri—ISDN PRI Library	 10
Asterisk—the open source PBX	 11
Asterisk-addons—the open source PBX	 11
Asterisk—SVN source packages	 12

Obtaining the source code packages from SVN	 12
Compilation dependencies	 13

Compiling the source code	 13
Compiling and installing Zaptel	 14

Step 1: Configure 	 14
Step 2: Define the options you would like to compile 	 15
Step 3: Compiling and installing	 16

Compiling and installing DAHDI	 18
Step 1: Compile the kernel module 	 18
Step 2: Install the dahdi kernel module 	 18
Step 3: Compile the dahdi-tools package 	 20
Step 4: Configure the dahdi-tools to be installed 	 20
Step 5: Compile and install dahdi-tools 	 21

Differences between Zaptel and DAHDI	 21
Compiling and installing libpri	 22
Compiling and installing Asterisk	 23

Step 1: Configure 	 23
Step 2: Define the options you would like to compile 	 23
Step 3: Compiling the code 	 26

Summary	 29

Table of Contents

[ii]

Chapter 2: Basic IVR Development: Using the Asterisk DialPlan	 31
The dialplan is a set of "finite state machines"	 32
The dialplan syntax	 33

The extension 	 33
Inclusion of contexts	 34
The [general] and [global] contexts	 35
Extension pattern matching	 35
Special extensions	 36

Dialplan Switches	 37
Variables, applications, and functions	 37

Variables—built-in and custom	 37
Applications and functions	 41

Your first IVR application	 41
Summary	 53

Chapter 3: More IVR Development: Input, Recordings,
and Call Control	 55

Grabbing and processing user input	 55
The Read application	 56
Branching—Goto, GotoIf, Gosub, and GosubIf	 58

Goto and GotoIf	 59
Writing expressions	 61
Regular expressions	 62
Gosub and GosubIf	 63
Exec, ExecIf, and TryExec	 65

Macros—Macro and MacroExclusive	 67
Additional Asterisk applications	 69

Self exploration	 73
Summary	 73

Chapter 4: A Primer to AGI: Asterisk Gateway Interface	 75
How does AGI work?	 75

EAGI, DeadAGI and FastAGI	 77
EAGI—Enhanced Asterisk Gateway Interface	 77
DeadAGI—execution on hangup	 77
FastAGI—AGI execution via a TCP socket	 78
AGI scripting frameworks	 80

The AGI application	 80
The AGI execution flow	 81
The AGI methods API	 83

The ten rules of AGI development	 84
Rule #1: An AGI script should terminate as fast as possible	 85
Rule #2: Blocking applications have no place in AGI	 85
Rule #3: Asterisk channels are stateful—use them	 85
Rule #4: AGI scripts should manipulate data—no more	 86

Table of Contents

[iii]

Rule #5: VM based languages are bad for AGI scripting	 86
Rule #6: Binary-compiled AGI is not always the answer	 86
Rule #7: Balance your scripts with dialplan logic	 87
Rule #8: Balance your scripts with web services	 87
Rule #9: Syslog is your friend—use it	 88
Rule #10: The Internet is for Asterisk	 88

A preface to what's coming ahead	 89
Summary	 90

Chapter 5: AGI Scripting with PHP	 91
PHP-CLI vs. PHP-CGI	 91
The php.ini configuration file	 92
AGI script permissions	 92
The structure of a PHP based AGI script	 93
Communication between Asterisk and AGI	 94
The AGI Hello-World program	 95
AGI debugging	 100
Summary	 101

Chapter 6: PHPAGI: An AGI Class Library in PHP	 103
Obtaining PHPAGI	 104
The file structure of PHPAGI	 104
A very simple PHPAGI example	 104
The AGI/Dialplan high-wire act	 106

Introducing Atomic-AGI	 107
Atomic-AGI—a dialplan example	 108
SetSessionID.agi—meet your state maintainer	 108
agiWrapper.agi—an all purpose AGI execution wrapper	 110

A slightly more complex PHPAGI example	 114
db_validate_target.inc.php	 117
db_register_cdr.inc.php	 119

AGI Scripts in popular Asterisk applications	 119
FreePBX™—the most popular Asterisk management GUI	 119
A2Billing™—a pre-paid calling card system	 120

Summary	 121
Chapter 7: FastAGI: AGI as a TCP Server	 123

FastAGI argument handling	 124
Asterisk 1.2.X and 1.4.X	 125
Asterisk 1.6.X	 125

FastAGI error handling	 125
Asterisk 1.2.X	 126
Asterisk 1.4.X and 1.6.X	 126

Table of Contents

[iv]

FastAGI with PHPAGI and xinetd	 126
Introducing xintetd—the Internet services daemon	 127
Configuring xinetd for FastAGI and PHPAGI	 127
Configuring PHPAGI for FastAGI	 130
The fastagiWrapper.php bootstrap	 130
Performance consideration	 133

FastAGI with PHPAGI and Google	 133
FastAGI with other tool kits	 140

Asterisk::FastAGI—a PERL module for FastAGI handling	 140
Asterisk-JAVA—a Java package for Asterisk	 141

Summary	 142
Chapter 8: AMI: The Asterisk Manager Interface	 143

AMI—the history	 143
How does AMI work?	 144
AMI with Asterisk 1.0 and 1.2	 145
AMI with Asterisk 1.4 and 1.6	 146

AMI–understanding basics	 146
Events and Actions	 146
Logging in to the Manager Interface	 147
Sending actions to the Manager Interface	 147
Logging off from the Manager Interface	 148

PHPAGI and the AMI Interface	 148
Direct AMI interface invocation 	 148
AMI interface invocation via the PHPAGI class	 149
Interacting with the AMI interface	 150

Sending actions to the AMI inteface	 150
Event callbacks from AMI interface	 151

PHPAGI AMI originate quirk	 152
Click-2-Call and Web-Callback 	 155

Demystifying the Asterisk Originate manager action	 155
Welcome to Jabka—the world's favourite Click-2-Call	 156
AMI proxy servers	 158
AJAM—AJAX Enabled Manager	 158

Summary	 159
Chapter 9: Final Programming Project	 161

ACRG—Asterisk Call Recording Gateway	 162
Requirements	 162
Network connectivity—PSTN	 163

Project implementation guide	 163
Step 1: Analysis of the requirements	 164

Table of Contents

[v]

Step 2: Understanding operational constraints	 165
Step 3: Detailed call flow charts	 169
Step 4: The Asterisk dialplan context	 170
Step 5: Develop your human interfaces	 170
Step 6: Test, test, and test again	 171

Additional programming projects	 171
Click-2-Call	 171

Jajah.Com	 172
Stateful call masking	 172
Punk'ed call	 174
Date rescue call	 174
Conference bridge	 174

Summary	 175
Chapter 10: Scaling Asterisk Applications	 177

Scaling Asterisk platforms	 178
Database query caching	 179

Starting up	 179
Using it in a script	 180

Utilization of web services	 182
Introduction to XML-RPC	 182

Apache versus Lighttpd	 185
Virtualization and cloud computing	 189

Summary	 191
Index	 193

Preface
This is my second book, and I have to admit that I really enjoyed working on this
book. While I enjoyed working on my previous book, (the AsteriskNow book from
Packt Publishing), I couldn't help but feel that a portion of me has really slipped into
the pages of this book.

This book is a developer's book, and it is written for developers by a developer.
I see myself as an Asterisk application developer. After developing dozens of
platforms over the course of the past six years, all based arround Asterisk, I can
honestly say that I've seen mistakes that I made six years ago, still being made today
by novice developers.

My role at Greenfield Technologies Ltd. (apart from being the CEO and Founder)
is that of a development consultant, where I render various Asterisk consulting
services to various companies in Israel and worldwide. Wherever I go, no matter
what customer I cater, the mistakes and wrongful paradigms seem to persist. They
persist due to a simple reason: there is no school for Asterisk developers. We have
web developers, core developers, and database developers. But Asterisk developer
is usually either a web developer or a core developer who is assigned a task, or in
the worst case, a database developer entrusted with a task that he totally doesn't
understand. The developers automatically do what they were taught to do: they
superimpose their aggregated knowledge and experience on the Asterisk world,
which usually ends up in disaster.

Asterisk is one of the most innovative pieces of open source software created in the
past ten years (Asterisk just hit nine years old on December 05, 2008). While Asterisk
provides one of the most extensive telephony toolkits available today, its utilization
in a commercial application or platform construct isn't as straightforward as it would
seem. This book de-mystifies some of the mystic characteristics associated with
Asterisk, while at the same exposing some of the well-guarded secrets of professional
Asterisk platform developers.

Preface

[2]

Asterisk requires a new skill set to be developed—one that web developers have no
idea of and core developers completely disregard. My aim with this book is to enable
you to learn the lessons and values that I've learned over a period of six years from
a simple, shrink wrapped, to the point guide. I hope this book will remain on your
table as a useful tool.

What this book covers
Chapter 1 introduces the various hardware elements required for installing your
Asterisk PBX system, and guides you through the Asterisk installation procedure.

Chapter 2 introduces us to the dialplan—extension, context, and syntax. It then covers
the main part—developing a basic IVR (Interactive Voice Response) application
using Asterisk dialplan.

Chapter 3 takes us a bit deeper into IVR development, wherein we learn grabbing
and processing input. The introduction of the Read application, and the conditional
branching and execution, enable a new flexibility that was not available initially.

Chapter 4 is all about AGI—its working, its three types, and the different frameworks.
Finally it covers the do's and don'ts that need to be followed for the AGI script to
work and function properly.

Chapter 5 introduces you to your first AGI script, using the Hello World program.
It also touches upon AGI debugging.

Chapter 6 covers a PHP based AGI class library—PHPAGI. The chapter starts with
an explanation of the PHPAGI file structure, and then goes on to cover simple, and
finally more complex, PHPAGI examples.

Chapter 7 introduces the basic elements of a FastAGI server, again using PHP
and PHPAGI.

Chapter 8 helps understand the Asterisk Manager Interface (AMI)—an Asterisk
proprietary Computer Telephony Integration (CTI) interface.

Chapter 9 takes you through the steps of developing a full click-2-call application,
using all the concepts you've learned. Chapter 9 can be used as the basis for a large
scale service, such as JaJah or RebTel.

Chapter 10 tries to deal with some of the more advanced topics of developing
Asterisk applications—mainly scalability and performance issues. By the end of this
chapter, the reader should be well-equipped with the information to build the next
Verizon Killer application.

Preface

[3]

Documentation for Asterisk applications are taken directly from the
Asterisk source code and/or command line interface. Documentation for
PHPAGI is taken from the PHPAGI website.

What you need for this book
In order to utilize this book to the fullest, you will need the following:

A •	 personal computer (PC) running the Linux operating system. We
used CentOS for this book, but you may use any distribution that you
feel comfortable with. If you would like to get up and running really
quickly, you can use the AsteriskNOW (version 1.5) distribution, located at
http://www.asterisknow.org. This can also be a Virtual Machine (VM)
based system, using VMWARE.
A PC that you can use as your workstation for development purposes and •	
web browsing purposes.
An IP Phone—either a soft phone or hardware IP phone.•	

A Digium TDM11B card (optional).The Digium TDM11B card provides two •	
analog interfaces—one for a phone line (an FXO) and the other for an analog
phone (an FXS).
Experience with the Linux shell—basic system administration skills •	
are required.
Experience with a programming language. This book is for developers, it •	
doesn't teach you a programming language. Knowledge of PHP is preferred
for this book.
Finally, you need patience and a pot of coffee—at least for the first •	
three chapters.

Who is this book for
This book is intended for developers wishing to utilize Asterisk, system
administrators wishing to gain better control over their Asterisk installation, and
telephony service providers wishing to deploy Asterisk-based solutions to their
infrastructure. You are expected to have some experience with Asterisk and a basic
understanding of programming. No knowledge of Asterisk programming
is required.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If we are going to examine the operational
flow of the just seen context, it is fairly clear that Asterisk will perform background
playback on two files—demo-congrats and demo-instruct"

A block of code will be set as follows:

exten => 3,1,Set(LANGUAGE()=fr)
exten => 3,n,Goto(s,restart)

Any command-line input and output is written as follows:

./memcached -d -m 2048 -l 192.168.2.52 -p 6636

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:

"As the immediately preceding screenshot illustrates, issue the make config
command in order to install initial configuration files and system init scripts."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[5]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4466_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Installing a 'Vanilla' Asterisk
In order to change the world, you have to get your head together first.
–Jimi Hendrix

When Mark Spencer initially created Asterisk, he didn't realize the disruptive nature
of his code. Just as Jimi Hendrix had a good idea of how he wanted to change the
world, so does Mark on where Asterisk is destined to go. Getting our heads together
with Asterisk may seem simple, but is more complex than you would imagine.
You are probably saying to yourself right now: "Hey I'm a developer with years of
experience; I have my head straight and on the money! Let's get coding!" Well,
I have some news for you—NO YOU CAN'T!

Over the past five years, as the popularity of Asterisk grew and its install base
multiplied at a geometric rate, it suffered an almost identical fate to that of PHP
and other open source projects. Asterisk granted the integrators and developers
the ability to shape and mould it to suit their needs. However, as Asterisk is an
open source project, there was no clear methodology to do so. Thus many people
developed a multitude of applications for Asterisk—some turned into huge projects
(FreePBX, A2Billing, TrixBox) while others faded away. What made a good project
unique? Was it its feature set? Was it a special function that everyone needed? If
we examine the early stages of FreePBX (the early versions of FreePBX were called
AMP (Asterisk Management Portal) and its current version, you wouldn't believe
that they were programmed by the same people. This is because the people who
invested their time into the project learned from their mistakes and created better
applications. Developers and integrators dealing with Asterisk for the first time are
usually fully capable of developing applications that work—at least to some extent.
By superimposing their traditional development techniques to the Asterisk world,
they usually end up developing an application that would work to an extent, but
would fail miserably when dealing with the rapidly expanding IVR (Interactive
Voice Response) services.

Installing a 'Vanilla' Asterisk

[8]

So how do we get our heads together? Simple! Start from the most basic thing, that
is, installing Asterisk from its source code.

At this point, we would assume that you already have a Linux-based
desktop or server for you to use during this book. You can also use a virtual
machine for this book. All of the examples and screenshots in this book are
taken from a server running on a virtual machine, using VMWare.

Downloading Asterisk
The best place to obtain the Asterisk source code would be from the Asterisk
community website. Point your browser to http://www.asterisk.org, and you
should see the screen shown in the following screenshot, from which you can
download the code.

Asterisk is available for download in two distinct versions—a stable release and an
SVN release. Apart from Asterisk, there are three additional software packages that
you may require for your application to work completely. We shall now explain the
usage of the stable software packages, and how to download and compile them.
Later on, we shall learn how to download the latest SVN package.

Chapter 1

[9]

Zaptel—Zapata Telephony Driver
Let's turn our attention to Zaptel.

If you intend to use Asterisk version 1.6.X, please skip this section and go
to the next.

The Asterisk website describes Zaptel as:

Kernel interface device drivers for Analog and Digital interface cards. Digium
hardware requires Zaptel drivers.

In general, Zaptel provides all of the drivers and kernel modules, required to use
Asterisk with a TDM connection. The stock kernel drivers available in the Asterisk
distribution are compatible with all Digium hardware and Astribank hardware
available from Xorcom. In addition to the kernel support for Digium hardware,
the Zaptel module also provides a virtual timer kernel module, which is used by
Asterisk for allowing conference calls to be made without the physical timer that is
provided by Digium hardware.

Currently, there are various companies manufacturing Zaptel-compatible
hardware. However, these hardware devices usually require a patch to
the code, or they use an additional software package. Our book will not
deal with these.
In general, it is my personal belief that when using an open source
product, it is imperative to support the company funding the
development—Digium in this case.

The stable Zaptel source code is available as a tar.gz file, from the Digium
download site. Zaptel stable source code can be downloaded from
http://downloads.digium.com/pub/zaptel/. The current stable release would
usually be available with the keyword "current", indicating that this is the current
stable release.

At the time of writing this book, the current Zaptel stable release was
1.4.9.2. It is quite likely that by the time this book is published, the Zaptel
stable release will be different.

Download the Zaptel source package to your designated Asterisk server, and
continue to the next section.

Installing a 'Vanilla' Asterisk

[10]

DAHDI—Digium Asterisk Hardware
Device Interface
In version 1.6 of Asterisk, Zaptel has been replaced by the DAHDI framework.
Unlike Zaptel, which was both a self-enclosed kernel module and a set of tools, the
DAHDI framework has separated these into two distinct packages—dahdi-linux and
dahdi-tools.

You are probably wondering: "What was wrong with the name Zaptel?
Couldn't they just create zaptel-linux and zaptel-tools packages?" Well,
the reason for the name change was due to a copyright infringement issue
where a calling card company called Zaptel had indicated that the name
Zaptel was their trademark, long before Asterisk used it—hence
the name change.

The stable DAHDI source code is available as a tar.gz file, from the
Digium download site. The dahdi-linux package can be downloaded from
http://downloads.digium.com/pub/telephony/dahdi-linux/ and while
dahdi-tools package can be downloaded from http://downloads.digium.com/
pub/telephony/dahdi-tools/.

If you are using Asterisk 1.6 as the base of your installation, download the
dahdi-linux and dahdi-tools packages, and continue to the next section.

Libpri—ISDN PRI Library
The Asterisk website describes Libpri as:

Primary Rate ISDN (PRI) library for T1/E1/J1 interfaces.

In general, libpri provides Asterisk a programmatic API, allowing it to interface with
ISDN-type interfaces. If you are not using hardware interfaces with your Asterisk
installation, or you are not using an ISDN PRI interface, you don't have to install
this library.

The stable libpri source code is available as a tar.gz file, from the
Digium download site. Libpri stable source code can be downloaded from
http://downloads.digium.com/pub/libpri/. The current stable release would
usually be available with the keyword "current", indicating that this is the current
stable release.

Chapter 1

[11]

At the time of writing this book, the current libpri stable release is 1.4.3.
It is quite likely that by the time this book is published, the libpri stable
release will be different, or may come in a completely new major
version (1.6.X).

Download the libpri source package to your designated Asterisk server, and
continue to the next section.

Asterisk—the open source PBX
Asterisk doesn't require any introduction. Its source-stable source code is available
for download from the Digium website. The source code can be downloaded from
http://downloads.digium.com/pub/asterisk/. The current stable release would
usually be available with the keyword "current", indicating that this is the current
stable release.

At the time of writing, the current Asterisk stable release was 1.4.22.
It is quite likely that by the time this book is published, the Asterisk
stable release will be different, or may come in a completely new major
version (1.6.X).

Download the Asterisk source package to your designated Asterisk server, and
continue to the next section.

Asterisk-addons—the open source PBX
While Asterisk provides a complete PBX system, some of the modules that people
have become used to working with are required to be distributed using an external
source package. These usually include packages that require a different licensing
scheme, or packages that use other packages for which the licensing scheme doesn't
comply with Asterisk's dual licensing scheme.

The Asterisk-addons stable source code is available for download from the Digium
website. The source code can be downloaded from http://downloads.digium.
com/pub/asterisk/. The current stable release would usually be available with the
keyword "current", indicating that this is the current stable release.

Installing a 'Vanilla' Asterisk

[12]

At the time of writing, the current Asterisk-addons stable release
was 1.4.6. It is quite likely that by the time this book is published,
a different stable release version or a completely new major version
(1.6.X) may be released.

Download the Asterisk-addons source package to your designated Asterisk
server. At this point, you may read the next section dealing with the aspects of
using Asterisk SVN version, or continue to the following section dealing with
code compilation.

Asterisk—SVN source packages
Like most software products, Asterisk has had a multitude of versions since its early
days. When a group of people are required to work together on the same code base,
it is very common to use a code-versioning system that makes sure that while one
person works on a certain piece of code, he/she does not overwrite another person's
work. In the open source world, there are two main variants to code-versioning
systems—CVS and SVN. CVS stands for Concurrent Versions System, which does
exactly what it says. In the early days of the Asterisk project, CVS was used as the
code-versioning system. During the course of 2005, Digium shifted from using CVS
to using SVN. SVN stands for Subversion, which is a different method of managing
multiple versions of the same source code.

Code versioning systems are not covered by this book. However, we
suggest that if you deal with multiple programmers working on the same
source code, do look into using one of these.

Obtaining the source code packages from SVN
Obtaining the source code packages via SVN is performed by using the SVN utility
directly from your Linux command line. In order to do so, first log in to your Linux
server as root, and create a directory that would hold your source code packages.

In order to get the source code packages, you are required to use the
following commands:

mkdir asterisk-sources

cd asterisk-sources

svn checkout http://svn.digium.com/svn/asterisk/trunk asterisk

svn checkout http://svn.digium.com/svn/dahdi/linux/trunk dahdi-linux

Chapter 1

[13]

svn checkout http://svn.digium.com/svn/dahdi/tools/trunk dahdi-tools

svn checkout http://svn.digium.com/svn/libpri/trunk libpri

For the rest of this book, we shall restrict ourselves to working on the
SVN version of source code.

Compilation dependencies
In order to compile the various source code packages, some dependencies
must be met. In accordance to your Linux distribution, you must install the
following packages:

gcc•	

newt-devel•	

libusb-devel•	

kernel-devel (or kernel-smp-devel depending on your kernel)•	

glibc-devel•	
ncurses-devel•	

openssl-devel•	

zlib-deve•	 l

These package names are based upon the RedHat/Fedora distribution, so the names
on your particular distribution may vary. Using your distribution package manager,
install these packages prior to beginning any compilation.

Compiling the source code
The compilation of the Asterisk project source code is performed in a certain order.
The following compilation order must be met, in order for your compiled code to run
for the first time.

1.	 Compile and install the Zaptel kernel module (or the dahdi kernel module).
2.	 Compile and install the libpri library (applies only if you use ISDN PRI

interface cards).
3.	 Compile and install the Asterisk software.
4.	 Compile and install the Asterisk-addons module.

Installing a 'Vanilla' Asterisk

[14]

Compiling and installing Zaptel
Let's turn our attention to compiling and installing Zaptel.

If you intend to use Asterisk version 1.6.X or SVN trunk (as we've
mentioned before), please skip this section and go to the next one.

Follow the steps mentioned here to compile and install the Zaptel kernel module:

Step 1: Configure
From within the Zaptel kernel module directory, issue the ./configure command,
to have the compilation script scan your system and configure the proper
compilation order.

Chapter 1

[15]

Step 2: Define the options you would like to compile
Zaptel enables the installer to choose which Zaptel modules to include in the
compilation order. The selection of modules is performed by issuing the command
make menuconfig from the command line, and then using the available GUI.

From this menu, you will be able to select which of the kernel modules to compile,
and which Zaptel utilities you would like to install. If you are unsure about the
modules that you would like to enable or disable, simply press the q key to quit and
leave the default settings.

Zaptel provides a total of eighteen different kernel modules—each
one for different hardware. It is possible that by the time you read this
book, additional modules will be available, so listing each one of them
at this point will be redundant. Consult the Zaptel documentation and
the Digium forums for information about each of the kernel modules.
Another good source of configuration examples for Zaptel would be the
voip-info.org website, at: http://www.voip-info.org/wiki/view/
Asterisk+Data+Configuration.

Installing a 'Vanilla' Asterisk

[16]

Step 3: Compiling and installing
Once you have selected your desired zaptel kernel module configuration, proceed
to the actual compilation. The compilation is performed by issuing the command
make all from the command line, followed by make install in order to install
the kernel modules, which is then followed by make config to install a set of
preliminary configuration files.

The preceding image shows the actual compilation of the Zaptel kernel module.
Once the compilation is completed without errors, issue the make install
command to install your kernel modules.

Chapter 1

[17]

As the immediately preceding screenshot illustrates, issue the make config command
in order to install the initial configuration files and system init scripts.

In order to verify your installation, you may use the modinfo zaptel command,
which will report information back on your installed kernel module. If the module
information is reported back correctly, issue the service zaptel start command in
order to start the kernel modules.

Installing a 'Vanilla' Asterisk

[18]

Depending on your compiled kernel modules, the previous screenshot
may vary.

Compiling and installing DAHDI
Follow the steps mentioned here to compile and install the DAHDI kernel module
and DAHDI tools.

Step 1: Compile the kernel module
From within the dahdi-linux module directory, issue the make command to compile
the kernel module.

Step 2: Install the dahdi kernel module
Once your compilation is completed, issue the make install to install your
newly-created kernel module.

Chapter 1

[19]

Once your compilation is completed and the kernel module installed, you will be
prompted with the following message:

We shall continue with compiling the dahdi-tools package which will allow us to
configure and use the dahdi kernel module.

Installing a 'Vanilla' Asterisk

[20]

Step 3: Compile the dahdi-tools package
From within the dahdi-tools module directory, issue the ./configure command
to analyze your server and have the compilation script correctly configure your
compilation sequence.

Step 4: Configure the dahdi-tools to be installed
Once the configuration script is completed, issue the make menuconfig command to
initiate the dahdi-tools configuration menu. The configuration menu will allow you
to optimize your dahdi-tools options and compiled utilities.

Chapter 1

[21]

Once you have completed setting your dahdi-tools compilation options, click Save &
Exit on the configuration menu.

Step 5: Compile and install dahdi-tools
After saving of the dahdi-tools compilation configuration, issue the make command
in order to start the compilation of your dahdi-tools.

Once the installation is completed, simply issue the make install command to have
your dahdi-tools package installed on your server.

Differences between Zaptel and DAHDI
While both DAHDI and Zaptel appear to handle the same functionality, their general
configuration structure varies slightly—although when examined, it would appear
that there are some similarities. The following is a small translation table to assist
you in translating the Zaptel and DAHDI file naming conventions and
configuration options:

Installing a 'Vanilla' Asterisk

[22]

Zaptel filename DAHDI filename Description
/etc/zaptel.conf /etc/dahdi/system.conf The actual configuration

file that controls the various
aspects of your installed
hardware

/etc/sysconfig/
zaptel

/etc/dahdi/modules
/etc/dahdi/init.conf

Shell settings for the runlevel
init scripts

/etc/init.d/zaptel /etc/init.d/dahdi The kernel module init and
configuration init script

Compiling and installing libpri
Unlike Zaptel and Asterisk, which require a ./configure script, the libpri
compilation is a straightforward procedure. Compilation is performed using the
make all command, and installation is performed using the make install command.

Chapter 1

[23]

Compiling and installing Asterisk
Very much like the Zaptel kernel module, the Asterisk compilation is a four-step
operation. While the options available to compile Asterisk from source code are
enormous, it is important that you understand the basic idea of fine-tuning your
Asterisk installation.

Step 1: Configure
From within the Asterisk source directory, issue the ./configure command to have
the compilation script scan your system and configure the proper compilation order.

Step 2: Define the options you would like to compile
Just as with Zaptel, Asterisk (versions 1.4 and onwards) includes a compilation
setup and configuration GUI. The GUI enables us to select the Asterisk modules that
we would like to compile and install. While it may seem fairly weird to have such
a tool, the reason is fairly simple. Asterisk, being primarily a PBX system, includes
a multitude of applications and drivers that are usually not required for targeted
applications. For example, let's imagine that I build a TDM-to-SIP gateway using
Asterisk. There isn't much use for a multi-party conferencing application in such a
gateway, now is there?

Each application or driver that is included during the compilation and activation of
Asterisk imposes a certain toll on the server running our Asterisk installation. Thus,
if we remove modules that are not required, our produced Asterisk toll will be lower
than that of a "stock vanilla" Asterisk compilation.

Installing a 'Vanilla' Asterisk

[24]

One could argue that it is possible to disable Asterisk modules that are
not required at load time, which would also be true. However, when
building a high-performance system, it is always nice to know that you
have limited the toll at compile time.

Starting the configuration GUI is performed by issuing the make menuconfig,
command, to be greeted by the following text based GUI:

As indicated before, there are multitudes of applications and modules that can be
included with your Asterisk server. Choosing which ones you require is something
that you need to find out on your own. However, we shall take the opportunity to
review several sections of this configuration GUI to help you get started.

Section 1: Applications
As you browse the applications section of the GUI, a description of each application
is given at the bottom of the screen. Each application description also includes the
dependency (if it exists) of that application. Deciding on your set of applications
is crucial, not only from the performance standpoint but also from a security
standpoint. For example, imagine that you are now creating an IVR system for dating
services. Like any other dating service, the usage of the system in mainly internal, so
we don't want to compile a "dial" application that enables our users to dial out of the
system (if we had made a mistake in our dialplan or programming). Another good
example is the ADSI Programming application, which is used with ADSI-capable
phones. If we don't have ADSI-capable phones, there is surely no reason to compile
and install this application.

Chapter 1

[25]

The following image shows the application selection GUI:

Even if you decide not to compile a certain application at this point, you
can always recompile and install the specific application at a later stage.
Don't forget, that we are dealing with a source code—the most flexible
way to install a piece of software.

Section 3: Channel drivers
The channel drivers provide Asterisk's connections to the world, or in layman's
terms, the way the calls are passed into and out of Asterisk. When dealing with
a development platform, we would usually want to compile all possible channel
drivers. However, when dealing with a production environment, this is not
always required.

Some people may argue that disabling some channel drivers at compile time in a
production environment is a good security practice. This is because Asterisk will not
open an unrequired VoIP connection port, and thus, preventing people from either
DoS (Denial of Service) attacking your Asterisk system or simply exploiting the
exposed channel.

Installing a 'Vanilla' Asterisk

[26]

On most systems, you would want to make sure that the following minimal channel
driver set is compiled:

Channel Driver Description
chan_iax2 The Inter Asterisk eXchange protocol used to connect two or more

Asterisk servers to one another and provide connectivity to IAX2
capable phones

chan_local A local proxy channel, used in many parts of Asterisk
chan_sip The Session Initiation Protocol channel driver, SIP is a de-facto

industry standard for interconnecting with VoIP providers and various
IP phones

chan_zap The Zapata Telephony (Zaptel) channel driver; the Zaptel channel
is used with traditional telephony interface, available from Digium,
Sangoma and other respective vendors

chan_dahdi The DAHDI channel drivers; this channel driver is identical to chan_zap
in terms of its functionality

At this point, we shall let you explore the compilation GUI yourself and make your
own observations. In various sections of this book, we shall do our best to let you
explore and find out various things for yourself. Our aim is not only to teach you,
but also to expose you to the Asterisk way of thinking, which will help you develop
better systems.

Step 3: Compiling the code
Once you have selected your desired Asterisk module configuration, proceed to the
actual compilation. The compilation is performed by issuing the command make all
from the command line, followed by make install in order to install the Asterisk
binary executables and shared modules, which is finally followed by make samples
to install a set of preliminary configuration files.

Chapter 1

[27]

The following screenshot shows the various completed stages:

The preceding screenshot illustrates the completed compilation of the Asterisk
source code.

This screenshot illustrates the completed installation of the Asterisk binary
executables and shared modules. Please note that, at this point your installation lacks
sample configuration files and init scripts; so trying to run Asterisk at this point will
fail. Issue the make samples command in order to create sample configuration files.

Installing a 'Vanilla' Asterisk

[28]

Once you have completed the sample configuration phase, issue the following
command: asterisk –vvvvcgp. If a screen similar to the one shown next appears
on your console at this point, you have a running Asterisk installation.

Issue the core show version command at your Asterisk Command Line interface to
show your installed Asterisk version. Please note that your version may vary from
the one appearing in the screenshot just shown.

You are probably wondering what the parameters vvvvcgp mean. Well, following
is the list of the various parameters that the Asterisk binary program (asterisk) will
accept as viable parameters for execution:

Chapter 1

[29]

Summary
If you are new to compiling open source software, the actions you have just
performed may seem fairly alien to you. Compiling the Asterisk source package
is a task most Asterisk developers perform more than once, especially when
upgrading Asterisk, or when migrating from one server to another. While some
Linux distributions offer pre-compiled versions of Asterisk, it is always a good
practice to compile Asterisk from source and get to know how to do this.

Basic IVR Development:
Using the Asterisk DialPlan

I am a programmer–Ken Thompson

Ken Thompson, a Unix Pioneer, refers to himself as a "programmer"—or a developer
in other words. Many IVR developers do not regard themselves as programmers. That
is a shame as programming an efficient IVR environment using any type of telephony
engine requires skill, and when done right can be regarded as a work of art.

What is IVR?
IVR stands for Interactive Voice Response, or put in layman's terms, the
annoying thing we have to put up with whenever we call the bank or a
customer support service.

The development of IVR applications using the Asterisk dialplan configuration
language is not difficult. Understanding the concepts of Asterisk's dialplan logic and
its utilization are two of the core elements that will be used extensively throughout
this book.

Asterisk's dialplan configuration is available for you via the
extensions.conf file, available under the /etc/asterisk directory.

Basic IVR Development: Using the Asterisk DialPlan

[32]

The dialplan is a set of "finite state
machines"
According to Wikipedia:

A finite state machine (FSM) or finite state automaton (plural: automata) or
simply a state machine is a model of behavior composed of a finite number of states,
transitions between those states, and actions.

By definition, state machines include the following elements:

Element Description
An Entry action The first action executed when entering a state.
An Exit action The last action executed when exiting a state.
An Input Action Performed within a state requiring input from a user or an

external source.
A Transition Action Performed when a transition of state is required.

In the Asterisk world, state machines are actually configuration contexts. The
Asterisk dialplan is built of a multitude of configuration contexts, each configuration
context containing the logic to be performed in accordance to a dialed number or a
dialed pattern.

The following screenshot shows an existing dialplan context, taken from your
current configuration:

Chapter 2

[33]

The context name is indicated by the "demo" name that is enclosed in the square
brackets. Essentially, the definition [demo] directive, simply announces the creation
of a new state machine, which will be defined immediately after this directive.

As indicated before, a state machine has an entry action, or in Asterisk's case, a number
of entry actions. In order to adapt to Asterisk's dialplan, we shall define a new concept,
which will be called "an entry point". The entry point shall be defined as a dialed
number or a dialed pattern, associated with a specific set of instructions within the
state machine. In the preceding screenshot, we have four distinct entry points: s, 2, 3
and 1000. The instructions for each entry point are grouped by an exten (extension)
definition identifying that a group of directives belongs to a specific entry point.

So in accordance with the above, an entry action can be described as the first action
performed for a specific extension within a context. The exit action can be described
as the last action performed for a specific extension. An input action can be described
as an action the reads data from our caller or dialplan, and the traversal between
extensions or state machines can be associated with a transition action.

The dialplan syntax
Asterisk's dialplan is a fairly simplistic, batch-oriented scripting language allowing
the IVR developers to rapidly develop IVR applications at ease. Each line in the
configuration of an extension looks like this:

exten => some_extension,priority(alias),application(arg1,arg2,arg3...)

The name or
dialled number or dialled
pattern of the extension

The serial priority of the
directive; the first directive
is always set to "1"; the
following ones are set to "n";
the "alias" may be used as a
label to the specific directive
location

The application to be
executed, with its
related arguments

The extension
As we have already mentioned, the extension is invoked according to a dialed
number of dialed pattern. As a generalization, this is correct. However, extensions
don't have to be numbers; they can also be alpha-numeric characters. In general, the
Asterisk dialplan is capable of matching requests to these, by matching the request to
the dialplan.

Basic IVR Development: Using the Asterisk DialPlan

[34]

Asterisk seeks a given context for the dialed extension, starting at the top
and working its way to the bottom of the context. The first match in the
dialplan is invoked for the dialed number. This means that if you have
two extensions that overlap a dialed number, the second one will be made
redundant by the first one for that specific dialed number.

Inclusion of contexts
The following may seem a little complicated, but actually it is not. A given context may
include several other contexts. This methodology is generally used to enable a form of
modularization within the dialplan. In most cases, we will create contexts that match
specific extension numbers and include these into another context. In this manner, we
make the specific extension number logic available within the new context.

Including one context within another context is performed by using the
following directive:

include => context_name

This syntax can also be extended to include various time switches, allowing different
contexts to be included at specific times:

include => daytime|9:00-17:00|mon-fri|*|*
include => nighttime|17:00-9:00|mon-fri|*|*
include => weekend|*|sat-sun|*|*

In this example, the daytime context is included from 9am untill 5pm, Monday to
Friday, on each day of the month, in every month.

When contexts are included within other contexts, the extension matching changes
slightly. First, the master context is searched for the dialed extension. If the extension
is not found, Asterisk will search the switches (we will explain switches later on). If
the extension is not found in the switches, Asterisk will search each included context.

The dialplan also enables us to include other dialplan configuration files into the
existing one. This is usually done to distinguish between various IVR applications
running on the same box, and simply allow the developer a means to tidy up.
Dialplan file inclusion is performed using the following directive:

#include {optional_full_path}dialplan_filename.conf

Chapter 2

[35]

The [general] and [global] contexts
The [general] and [global] contexts are used to define global variables to be
used throughout the dialplan. In general, the defaults that are installed with your
Asterisk distribution are just fine. However, if you want more information about
these defaults, we suggest that you look at your default configuration, where the
documentation for the [general] and [global] contexts is available.

Extension pattern matching
As previously indicated, a dialplan extension (exten) is invoked upon matching
either an extension number (or name) or some form of extension pattern. Unlike
Unix/Linux based regular expressions, Asterisk dialplan pattern matching is based
on a numerical pattern matching facility only, while alphanumeric characters are
matched case sensitively.

According to the documentation, Asterisk's pattern matching rules are as follows:

; Extension names may be numbers, letters, or combinations
; thereof. If an extension name is prefixed by a '_'
; character, it is interpreted as a pattern rather than a
; literal. In patterns, some characters have special meanings:
;
; X - any digit from 0-9
; Z - any digit from 1-9
; N - any digit from 2-9
; [1235-9] - any digit in the brackets (in this example,
 1,2,3,5,6,7,8,9)
; . - wildcard, matches anything remaining (e.g. _9011. matches
; anything starting with 9011 excluding 9011 itself)
; ! - wildcard, causes the matching process to complete as soon as
; it can unambiguously determine that no other matches are
 possible
;
; For example the extension _NXXXXXX would match normal 7 digit
dialings,
; while _1NXXNXXXXXX would represent an area code plus phone number
; preceded by a one.

According to this example, pattern matching is performed from the start of the string
(of the left-hand side), going through each character untill we reach the right-hand
side. In order to start an extension pattern matching sequence, we use the underscore
character (_). For example:

exten => _9123X,1,Noop(${EXTEN} was matched)
exten => _9123X,n,SOME_ASTERISK_APPLICATION

Basic IVR Development: Using the Asterisk DialPlan

[36]

In this example, we are trying to match any dialed extension of the form 9123
and any one (exactly one) digit that follows. If we were to replace _9123X with
_9123XX, we're actually saying that we want to match 9123 followed by any two
digits—exactly two so to speak. This is very important, as pattern matching within
the dialplan, when carefully planned and configured, can save a whole lot of code
later on.

Now, lets talk about the (.) and (!) wildcards. These are used at the right-hand side of
the pattern match, usually indicating that we either want to match anything of any
length at the end (.) or match when Asterisk is able to determine that it doesn't need
to match any more (!). Let's look at the following example:

exten => _9123.,1,SOME_ASTERISK_APPLICATION

The example basically matches 9123, and anything that follows, of any length or
any character. Practically speaking, _9123. would match both 912371648131 and
9123NirSimionovich, as it simply matches everything after the 9123 number.

Special extensions
Asterisk makes use of some special extensions, which we will explain now:

Extension Description
a This extension is invoked when a user presses the star key "*" during a

voicemail greeting—usually used to allow access to the voicemail system
from the outside world

h This extension is invoked when a call is hung up
i This extension is invoked when the user has asked for an invalid extension

number in the context
o This extension is called the operator extension and is invoked when the user

pressess the zero "0" key from within the voicemail system
s This extension is the start extension, primarily used in situations where an

inbound call to a context has no information about the extension number
that was dialed (usually associated with Macros and Analog (FXO/FXS)
interfaces)

t This extension is invoked upon a user timeout
T This extension is invoked upon an AbsoluteTimeout timer expiration

failed This extension is invoked when an automatic dial-out feature has failed
(this will be explained later on in this book)

fax This extension is invoked when a Zap (Analog/Digital) channel has detected
a fax signal

talk This extension is invoked by the BackgroundDetect application

Chapter 2

[37]

Dialplan Switches
Switch statements are somewhat of a funky tool. They allow your Asterisk server to
query the extensions, available on a remote Asterisk server. Switches are available
only for the IAX2 protocol, and are mostly used in conjunction with DUNDI.

This book doesn't cover DUNDI. If you wish to learn more about DUNDI
and various numbering discovery methods, we suggest that you visit the
voip-info website, located at http://www.voip-info.org.

Switch statements are formatted as following:

switch => IAX2/<username>:[<password>]@<ast_remote>/<context>

For example, imagine that a server located at IP address 192.168.0.2 can be accessed
via the following IAX2 credentials—username: interpbx, password: contextpbx.
Now, the remote server context we'd like the query is named pbx1_lookup. So,
in our querying server, the following dialplan directive will allow us to query the
remote Asterisk server, and if the extension is found in the remote server, route the
call to it:

switch => IAX2/interpbx:contextpbx@192.168.0.2/pbx1_lookup

Switches are a wonderful tool for building large systems, however, be aware that
using these requires some careful system planning.

Variables, applications, and functions
Like any other scripting language, Asterisk's dialplan makes extensive use of
variables, applications and functions. We shall now discuss these and the usage
of each one.

Variables—built-in and custom
Variables in Asterisk are commonly referred to as "Channel Variables". However, I
would like to distinguish between the two types of channel variables—built-in and
custom variables.

Built-in variables are usually associated with either the Asterisk channel itself, or
with a specific application. For example, let's take a look at built-in channel variables.
Built-in channel variables exist for each channel. These are defined when a channel
is created by Asterisk, and are cleared when the channel dies. Here are examples of
some built-in channel variables:

${CALLERID(all)}•	 : The current Caller ID name and number

Basic IVR Development: Using the Asterisk DialPlan

[38]

${CALLERID(name)}•	 : The current Caller ID name
${CALLERID(num)}•	 : The current Caller ID number
${CHANNEL}•	 : The current channel name
${CONTEXT}•	 : The name of the current context

These channel variables are available for any active channel and are all accessible
from the Asterisk dialplan. You are most probably wondering why some of these
have additional information within round brackets, while others don't. Well, this is
usually associated with the information carried within the variable. For example,
the CALLERID variable may include both a name and a number; so we need a way to
access either of the two, or both together.

Asterisk is a project in a state of constant development and
improvement. For an updated list of Asterisk variables, consult the
Asterisk community websites. The best location to start would be
http://www.voip-info.org/wiki/view/Asterisk+variables.

Custom variables are set by the developer. Setting a variable is very
simple, if performed directly from the Asterisk dialplan. Let's examine the
following example:

exten => _9123X,n,Set(SOME_VAR=3)
exten => _9123X,n,Set(OTHER_VAR=THIS IS A TEST)

As you can see, variables can either be numbers or strings—Asterisk can handle
both. Accessing a variable from the dialplan is performed using the ${VAR} directive.
For example:

exten => _9123X,n,Playback(${SOME_FILENAME})

This line of code plays back the audio file, indicated by the
SOME_FILENAME variable.

While setting variables is important, it is even more important to be able to
manipulate them. Variable manipulation is performed in the same manner as setting
the variables—simply by adding the required manipulation. We shall now examine
some variable manipulation techniques.

Mathematical manipulation
The following examples illustrate the use of mathematical manipulations. Each
example is followed by a short description:

For increment:•	
	 exten => s,1,Set(SOMEVAR=${MATH(${SOMEVAR}+1)});

Chapter 2

[39]

For decrement:•	
	 exten => s,n,Set(SOMEVAR=${MATH(${SOMEVAR}-1)});

For multiplication:•	
	 exten => s,n,Set(SOMEVAR=${MATH(2*${SOMEVAR})}) ;

For division:•	
	 exten => s,n,Set(SOMEVAR=${MATH(${SOMEVAR}/2)}) ;

For backward compatibility with a previous version of Asterisk dialplan scripts, the
following syntax is also available:

For increment:•	
	 exten => s,1,Set(SOMEVAR=$[${SOMEVAR}+1]) ;

For decrement:•	
	 exten => s,n,Set(SOMEVAR=$[${SOMEVAR}-1]) ;

For multiplication:•	
	 exten => s,n,Set(SOMEVAR=$[2*${SOMEVAR}]) ;

For division:•	
	 exten => s,n,Set(SOMEVAR=$[${SOMEVAR}/2]) ;

String manipulation
String manipulation is commonly used while manipulating phone numbers and
extension numbers. For example, a common practice in telephony is to use various
prefixes in order to distinguish between various trunks. However, when a call is
made on the trunk, the prefix should either be removed or replaced. This is possible
through string manipulation.

Substrings
Substrings are the most common types of string manipulations in a dialplan script,
and we shall make use of these extensively throughout this book. Substrings
are extracted using the following syntax: ${variable:offset[:length]}. The
following are some substring examples:

exten => s,1,Set(SOMEVAR=${12127773456:1}) ; SOMEVAR = 2127773456

exten => s,n,Set(SOMEVAR=${12127773456:1:3}) ; SOMEVAR = 212

exten => s,n,Set(SOMEVAR=${12127773456:-3) ; SOMEVAR = 654

exten => s,n,Set(SOMEVAR=${12127773456:-4:3}) ; SOMEVAR = 345

Basic IVR Development: Using the Asterisk DialPlan

[40]

String concatenation
Concatenation of strings is usually performed when you want to pass information
from the dialplan to an external source in a single variable (usually Call Detail Records
or external applications). The following is an example of a concatenated string:

exten => s,1,Set(SOMEVAR=${VAR1}555${VAR2:3})

As you can see, this example assigns variable SOMEVAR with the contents of VAR1
followed by the string 555, and the content of VAR2 without the first three characters.
You are most probably asking yourself: What is this good for? Well, look at the
following example:

exten => s,1,Set(SOMEVAR=${VAR1}_${VAR2}_${VAR3}_${VAR4})

The example shows that SOMEVAR has been assigned a string containing four different
variables, which can be tokenized using the underscore sign (most likely by an
external application).

Variables scoping
Just as with any other scripting/programming language, understanding variable
scoping is crucial. Essentially, Asterisk variables are always assigned to their
currently active channels, as there is no direct way of accessing variables from one
channel to the other.

Bearing this in mind, variable scoping also exists within the Asterisk channel
construct itself. Channel-based variable scoping is usually referred to as inheritance
in Asterisk terms. Inheritance enables us to allow channels that were created from
other channels to gain access to variables in the originating channel. For example,
let's imagine that a call was made into a specific Asterisk context, and was assigned
several variables. At some point, Asterisk will redirect the call into a new context
via a local channel driver. We would like to make some of the original variables
available to the newly-created local channel.

In order to do so, we need to prefix the variable name with either a single underscore
(_) or a double underscore (__). A single underscore will make the variable available
to the next channel in line. A double underscore will make the variable available to
all the channels that are created from the original channel.

The following is an example:

;available to the next channel only
exten => s,1,Set(_NEXT_CHANNEL=12345)

Chapter 2

[41]

;available to all the channels that will be created from this oneexten
=> s,n,Set(__ALL_CHANNELS_AFTER_THIS_ONE=67890)

;this is a global variable, available across all channels
Exten => s,n,Set(${GLOBALS(GLOBAL_VAR)}=12345)

Applications and functions
So far, you have learned about contexts, extensions, and variables. It is time to
introduce you to the Asterisk application and functions set—the basic building
blocks of an Asterisk-based IVR or application.

Asterisk consists of over 150 different applications and over 50 different functions,
which when combined into a single extension within a context, will create your
IVR application. While applications usually perform an operational function and
set various channel variables upon exit, functions operate and manipulate a variable
or a string.

At this point, we will not introduce all of Asterisk's applications or
functions as it will be impossible to do so. We shall concentrate our
studies from this point onwards on specific applications and functions,
with a focus for each episode.

Your first IVR application
In order to create your first IVR application, we shall assume that you already have
one of the following:

An analog phone connected to your Asterisk server via an analog •	
(FXS) interface
An analog line connected to your Asterisk server via an analog •	
(FXO) interface
A digital E1/T1 line connected to your Asterisk server via a PRI interface•	

An IP Phone (software/hardware) connected to your Asterisk server •	
via the network

Our first IVR application will perform a simple automatic attendant function
designed primarily for an office.

Wikipedia (http://en.wikipedia.org/wiki/Automated_attendant)
defines an automatic attendant as:

Basic IVR Development: Using the Asterisk DialPlan

[42]

In telephony, an automated attendant (also auto attendant or auto-attendant, or sometimes
autoattendant or AA) system allows callers to be automatically transferred to a user's
extension without the intervention of a receptionist. A receptionist, who acts as the telephone
operator, can be reached by pressing 0 on most systems. Although an automated attendant
is usually a feature on modern PBX and key phone systems, it is possible to provide one on
standard lines and phones.

While this is only a general definition of what an automatic attendant is, it gives us a
fair understanding of what automated attendants do.

Like any other application, we shall now describe our IVR application verbally, and
later on via a functional flowchart.

A simple automatic attendant
Let's describe our automatic attendant:

1.	 Answer the call.
2.	 Playback a welcome message.
3.	 Wait for a key to be pressed (either 1, 2, 3, or 9).
4.	 Repeat steps 2 and 3 thrice, if no key is pressed.
5.	 If a key is pressed:

Any key press will play back a message, followed by a dial in °°
to a preset location.
If key pressed is °° 9, the call will be disconnected.

6.	 If no key is pressed, hang up the call.

There is no right or wrong solution when it comes to IVR development—it could
either be less optimal or more optimal. The following example illustrates a certain
methodology for how to handle the above scenario. However, there may be many
other solutions.

Step 1: Flowchart
Like any other programming project, we shall first start with a detailed flowchart of
our automatic attendant.

Chapter 2

[43]

Start

Answer the
call

Playback:
welcome.gsm

Loop = 0

Playback:
menu.gsm

Wait for
Extension
from user

No
Key 1 2 3 9

Loop =
Loop + 1

Playback:
msg1.gsm

Playback:
msg2.gsm

Playback:
msg3.gsm Disconnect

Dial:
SIP/300

Dial:
SIP/301

Dial:
SIP/302

Loop < 3

The flowchart illustrates a general view of the automatic attendant. Initially, the
attendant will answer the call, which will be followed by an introduction message
(indicated by the filename welcome.gsm). Further, the welcome message will
be followed by an input loop that will repeat thrice if no input is received. Upon
receiving input from the user, the attendant will play back a new message (indicated
by msg1.gsm, msg2.gsm and msg3.gsm) and will dial a respective SIP channel.

Step 2: Choice of applications
As we have already indicated, Asterisk includes over 150 different applications and
over 50 different functions. However, the question still remains: "Which ones to use?"

We shall now introduce the basic applications that will be used to develop our
automatic attendant. Each application is introduced by the Asterisk documentation
accompanying the application, followed by additional information (where required).

Basic IVR Development: Using the Asterisk DialPlan

[44]

Application: Answer
 -= Info about application 'Answer' =-

[Synopsis]
Answer a channel if ringing

[Description]
 Answer([delay]): If the call has not been answered, this application
will answer it. Otherwise, it has no effect on the call. If a delay
is specified, Asterisk will wait this number of milliseconds before
returning to the dialplan after answering the call.

Application: Dial
 -= Info about application 'Dial' =-

[Synopsis]

Place a call and connect to the current channel

[Description]
 Dial(Technology/resource[&Tech2/resource2...][|timeout][|options]
[|URL]):
This application will place calls to one or more specified channels.
As soon as one of the requested channels answers, the originating
channel will be answered, if it has not already been answered. These
two channels will then be active in a bridged call. All other channels
that were requested will then be hung up.
 Unless there is a timeout specified, the Dial application will wait
indefinitely until one of the called channels answers, the user hangs
up, or if all of the called channels are busy or unavailable. Dialplan
executing will continue if no requested channels can be called, or if
the timeout expires.
 This application sets the following channel variables upon
completion:
 DIALEDTIME - This is the time from dialing a channel until
 when it is disconnected.
 ANSWEREDTIME - This is the amount of time for actual call.
 DIALSTATUS - This is the status of the call:
 CHANUNAVAIL | CONGESTION | NOANSWER | BUSY | ANSWER
 |CANCEL | DONTCALL | TORTURE | INVALIDARGS
 For the Privacy and Screening Modes, the DIALSTATUS variable will
be set to DONTCALL if the called party chooses to send the calling
party to the 'Go Away' script. The DIALSTATUS variable will be set to
TORTURE if the called party wants to send the caller to the 'torture'
script.

Chapter 2

[45]

 This application will report normal termination if the originating
channel hangs up, or if the call is bridged and either of the parties
in the bridge ends the call.
 The optional URL will be sent to the called party if the channel
supports it.
 If the OUTBOUND_GROUP variable is set, all peer channels created by
this application will be put into that group (as in Set(GROUP()=...).
 If the OUTBOUND_GROUP_ONCE variable is set, all peer channels
created by this application will be put into that group (as in
Set(GROUP()=...). Unlike OUTBOUND_GROUP, however, the variable will be
unset after use.
 Options:
 A(x) - Play an announcement to the called party, using 'x' as the
 file.
 C - Reset the CDR for this call.
 d - Allow the calling user to dial a 1 digit extension while
 waiting for a call to be answered. Exit to that extension
 if it exists in the current context, or the context defined
 in the EXITCONTEXT variable, if it exists.
 D([called][:calling]) - Send the specified DTMF strings *after*
 the called party has answered, but before the call gets
 bridged. The 'called' DTMF string is sent to the called
 party, and the'calling' DTMF string is sent to the calling
 party. Both parameters can be used alone.
 f - Force the callerid of the *calling* channel to be set as
 the extension associated with the channel using a dialplan
 'hint'.For example, some PSTNs do not allow CallerID to be
 set to anything other than the number assigned to the
 caller.
 g - Proceed with dialplan execution at the current extension if
 the destination channel hangs up.
 G(context^exten^pri) - If the call is answered, transfer the
 calling party to the specified priority and the called
 party to the specified priority+1.
 Optionally, an extension, or extension and context may be
 specified. Otherwise, the current extension is used. You
 cannot use any additional action post answer options in
 conjunction with this option.
 h - Allow the called party to hang up by sending the '*' DTMF
 digit.
 H - Allow the calling party to hang up by hitting the '*' DTMF
 digit.
 i - Asterisk will ignore any forwarding requests it may
 receive on this dial attempt.
 j - Jump to priority n+101 if all of the requested channels
 were busy.

Basic IVR Development: Using the Asterisk DialPlan

[46]

 k - Allow the called party to enable parking of the call by
 sending the DTMF sequence defined for call parking in
 features.conf.
 K - Allow the calling party to enable parking of the call by
 sending the DTMF sequence defined for call parking in
 features.conf.
 L(x[:y][:z]) - Limit the call to 'x' ms. Play a warning when 'y'
 ms are left. Repeat the warning every 'z' ms. The following
 special variables can be used with this option:
 * LIMIT_PLAYAUDIO_CALLER yes|no (default yes)
 Play sounds to the caller.
 * LIMIT_PLAYAUDIO_CALLEE yes|no
 Play sounds to the callee.
 * LIMIT_TIMEOUT_FILE File to play when time is up.
 * LIMIT_CONNECT_FILE File to play when call begins.
 * LIMIT_WARNING_FILE File to play as warning if 'y'
 is defined. The default is to say the time remaining.
 m([class]) - Provide hold music to the calling party until a
 requested channel answers. A specific MusicOnHold class
 can be specified.
 M(x[^arg]) - Execute the Macro for the *called* channel before
 connecting to the calling channel. Arguments can be
 specified to the Macro using '^' as a delimeter. The
 Macro can set the variable MACRO_RESULT to specify the
 following actions after the Macro is finished executing.
 * ABORT Hangup both legs of the call.
 * CONGESTION Behave as if line congestion was
 encountered.
 * BUSY Behave as if a busy signal was encountered.
 This will also have the application jump to
 priority n+101 if the 'j' option is set.
 * CONTINUE Hangup the called party and allow
 the calling
 party to continue dialplan execution at the
 next priority.
 * GOTO:<context>^<exten>^<priority> - Transfer the call
 to the specified priority. Optionally, an extension,
 or extension and priority can be specified.
 You cannot use any additional action post answer options in
 conjunction with this option. Also, pbx services are not
 run on the peer (called) channel, so you will not be able
 to set timeouts via the TIMEOUT() function in this macro.
 n - This option is a modifier for the screen/privacy mode. It
 specifies that no introductions are to be saved in the
 priv-callerintros directory.

Chapter 2

[47]

 N - This option is a modifier for the screen/privacy mode. It
 specifies that if callerID is present, do not screen the
 call.
 o - Specify that the CallerID that was present on the *calling*
 channel be set as the CallerID on the *called* channel.
 This was the behavior of Asterisk 1.0 and earlier.
 O([x]) - "Operator Services" mode (Zaptel channel to Zaptel
 channel only, if specified on non-Zaptel interface, it
 will be ignored). When the destination answers (presumably
 an operator services station), the originator no longer has
 control of their line.
 They may hang up, but the switch will not release their
 line until the destination party hangs up (the operator).
 Specified without an arg, or with 1 as an arg, the
 originator hanging up will cause the phone to ring back
 immediately. With a 2 specified, when the "operator"
 flashes the trunk, it will ring their phone back.
 p - This option enables screening mode. This is basically
 Privacy mode without memory.
 P([x]) - Enable privacy mode. Use 'x' as the family/key in the
 database if it is provided. The current extension is used
 if a database family/key is not specified.
 r - Indicate ringing to the calling party. Pass no audio to the
 calling party until the called channel has answered.
 S(x) - Hang up the call after 'x' seconds *after* the called party
 has answered the call.
 t - Allow the called party to transfer the calling party by
 sending the DTMF sequence defined in features.conf.
 T - Allow the calling party to transfer the called party by
 sending the DTMF sequence defined in features.conf.
 w - Allow the called party to enable recording of the call by
 sending the DTMF sequence defined for one-touch recording
 in features.conf.
 W - Allow the calling party to enable recording of the call by
 sending the DTMF sequence defined for one-touch recording
 in features.conf.

The Dial application is one of the more complex Asterisk applications,
as it provides one of the key features of a PBX—dialing a destination. As
you can see, the multitude of options and triggers make up for a fairly
complicated command line. Upon finalizing this automatic attendant
tutorial, we encourage you to experiment with your automatic attendant
by using various Dial triggers.

Basic IVR Development: Using the Asterisk DialPlan

[48]

Application: Playback
 -= Info about application 'Playback' =-

[Synopsis]
Play a file

[Description]
 Playback(filename[&filename2...][|option]): Plays back given
filenames (do not put extension). Options may also be included
following a pipe symbol. The 'skip' option causes the playback of the
message to be skipped if the channel is not in the 'up' state (i.e. it
hasn't been answered yet). If 'skip' is specified, the application
will return immediately should the channel not be
off hook. Otherwise, unless 'noanswer' is specified, the channel
will be answered before the sound is played. Not all channels
support playing messages while still on hook. If 'j' is specified,
the application will jump to priority n+101 if present when a file
specified to be played does not exist.
This application sets the following channel variable upon completion:
 PLAYBACKSTATUS The status of the playback attempt as a text
 string, one of SUCCESS | FAILED

Application: Background
 -= Info about application 'BackGround' =-

[Synopsis]
Play an audio file while waiting for digits of an extension to go to.
[Description]
 Background(filename1[&filename2...][|options[|langoverride]
[|context]]): This application will play the given list of files (do
not put extension) while waiting for an extension to be dialed by the
calling channel. To continue waiting for digits after this application
has finished playing files, the WaitExten application should be
used. The 'langoverride' option explicitly specifies which language
to attempt to use for the requested sound files. If a 'context' is
specified, this is the dialplan context that this application will use
when exiting to a dialed extension. If one of the requested sound
files does not exist, call processing will be terminated.
 Options:
 s - Causes the playback of the message to be skipped
 if the channel is not in the 'up' state (i.e. it
 hasn't been answered yet). If this happens, the
 application will return immediately.
 n - Don't answer the channel before playing the files.
 m - Only break if a digit hit matches a one digit
 extension in the destination context.

Chapter 2

[49]

The key difference between Playback and Background is that,
playback doesn't allow user input to be entered, trapping our user
within the playback till it ends. A background-based playback can be
interrupted by an extension key press.

Application: WaitExten
 -= Info about application 'WaitExten' =-

[Synopsis]
Waits for an extension to be entered

[Description]
 WaitExten([seconds][|options]): This application waits for the user
to enter a new extension for a specified number of seconds.
 Note that the seconds can be passed with fractions of a second. For
example,'1.5' will ask the application to wait for 1.5 seconds.
 Options:
 m[(x)] - Provide music on hold to the caller while waiting for an
 extension. Optionally, specify the class for music on
 hold within parenthesis.

Application: Hangup
 -= Info about application 'Hangup' =-

[Synopsis]
Hang up the calling channel
[Description]
 Hangup([causecode]): This application will hang up the calling
channel. If a causecode is given the channel's hangup cause will be
set to the given value.

Application: SoftHangup
 -= Info about application 'SoftHangup' =-

[Synopsis]
Soft Hangup Application

[Description]
 SoftHangup(Technology/resource|options)
Hangs up the requested channel. If there are no channels to hangup,
the application will report it.
- 'options' may contain the following letter:
 'a' : hang up all channels on a specified device instead of a
 single resource

Basic IVR Development: Using the Asterisk DialPlan

[50]

Application: EndWhile
 -= Info about application 'EndWhile' =-

[Synopsis]
End a while loop

[Description]
Usage: EndWhile()
Return to the previous called While

If you have read through the application list provided so far, you are probably
thinking about how to create the automatic attendant. We shall now proceed to the
final step of the automatic attendant, which is the actual automatic attendant code.

Step 3: The automatic attendant code
As we've indicated before, we shall create our automatic attendant within a
new extensions.conf configuration context. We shall name our context as
AutomaticAttendantDemo. The following is the code for implementing the
automatic attendant.

If you don't recall what _X. means, simply go back to the beginning of
this chapter, which deals with pattern matching.

[AutomaticAttendantDemo]
exten => _X.,1,Answer ; Answer inbound calls with 2 or
 ; more digits extensions
exten => _X.,n,Wait(2) ; Perform a simple 2 seconds delay
exten => _X.,n,Playback(welcome)
exten => _X.,n,Set(Loop=0)
exten => _X.,n,While($[${Loop} < 3])
exten => _X.,n,Background(menu)
exten => _X.,n,WaitExten(5) ; Wait 5 seconds for user to enter input
exten => _X.,n,Set(Loop=$[${Loop}+1])
exten => _X.,n(LoopEnd),EndWhile()
exten => _X.,n,Hangup() ; No input from user, so hangup

exten => 1,1,Playback(msg1)
exten => 1,n,Dial(SIP/300,60,rg)
exten => 1,n,Hangup()

exten => 2,1,Playback(msg2)
exten => 2,n,Dial(SIP/301,60,rg)
exten => 2,n,Hangup()

exten => 3,1,Playback(msg3)
exten => 3,n,Dial(SIP/302,60,rg)
exten => 3,n,Hangup()
exten => 9,n,Hangup()

Chapter 2

[51]

exten => i,1,Set(Loop=$[${Loop}+1])
exten => i,n,Goto(LoopEnd)

exten => t,1,Set(Loop=$[${Loop}+1])
exten => t,n,Goto(LoopEnd)

Our automatic attendant is split into three distinct sections, each one taking care of
a different portion of the attendant. We shall now examine each of these sections,
explaining them in detail:

Section 1: The main context body
Our main context body is responsible for answering the inbound call into the context
and taking care of our primary attendant functions. The following is the code
responsible for the main context body:

exten => _X.,1,Answer ; Answer inbound calls with 2 or
 ; more digits extensions
exten => _X.,n,Wait(2) ; Perform a simple 2 seconds delay
exten => _X.,n,Playback(welcome)
exten => _X.,n,Set(Loop=0)
exten => _X.,n,While($[${Loop} < 3])
exten => _X.,n,Background(menu)
exten => _X.,n,WaitExten(5) ; Wait 5 seconds for user to enter input
exten => _X.,n,Set(Loop=$[${Loop}+1])
exten => _X.,n(LoopEnd),EndWhile
exten => _X.,n,softhangup(${CHANNEL} ; No input from user, so hangup

As you can see, our first application is set to Answer, which basically answers the
call, immediately followed by a two-second waiting period. You are probably
wondering what this delay is for? Well, when calls are routed into the context, we
don't always know how they were received. In some media types (mainly VoIP),
the audio path is not completely established even after the Answer application is
invoked. The two-second delay ensures that our audio path is established.

The welcome.gsm file is played using the Playback application.

Pay attention to the fact that files to be played back are indicated without
the .gsm extension. Asterisk is capable of playing files in different
formats such as WAV, G.729, ALAW, ULAW, as well as other codecs.
This functionality is mainly used for a situation where an inbound call
is using a specific codec. Asterisk will try to match the inbound
call codec to an existing file in order to reduce the load on the server's
CPU by not performing any transcoding to the file played back.
Creating the .gsm files for use with Asterisk is possible by converting
WAV files to GSM files using the Linux sox utility or by using the
Windows tools—NCH Switch, available from http://www.nch.com.
au/switch/.

Basic IVR Development: Using the Asterisk DialPlan

[52]

Following is the welcome message, we enter the main loop indicated by the While
application. Once inside the loop, our attendant will play back a menu file, followed
by a five-seconds waiting period that allows our user to enter an extension number.
If the user has not entered an extension within 5 seconds, the loop counter will be
increased by one, and the loop will reiterate till, the Loop counter reaches three
iterations. If three iterations have been performed, and input has still not been
received, the loop will exit and Asterisk will perform a Hangup on the ${CHANNEL},
making it disconnect the dialed call.

Section 2: Dialed extensions management
The next section handles the various extensions available for the user. Each extension
is invoked when a user presses that extension number, while within the WaitExten
application. The following is the code for that section:

exten => 1,1,Playback(msg1)
exten => 1,n,Dial(SIP/300,60,rg)
exten => 1,n,Softhangup(${CHANNEL})

exten => 2,1,Playback(msg2)
exten => 2,n,Dial(SIP/301,60,rg)
exten => 2,n,Softhangup(${CHANNEL})

exten => 3,1,Playback(msg3)
exten => 3,n,Dial(SIP/302,60,rg)
exten => 3,n,Softhangup(${CHANNEL})

exten => 9,1,Softhangup(${CHANNEL})

As you can see, we have four distinct extensions defined—1, 2, 3 and 9. If extension
1,2 or 3 is invoked, our user will be greeted with a specific message, followed by
a dialing to a specific SIP device. Upon completion of the call with the SIP device,
Asterisk will proceed with the dialplan and disconnect the inbound ${CHANNEL}.

Section 3: Error trapping
Just as any computer application, our automatic attendant also requires error
trapping. In IVR applications, error trapping refers to situations where the user has
entered invalid input, or has not entered any input at all. The following is the code
for that section:

exten => i,1,Set(Loop=$[${Loop}+1])
exten => i,n,Goto(LoopEnd)

exten => t,1,Set(Loop=$[${Loop}+1])
exten => t,n,Goto(LoopEnd)

Chapter 2

[53]

Our trapping basically traps situations where a user enters a wrong extension
(indicated by the i extension), or a situation where the user has not entered any
input (indicated by the t extension).

Section 4: Debugging
Just as with any other scripting or programming language, debugging the Asterisk
dialplan execution is an art. Try following the Asterisk CLI interface as calls traverse
your dialplan. Try changing the dialplan to include various errors and examine the
output of the CLI regarding your errors.

While Asterisk's CLI messages and behavior can sometimes be a little cryptic
(in the worst case, downright undecipherable by humans), the Asterisk CLI is
always a good place to start with, when debugging your dialplan.

Step 4: Testing
At this point, you will be required to point your inbound call or SIP phone to the
newly-created context, and simply dial a number to activate it.

Summary
At this point, you should have a working automatic attendant programmed to your
Asterisk installation. Though it is very simplistic and doesn't include a multitude of
features, the general concept of developing IVR applications with Asterisk's dialplan
language should be clearer at this point.

We would like to send you on a little path of experimentation, which will teach
you more about the Dial application—the most complex one for this chapter. Try
modifying your automatic attendant to do the following:

Limit the time of the call to the SIP devices, indicated by in the second section•	

Replace the ringing tone with music-on-hold•	

Allow both parties to disconnect the call using the •	 * key
Create a new context and transfer the calling channel and the called •	
channel into that context, causing each channel to dial a new
destination automatically

The next chapter will introduce additional tools available to the developer, allowing
him/her to develop highly interactive IVR applications.

More IVR Development:
Input, Recordings, and

Call Control
INPUT! INPUT! Need INPUT!–Number 5 (Aka: Johnny Five)

If you were born after the year 1986, there is a good chance you are not familiar with
John Badham's "Short Circuit" (http://www.imdb.com/title/tt0091949/). In the
movie, a malfunctioning robot, known by the designation "Number 5" malfunctions
and becomes aware of itself. As it happens, the robot starts learning by absorbing
inputs from the environment. While Number 5 tries to obtain "INPUT" from a gas
pump (without any success), it remains on the path of obtaining more and more input.

Just like Number 5, an IVR application would not be of much use, without a proper
method of allowing user input to traverse into the application. In this chapter, you
will learn about the various techniques of interacting with the user. User interaction
isn't limited to keypad based input, but also to recording messages from the user,
sending output to the user, and controlling the call flow.

Grabbing and processing user input
In the IVR world, user input is usually associated with DTMF signalling—those
funky beeps you hear when you press your phone keypad while on a call.

More IVR Development: Input, Recordings, and Call Control

[56]

Dual-tone multi-frequency (DTMF) signaling is used for telephone signaling
over the line in the voice-frequency band to the call switching center. The
version of DTMF used for telephone tone dialing is known by the trademarked
term Touch-Tone (canceled March 13, 1984), and is standardized by ITU-T
Recommendation Q.23. Other multi-frequency systems are used for signaling
internal to the telephone network.
To know more about this, follow this link: http://en.wikipedia.org/
wiki/DTMF

Wait a minute! Didn't we process user input already in the previous chapter? Well,
not exactly. In the previous chapter, we developed an automatic attendant, which
was capable of accepting a user input, and then route a call according to it. User
input usually refers to information having no direct relation to our dialplan. The best
example would be a bank IVR that asks you to enter your bank account number, and
then determines what to do with your call. It would be fairly complicated to handle
your bank account information as a dialplan set; we need a better technique here.

The Read application
The Read application enables the IVR developer to play back a preset file to the
user, waiting for a certain set of DTMF inputs to be entered. The following is the
application documentation:

 -= Info about application 'Read' =-

[Synopsis]
Read a variable

[Description]
 Read(variable[|filename][|maxdigits][|option][|attempts][|timeout])

Reads a #-terminated string of digits a certain number of times from
the user in to the given variable.

 filename -- file to play before reading digits or tone with
 option i
 maxdigits -- maximum acceptable number of digits. Stops reading
 after maxdigits have been entered (without requiring
 the user to press the '#' key).
 Defaults to 0 - no limit - wait for the user press
 the '#' key.
 Any value below 0 means the same. Max accepted value
 is 255.
 option -- options are 's' , 'i', 'n'
 's' to return immediately if the line is not up,

Chapter 3

[57]

 'i' to play filename as an indication tone from your
 indications.conf
 'n' to read digits even if the line is not up.
 attempts -- if greater than 1, that many attempts will be made in
 the event no data is entered.
 timeout -- An integer number of seconds to wait for a digit
 response. If greater than 0, that value will override
 the default timeout.

Read should disconnect if the function fails or errors out.

Pay close attention to the last line above: "Read should disconnect if
the function fails or errors out". This means that(for example) if you have
committed an error in the syntax of the filename, your dialplan will stop
and terminate the call.

Let's consider the following example:

exten => _X.,n,Read(VAR1,"read_id_number",,,3,5)

You are most probably wondering why there are three consecutive
commas in this directive. The reason is that not all parameters to the Read
application are mandatory, thus some can simply be discarded.

The dialplan directive just seen will play the file read_id_number back to our user.
The file may consist of a message such as "Please enter your ID number, followed by
the # key".

We've defined the input to be of any length, so our users can press the # key, or
simply timeout on the input. We've not used any of the channel options, as we
want our user to come online before entering any information. We're allowing our
user up to three attempts, to enter the ID number. This means that the message will
be played back, up to three times. The timeout definition defines the waiting time
between one input cycle and another, allowing the user to enter inputs up to five
seconds after the announcement has ended.

Once the user has entered his/her input sequence, the information entered is stored
in the variable indicated, which in our example is VAR1.

It is imperative to remember that while working with DTMF input, it is
almost always entered in the form of digits only. While some directory
services allow you to browse the directory according to the first letter of
the name, it is usually limited to that. In addition, when creating an IVR
application, try your best to refrain from long DTMF input sequences, as
these tend to confuse users.

More IVR Development: Input, Recordings, and Call Control

[58]

Branching—Goto, GotoIf, Gosub, and GosubIf
Just as any other programming language, the dialplan scripting language requires
the use of branching statements. In other programming languages, such as C, PHP,
and PERL, you may know these directives as if-else, switch, and case statements. In
the Asterisk world, the equivalents are Goto, GotoIf, Gosub, and GosubIf.

An Asterisk channel, being a VoIP or TDM channel, can be regarded
as a stateful container. This means that once a channel has been
established—either by an inbound call or an outbound call—the variables
and information associated with the channel will remain accessible for
the dialplan as long as the channel is alive. This behavior turns Asterisk
into a stateful environment, capable of maintaining multiple instances
(channels) of an application operational, without information being
crossed from one instance (channel) to another.

As we've seen in the previous chapter, an Asterisk dialplan may include a multitude
of configuration contexts, each one capable of performing a predefined number of
IVR interactions or operations. In addition, we've also seen that a preset context may
use multiple extensions, and we have also already introduced the while application,
which performs a loop. However, developers can be allowed to branch from outside
of a running extension flow to another portion of the execution flow, to another
extension, or to another context altogether, which allows them to develop highly
complex IVR structures, while maintaining a readable script code.

Let's evaluate a portion of the Asterisk default extensions.conf file:

[demo]
;
; We start with what to do when a call first comes in.
;
exten => s,1,Wait(1) ; Wait a second, just for fun
exten => s,n,Answer ; Answer the line
exten => s,n,Set(TIMEOUT(digit)=5) ; Set Digit Timeout to
 5 seconds
exten => s,n,Set(TIMEOUT(response)=10) ; Set Response Timeout to
 10 seconds
exten => s,n(restart),BackGround(demo-congrats) ; Play a
 congratulatory message
exten => s,n(instruct),BackGround(demo-instruct) ; Play some
 instructions
exten => s,n,WaitExten ; Wait for an extension
 to be dialed.

Chapter 3

[59]

exten => 2,1,BackGround(demo-moreinfo) ; Give some more information.
exten => 2,n,Goto(s,instruct)

exten => 3,1,Set(LANGUAGE()=fr) ; Set language to french
exten => 3,n,Goto(s,restart) ; Start with the
 congratulations

As you can see, we've set some extension directives with aliases (technically referred
to by the Asterisk documentation as "labels"—although I prefer the term "aliases"),
such as restart and instruct. If we are going to examine the operational flow of
the just seen context, it is fairly clear that Asterisk will perform background playback
of two files—demo-congrats and demo-instruct. This will be followed by Asterisk
waiting for the user to enter a new extension to jump to. Let's assume that our user
has pressed the digit 3 on his/her keypad, invoking extension 3. Let's examine
that code:

exten => 3,1,Set(LANGUAGE()=fr) ; Set language to french
exten => 3,n,Goto(s,restart) ; Start with the
congratulations

As you can see, the first line will set a channel variable, the LANGUAGE variable in our
case, followed immediately by the Goto application. The Goto application performs
a branching—jumping the execution of the dialplan to the location—indicated by
the Goto command.

Goto and GotoIf
Let's now evaluate the Goto and GotoIf applications:

 -= Info about application 'Goto' =-

[Synopsis]
Jump to a particular priority, extension, or context

[Description]
 Goto([[context|]extension|]priority): This application will set
the current context, extension, and priority in the channel structure.
After it completes, the pbx engine will continue dialplan execution
at the specified location.
If no specific extension, or extension and context, are specified,
then this application will just set the specified priority of the
current extension.
 At least a priority is required as an argument, or the goto will
return a -1, and the channel and call will be terminated.

More IVR Development: Input, Recordings, and Call Control

[60]

 If the location that is put into the channel information is bogus,
and asterisk cannot find that location in the dialplan, then the
execution engine will try to find and execute the code in the 'i'
(invalid) extension in the current context. If that does not exist, it
will try to execute the 'h' extension. If either or neither the 'h'
or 'i' extensions have been defined, the channel is hung up, and the
execution of instructions on the channel is terminated.
What this means is that, for example, you specify a context that
does not exist, then it will not be possible to find the 'h' or 'i'
extensions, and the call will terminate!

 -= Info about application 'GotoIf' =-
[Synopsis]
Conditional goto

[Description]
 GotoIf(condition?[labeliftrue]:[labeliffalse]): This application
will set the current context, extension, and priority in the channel
structure based on the evaluation of the given condition. After this
application completes, the pbx engine will continue dialplan execution
at the specified location in the dialplan.
The channel will continue at 'labeliftrue' if the condition is true,
or 'labeliffalse' if the condition is false. The labels are specified
with the same syntax as used within the Goto application. If the
label chosen by the condition is omitted, no jump is performed, and
the execution passes to the next instruction.
If the target location is bogus, and does not exist, the execution
engine will try to find and execute the code in the 'i' (invalid)
extension in the current context. If that does not exist, it will try
to execute the 'h' extension. If either or neither the 'h' or 'i'
extensions have been defined, the channel is hung up, and the execution
of instructions on the channel is terminated.
Remember that this command can set the current context, and if the
context specified does not exist, then it will not be able to find any
'h' or 'i' extensions there, and the channel and call will both be
terminated!

The Goto application is used to perform an unconditional branch to a preset step in
the dialplan. This preset step may be located in the same extension script, in the same
context, or in a completely different dialplan context altogether.

The GotoIf application is used to perform an evaluation of variables, thus deciding
which priority to jump to. Please note that while Goto is able to branch between
contexts and extensions, GotoIf is unable to do so.

Pay special attention to the use of the i and h extensions, which are fairly similar
in both the applications. In many IVR cases, when you, as a developer, take your
first steps into IVR development with Asterisk, improper handling of these edge
cases can cause your application to sporadically hang up, leaving you baffled and
confused as to what happened.

Chapter 3

[61]

Writing expressions
When using the GotoIf directive or any other application that uses expressions, it
is important to use the correct syntax. Unlike a compiled language, Asterisk won't
really complain if the expression appearing in the dialplan is wrong. However, the
results of the expression cannot usually be foreseen.

Evaluating expressions is performed using the following format:

$[expr1 operator expr2]

Basically, the $[] operator tells Asterisk, which of the expressions that appear within
these brackets need to be evaluated. Let's examine some evaluations:

Expression Explanation
$[${CALLERID(num)} = 123456] This expression evaluates the caller ID number,

associated with the current channel
$[${CALLERID(name)} =
"Simon"]

This evaluation will return a constant false value,
as its syntax is incorrect. In order to indicate to
Asterisk that we want to evaluate strings, we must
use the quotes indication with the variable name

$["${CALLERID(name)}" =
"Simon"]

This is the correct form of the previous evaluation

Asterisk makes usage of several operators while writing expressions. The following
is a list of available operators:

Logical operators
Let's turn our attention to the logical operators.

expr1 | expr2 •	 (Logical OR)

If expr1 evaluates to a non-empty string or a non-zero value, "true" value is
returned. Otherwise, the evaluation of expr2 is returned.
expr1 & expr2•	 (Logical AND)
If both the expressions evaluate to non-empty strings or non-zero values,
then value "1" (true) is returned, else "0" (false) is returned.
!expr•	 (Logical Unary Complement)
There should'nt be a space between the '!' and the expression, else an error
will occur.

More IVR Development: Input, Recordings, and Call Control

[62]

Comparison operators
Now we will see the comparison operators.

expr1 = expr2 •	
expr1 != expr2 •	
expr1 < expr2 •	
expr1 > expr2 •	
expr1 <= expr2 •	
expr1 >= expr2 •	

If both the arguments are integers, the result of an integer comparison is returned.
Otherwise, the result of string comparison is returned using the locale-specific
collation sequence. In either case, the result of a comparison is 1 if the specified
relation is true or 0 if the relation is false.

Arithmetic operators
The following are arithmetic operators.

expr1 + expr2 •	
expr1 - expr2 •	

- expr•	 (unary negation operator)

Return the results of addition or subtraction of integer-valued arguments.

expr1 * expr2 •	
expr1 / expr2 •	
expr1 % expr2 •	

Return the results of multiplication, integer division, or the remainder of the
integer-valued arguments.

Regular expressions
Asterisk allows the use of regular expressions within the dialplan. While the regular
expressions are not an integral part of this book, we include an example here that
may assist you in writing regular expressions of your own.

exten => stripcidtext,n,Set(regx="([0-9]+)")
; Note the quotes -- and note that parentheses are REQUIRED if you
; want to return the matched string

exten => stripcidtext,n,Set(cid2=$["${cid}" : ${regx}])
; Returns numeric beginning to string

Chapter 3

[63]

Operator precedence
Just as any other programming language, operators follow a certain order of
precedence. The following are the precedence rules for Asterisk's operators:

1.	 Parentheses—()
2.	 Unary operators— !, -
3.	 Regular expression comparison—:, =~
4.	 Multiplicative arithmetic operators— *, /, %
5.	 Additive arithmetic operators— +, -
6.	 Comparison operators— =, !=, <, >, <=, >=
7.	 Logical operators— |, &
8.	 Conditional operator— ? :

This information is taken from the Asterisk wiki, located at http://www.
voip-info.org/wiki/index.php?page=Asterisk+Expressions

Gosub and GosubIf
When you were new to the programming world, your first programming language
would have been either Pascal or—if you were unlucky—Java. For those of us who are
over thirty years old, our first programming language would have been Basic. While
Basic was a very simplistic and batch-oriented computer language, the dreaded Gosub
directive was always a case where our program would start doing things we didn't
really plan. Asterisk's Gosub and GosubIf directives are fairly similar.

 -= Info about application 'Gosub' =-

[Synopsis]
Jump to label, saving return address
[Description]
Gosub([[context|]exten|]priority)
 Jumps to the label specified, saving the return address.

 -= Info about application 'GosubIf' =-

[Synopsis]
Conditionally jump to label, saving return address

[Description]
GosubIf(condition?labeliftrue[:labeliffalse])
 If the condition is true, then jump to labeliftrue. If false,
jumps to labeliffalse, if specified. In either case, a jump saves the
return point in the dialplan, to be returned to with a Return.

More IVR Development: Input, Recordings, and Call Control

[64]

As you can see, the main difference between the two directives is that GosubIf
enables us to branch into our subroutine using an evaluation. Unlike the Goto
directive, the Gosub directive has the ability to save the location that we branched
from, and return to the next step in sequence. This enables new functionality,
especially in modularizing our dialplan code.

Let's examine what a dialplan would look like:

 exten => _XXXX,1,Gosub(setcid)
 exten => _XXXX,n,Dial(Zap/g1/00${EXTEN})
 exten => _XXXX,n,Congestion
 exten => _XXXX,n(setcid),SetCALLERID(all)=Movie Phone <12127773456>)
 exten => _XXXX,n,Return

Essentially, the above dialplan extract doesn't do anything interesting. It simply
seeks a dialed extension that has exactly four digits in it, performs a Gosub to the
setcid subroutine, followed by a Dial directive. The Gosub directive specifies that
the dialplan forks to the setcid label, performs the subroutine, and resumes at the
next step.

Let's examine the setcid subroutine:

 exten => _XXXX,n(setcid),SetCALLERID(all)=Movie Phone <12127773456>)
 exten => _XXXX,n,Return

In a similar fashion, the GoSub and GoSubIf directive are also able to
activate subroutines in different contexts from the currently running one.

As you can see, the subroutine simply sets the caller ID information and then
returns back to the main extension loop, immediately followed by dialing our TDM
group—g1.

Let's examine a more complex example:

[moviephone-main-ivr]
exten => 12127773456,1,Answer
exten => 12127773456,n,Wait(1)
exten => 12127773456,n,Read(menu,moviephone_menu,1,,3,5)
exten => 12127773456,n,Gosub(moviephone-checkmenu,${EXTEN},1)
exten => 12127773456,n,Congestion()

[moviephone-checkmenu]
exten => _X.,1,GotoIf($[${menu} == 1]?menu_1)
exten => _X.,n,GotoIf($[${menu} == 2]?menu_2)
exten => _X.,n,GotoIf($[${menu} == 3]?menu_3)
exten => _X.,n,GotoIf($[${menu} == 4]?menu_4)

Chapter 3

[65]

exten => _X.,n,GotoIf($[${menu} == 5]?menu_5)
exten => _X.,n,Return()
exten => _X.,n(menu_1),Goto(moviephone-menu1,${EXTEN},1)
exten => _X.,n(menu_2),Goto(moviephone-menu2,${EXTEN},1)
exten => _X.,n(menu_3),Goto(moviephone-menu3,${EXTEN},1)
exten => _X.,n(menu_4),Goto(moviephone-menu4,${EXTEN},1)
exten => _X.,n(menu_5),Goto(moviephone-menu5,${EXTEN},1)

The above example basically answers the call and plays back a welcome menu,
waiting for our user to enter a single digit input. Once the input is received, Asterisk
will invoke the subroutine movie-checkmenu that will check the user's input. If the
input doesn't match anything, the subroutine returns and the call is terminated with
a congestion sound.

Exec, ExecIf, and TryExec
Let's now evaluate the Exec, ExecIf, and TryExec applications now:

 -= Info about application 'Exec' =-

[Synopsis]
Executes dialplan application

[Description]
Usage: Exec(appname(arguments))
 Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. If the underlying application
terminates the dialplan, or if the application cannot be found,
Exec will terminate the dialplan.
 To invoke external applications, see the application System.
 If you would like to catch any error instead, see TryExec.
 -= Info about application 'ExecIf' =-
[Synopsis]
Executes dialplan application, conditionally

[Description]
Usage: ExecIF (<expr>|<app>|<data>)
If <expr> is true, execute and return the result of <app>(<data>).
If <expr> is true, but <app> is not found, then the application
will return a non-zero value.

More IVR Development: Input, Recordings, and Call Control

[66]

 -= Info about application 'TryExec' =-

[Synopsis]
Executes dialplan application, always returning

[Description]
Usage: TryExec(appname(arguments))
 Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. To invoke external applications
see the application System. Always returns to the dialplan.
The channel variable TRYSTATUS will be set to:
 SUCCESS if the application returned zero
 FAILED if the application returned non-zero
 NOAPP if the application was not found or was not specified

You are most probably asking yourself: "I can understand why I would like to use
the ExecIf application. Yes, it is quite useful, but why would I use Exec?" Well, the
Exec application is a way for you to run different applications via a single Asterisk
dialplan extension directive.

Let's evaluate the following dialplan:

The following dialplan includes an advanced directive—AGI. While the
AGI directive is discussed in the next chapter, regard it as an application
that accepts data, manipulates it, and returns a variable or set of variables
to the operational channel.

[moviephone-mainmenu]
exten => _X.,1,Read(menuselect,mainmenu,1,,3,5)
exten => _X.,n,AGI(CheckMenuInput.agi)
exten => _X.,n,Exec(${menuapp_name},${menuapp_params})

The dialplan just seen reads a DTMF signal from the user, followed by an activation
of an external AGI script. The purpose of our AGI scripts is simply to check which
DTMF was keyed, and accordingly set the two environment variables—${menuapp_
name} and ${menuapp_params}. This means that our little dialplan can execute any
Asterisk application, simply by keying in a different number at the main menu.

The above methodology is fairly common with dynamic IVR structures,
and can be extended to include various external communication
structures such as XML-RPC, SOAP, and WSDL among others.

Chapter 3

[67]

Let's examine the same functionality, however, this time using the
ExecIf application:

[moviephone-mainmenu]
exten => _X.,1,Read(menuselect,mainmenu,1,,3,5)
exten => _X.,n,ExecIf($[${menuselect} == 1],playback,sound1)
exten => _X.,n,ExecIf($[${menuselect} == 2],background,sound2)
exten => _X.,n,ExecIf($[${menuselect} == 3],Goto,submenu,${EXTEN},1)

This code accomplishes a task similar to the previous one. However, our code is less
dynamic and highly rigid. Opting for one over another doesn't make sense as each
one is used in a different scenario. It is up to you to use these accordingly.

Macros—Macro and MacroExclusive
Macros enable the developer to develop small dialplan contexts to perform specific
functions, for example, processing some information and then returning to the place
they were called from. Following is an example of a dialplan macro:

[macro-example];
 ; ${ARG1} – The destination to call
 ; ${ARG2} – How long to call the destination
 ; ${ARG3} – Parameters to the dial command
 ;
 exten => s,1,Dial(${ARG1},${ARG2},${ARG3})
 exten => s,n,Goto(s-{DIALSTATUS},1)
 exten => s,n,MacroExit

 exten => s-NOANSWER,1,Playback(there_was_no_answer)
 exten => s-NOANSWER,n,MacroExit

 exten => s-BUSY,1,Playback(the_destination_is_busy)
 exten => s-BUSY,n,MacroExit

 exten => _s-.,1,Playback(an_error_occured)
 exten => _s-.,n,MacroExit

Ok, the just seen example is fairly simplistic for a macro, however, it provides a very
nice example. The above macro is used as a dialing handler, or to be more precise,
a dialer handler with error handling. When a macro is invoked, it automatically
invokes the s extension. Once the s extension is invoked, execution is performed
exclusively within the macro.

If you decide to branch from your macro back to the main dialplan by
using Goto, GotoIf or other branching techniques, your macro will
exit at that point.

More IVR Development: Input, Recordings, and Call Control

[68]

Execution of a Macro from the dialplan is performed according to the following:

 exten => 1234,1,Macro(example,SIP/1234,120,r)

In our example, we execute the example macro with the destination set to SIP/1234,
the timeout to 120 seconds, and the parameters set to r.

Macros provide information regarding where the macro was called from, while at
the same time, provide the ability to return to a specific offset in the context that
called the macro. These are available through the following variables:

Variable name Details
${MACRO_EXTEN} The extension from which the macro was invoked
${MACRO_CONTEXT} The context from which the macro was invoked
${MACRO_PRIORITY} The priority, in the extension dialplan, from which the macro

was invoked
${MACRO_OFFSET} When returning from the macro to ${MACRO_

PRIOTIRY}@${MACRO_EXTEN}@${MACRO_CONTEXT},
return to the priority designated by $
{MACRO_PRIORITY}+1+${MACRO_OFFSET}

While the ${MACRO_OFFSET} variable exists, I urge you to refrain from
using it often, as it will make your dialplans fairly complex to read and
debug. If you really need to return to a specific offset, consider returning a
value to the macro calling context, and then branching according to that.

If you execute the Background application within a context, you would
expect that pressing a key while Background is executed will pass the
control to the extension that was entered while Background was running.
Well, this is not true. This will cause a jump back to the macro calling
context and will seek the extension keyed in the original macro
calling context.

Version Notice: The Macro application has been in the Asterisk code
since its first version. But the GoSub application, after its introduction in
Asterisk 1.6, is now the prefrered method of performing this functionality

Chapter 3

[69]

Another way of executing a macro is using the MacroExclusive application. The
purpose of MacroExclusive is to restrict the execution of a macro to a single channel
at a time. All other channels will have to wait till the first channel frees the macro.
This was mainly created as a means of providing a way to lock the usage of a macro,
thereby allowing the synchronization of database manipulations and global variables
in Asterisk.

Additional Asterisk applications
At this point, we shall introduce you to some new Asterisk applications. However,
we won't go into the functionality of each application. These applications are being
introduced to you at this point, in order to encourage you to experiment and try new
applications as you go along.

 -= Info about application 'Busy' =-

[Synopsis]
Indicate the Busy condition

[Description]
 Busy([timeout]): This application will indicate the busy condition
to the calling channel. If the optional timeout is specified, the
calling channel will be hung up after the specified number of seconds.
Otherwise, this application will wait until the calling channel
hangs up.

 -= Info about application 'Congestion' =-

[Synopsis]
Indicate the Congestion condition

[Description]
 Congestion([timeout]): This application will indicate the congestion
condition to the calling channel. If the optional timeout is
specified, the calling channel will be hung up after the specified
number of seconds.
Otherwise, this application will wait until the calling channel
hangs up.

Congestion refers to a situation where you are trying to call a specific
destination, via a specific route (be it TDM of VoIP) and received back an
indication that there are no more lines available. In older PBX systems,
this would generate a specific tone—known as the congestion tone. The
Congestion application generates that tone to the connected channel,
directly from the dialplan.

More IVR Development: Input, Recordings, and Call Control

[70]

 -= Info about application 'ControlPlayback' =-

[Synopsis]
Play a file with fast forward and rewind

[Description]

 ControlPlayback(file[|skipms[|ff[|rew[|stop[|pause[|restart|
options]]]]]]]):
This application will play back the given filename. By default,
the '*' key
can be used to rewind, and the '#' key can be used to fast-forward.
Parameters:
 skipms - This is number of milliseconds to skip when rewinding or
 fast-forwarding.
 ff - Fast-forward when this DTMF digit is received.
 rew - Rewind when this DTMF digit is received.
 stop - Stop playback when this DTMF digit is received.
 pause - Pause playback when this DTMF digit is received.
 restart - Restart playback when this DTMF digit is received.
Options:
 j - Jump to priority n+101 if the requested file is not found.
This application sets the following channel variable upon completion:
 CPLAYBACKSTATUS - This variable contains the status of the attempt
 as a text string, one of: SUCCESS | USERSTOPPED
 | ERROR

 -= Info about application 'SayAlpha' =-

[Synopsis]
Say Alpha

[Description]
 SayAlpha(string): This application will play the sounds that
correspond to the letters of the given string.

 -= Info about application 'SayDigits' =-

[Synopsis]
Say Digits

[Description]
 SayDigits(digits): This application will play the sounds that
correspond to the digits of the given number. This will use the
language that is currently set for the channel. See the LANGUAGE
function for more information on setting the language for the channel.

Chapter 3

[71]

 -= Info about application 'SayNumber' =-

[Synopsis]
Say Number

[Description]
 SayNumber(digits[,gender]): This application will play the sounds
that correspond to the given number. Optionally, a gender may be
specified.
This will use the language that is currently set for the channel. See
the LANGUAGE function for more information on setting the language for
the channel.

 -= Info about application 'Monitor' =-

[Synopsis]
Monitor a channel

[Description]
Monitor([file_format[:urlbase]|[fname_base]|[options]]):
Used to start monitoring a channel. The channel's input and output
voice packets are logged to files until the channel hangs up or
monitoring is stopped by the StopMonitor application.
 file_format optional, if not set, defaults to "wav"
 fname_base if set, changes the filename used to the one
 specified.
 options:
 m - when the recording ends mix the two leg files into one and
 delete the two leg files. If the variable MONITOR_EXEC is
 set, the application referenced in it will be executed
 instead of soxmix and the raw leg files will NOT be deleted
 automatically.
 soxmix or MONITOR_EXEC is handed 3 arguments, the two leg
 files and a target mixed file name which is the same as the
 leg file names only without the in/out designator.
 If MONITOR_EXEC_ARGS is set, the contents will be passed on
 as additional arguements to MONITOR_EXEC
 Both MONITOR_EXEC and the Mix flag can be set from the
 administrator interface
 b - Don't begin recording unless a call is bridged to
 another channel

Returns -1 if monitor files can't be opened or if the channel is
already monitored, otherwise 0.

More IVR Development: Input, Recordings, and Call Control

[72]

 -= Info about application 'StopMonitor' =-

[Synopsis]
Stop monitoring a channel

[Description]
StopMonitor
Stops monitoring a channel. Has no effect if the channel is not
monitored

 -= Info about application 'MixMonitor' =-

[Synopsis]
Record a call and mix the audio during the recording

[Description]
 MixMonitor(<file>.<ext>[|<options>[|<command>]])

Records the audio on the current channel to the specified file.
If the filename is an absolute path, uses that path, otherwise
creates the file in the configured monitoring directory from
asterisk.conf.

Valid options:
 a - Append to the file instead of overwriting it.
 b - Only save audio to the file while the channel is bridged.
 Note: Does not include conferences or sounds played to
 each bridged party.
 v(<x>) - Adjust the heard volume by a factor of <x> (range -4 to 4)
 V(<x>) - Adjust the spoken volume by a factor of <x> (range -4 to 4)
 W(<x>) - Adjust the both heard and spoken volumes by a factor of <x>
 (range -4 to 4)
<command> will be executed when the recording is over
Any strings matching ^{X} will be unescaped to ${X}.
All variables will be evaluated at the time MixMonitor is called.
The variable MIXMONITOR_FILENAME will contain the filename used to
record.

-= Info about application 'StopMixMonitor' =-

[Synopsis]
Stop recording a call through MixMonitor

[Description]
 StopMixMonitor()
Stops the audio recording that was started with a call to MixMonitor()
on the current channel.

Chapter 3

[73]

-= Info about application 'MusicOnHold' =-

[Synopsis]
Play Music On Hold indefinitely

[Description]
MusicOnHold(class): Plays hold music specified by class. If omitted,
the default music source for the channel will be used. Set the default
class with the SetMusicOnHold() application.
Returns -1 on hangup.
Never returns otherwise.

Self exploration
At this point, we would like to send you on a journey of self-exploration, using the
applications and methodologies you've learned so far. Using the same automatic
attendant dialplan from Chapter 1, extend the dialplan code to include
the following new features:

Add music-on-hold features to each of the extensions dialled, to be played •	
back untill the extension is picked up
Add recording of the call to some of your extensions•	

Change the main body of the automatic attendant to use the Read application •	
instead of using the Background application

Summary
At this point, you should be able to develop the IVR application in a manner that is
slightly more complicated than the applications we've discussed in Chapter 2. The
introduction of the Read application, and the conditional branching and execution,
enable new flexibility that was not available in Chapter 1. From this point onwards,
the journey becomes more and more complicated as we go along. So take a break at
this point, grab a cup of coffee, and relax.

A Primer to AGI: Asterisk
Gateway Interface

Explanation separates us from astonishment, which is the only gateway to the
incomprehensible.–Eugene Ionesco

Eugene Ionesco, a Romanian/French playwright and dramatist is known mostly for
his work on the "Theatre of the Absurd". Asterisk AGI (Asterisk Gateway Interface)
enables an IVR developer to develop IVR structures that are sometimes, bordering
on the absurd, as applications tend to become more and more complex by using AGI.
However, there are some scenarios where common dialplan practices are no longer
applicable, and the use of an external logic is a must. Enter AGI!

How does AGI work?
Let's examine the following diagram:

Dialplan
Asterisk

Core

Sound
Files

Channels

S
TD

IN
/S

TD
O

U
T

AGI
Script

External
Resource

External
Resource

External
Resource

A Primer to AGI: Asterisk Gateway Interface

[76]

As the previous diagram illustrates, an AGI script communicates with Asterisk
via two standard data streams—STDIN (Standard Input) and STDOUT (Standard
Output). From the AGI script point-of-view, any input coming in from Asterisk
would be considered STDIN, while output to Asterisk would be considered
as STDOUT.

The idea of using STDIN/STDOUT data streams with applications isn't a new one,
even if you're a junior level programmer. Think of it as regarding any input from
Asterisk with a read directive and outputting to Asterisk with a print or echo
directive. When thinking about it in such a simplistic manner, it is clear that AGI
scripts can be written in any scripting or programming language, ranging from
BASH scripting, through PERL/PHP scripting, to even writing C/C++ programs to
perform the same task.

Let's now examine how an AGI script is invoked from within the Asterisk dialplan:

exten => _X.,1,AGI(some_script_name.agi,param1,param2,param3)

As you can see, the invocation is similar to the invocation of any other Asterisk
dialplan application. However, there is one major difference between a regular
dialplan application and an AGI script—the resources an AGI script consumes.
While an internal application consumes a well-known set of resources from
Asterisk, an AGI script simply hands over the control to an external process. Thus,
the resources required to execute the external AGI script are now unknown, while
at the same time, Asterisk consumes the resources for managing the execution of
the AGI script. Now, imagine that your script is written in BASH. This means that
every time you run an AGI script, a full BASH shell is invoked for the script. Ok, so
BASH isn't much of a resource hog, but what about Java? This means that the choice
of programming language for your AGI scripts is important. Choosing the wrong
programming language can often lead to slow systems and in most cases, non-
operational systems.

While one may argue that the underlying programming language has a direct impact
on the performance of your AGI application, it is imperative to learn the impact
of each. To be more exact, it's not the language itself, but more the technology of
the programming language runtime that is important. The following table tries to
distinguish between three programming languages' families and their applicability
to AGI development.

Chapter 4

[77]

Language Family Member Languages Details
Binary Compiled C, C++, Pascal The executable code generated can be

highly optimized; thus, its general system
footprint is fairly light; although these are
the perfect choice for AGI development, the
development process is long and tedious

Virtual Machine Java, C#, Mono Virtual machine executables incur a hefty
toll, with the virtual machine itself usually
consuming much memory; while languages
like Java enable rapid development, their
main use should be limited to FastAGI
(described later in this book)

Interpreted PERL, PHP, Python,
Ruby

Interpreted languages have a slightly higher
toll than binary compiled executables;
however, their general footprint is much
smaller than that of the Virtual Machine
based languages; Interpreted languages,
such as PHP, make up for about 80% of the
AGI development in the world, and easily fit
both AGI and FastAGI development

EAGI, DeadAGI and FastAGI
AGI has three cousins—EAGI, DeadAGI, and FastAGI. We shall now explain the use
of each of these variants, and their proper usage.

EAGI—Enhanced Asterisk Gateway Interface
EAGI is a slightly more advanced version of AGI, allowing the AGI script to interact
with the inbound audio stream via file descriptor 3. Essentially, EAGI can be used
to create applications that can tap into an inbound audio stream, analyze it, and
perform tasks in accordance with that stream of data.

The utilization of EAGI is not covered in this book.

DeadAGI—execution on hangup
Essentially speaking, AGI requires that an active channel be available for the
AGI script to run. The main idea behind this is that an AGI script is supposed
to interact with the user, or make the dialplan access various aspects outside the
Asterisk environment.

A Primer to AGI: Asterisk Gateway Interface

[78]

A question that can be asked is: "In many scenarios we would like to execute
commands upon the finalization of the call, or to be more exact, upon hangup or
error. How can we run an AGI script upon hangup or error?" Well, the answer is:
"By means of the utilization of the DeadAGI."

DeadAGI enables the execution of an AGI script on a hung-up channel, or a channel
that has not been fully established yet (in general, a non-answering channel).

While the above behaviour is true for versions 1.0.X and 1.2.X of Asterisk,
version 1.4.X generates a warning upon the execution of a DeadAGI
on a channel that has just been established, even if not answered.
Asterisk 1.6.X is supposed to include a facility that will enable it to
decide what type of AGI operation to utilize, making the DeadAGI
application obsolete.

Let's now examine how a DeadAGI script is invoked from within the
Asterisk dialplan:

exten => h,1,DeadAGI(some_script_name.agi,param1,param2,param3)

The invocation is similar to that of a regular AGI script. However, DeadAGI scripts
are supposed to be executed by the h extension only, or via the 'failed' extension
mentioned in Chapter 2.

FastAGI—AGI execution via a TCP socket
Technically speaking, FastAGI is different in the following context: when Asterisk
executes an AGI script via FastAGI, the resources required for the AGI script to
run are consumed by a completely different process, and not Asterisk. In addition,
the communications that were previously based on internal STDIN/STDOUT
communications are now based on a TCP socket. This means that your AGI script,
now actually an AGI server, can be operated and maintained on a completely
different server, enabling you to separate the application logic from the Asterisk
dialplan logic.

Bear in mind the following that if your FastAGI server has executed
an internal Asterisk application (for example, playback), you will
consume the resources of both the Asterisk application and the AGI
execution client.

Let's now examine how a FastAGI script is invoked from within the
Asterisk dialplan:

exten => _X.,1,AGI(agi://IP_NUMBER:PORT/some_script_name.agi)

Chapter 4

[79]

Please note that passing arguments to the FastAGI servers is possible. However, it
varies depending on the Asterisk version you are using.

Asterisk 1.2.X and 1.4.X
Passing arguments to a FastAGI server from either Asterisk 1.2.X or Asterisk 1.4.X is
performed by using an HTTP GET type request:

exten => _X.,1,AGI(agi://192.168.2.1:1048/TestAGI?exten=${EXTEN})

In this case, the FastAGI server is responsible for handling the various arguments,
parsing them, and handling each of them correctly.

Asterisk 1.6.X
Passing arguments to a FastAGI server from Asterisk 1.6.X is simpler and highly
resembles the methodology used for a regular AGI script:

exten => _X.,1,AGI(agi://192.168.2.1:1048/TestAGI|${EXTEN}|{VAR2})

In this scenario, the arguments are available via the AGI variables named
agi_arg_1 and agi_arg_2 respectively. The previous ones are also supported.
However, if you are using Asterisk 1.6, try to use the new methodology, in order
to be forward compatible.

FastAGI frameworks
As indicated above, FastAGI is a TCP socket based system, making it a client/server
environment. As with any client/server environment that is based upon an open
source technology, a multitude of frameworks exist in order to make our life easier
in the development of FastAGI servers. The following is a short list of frameworks,
available for various platforms that do just that:

Language Framework URL
.NET NAsterisk http://www.codeplex.com/nasterisk

ActiveX AstOCX http://www.pcbest.net/astocx.htm

Erlang ErlAst http://tools.assembla.com/erlast

Python FATS
StarPy

http://fats.burus.org/
http://www.vrplumber.com/programming/
starpy/

Java Asterisk-Java http://www.voip-info.org/wiki/view/
Asterisk-java

Ruby Adhearsion http://docs.adhearsion.com/display/
adhearison/Home

A Primer to AGI: Asterisk Gateway Interface

[80]

Others exist too; however, these are the most common ones for Asterisk
FastAGI development.

AGI scripting frameworks
As with any other open source project, the number of frameworks built for the
development of AGI scripts is amazing. Considering the fact that the AGI language
consists of less than thirty different methods, the existence of over thirty different
scripting frameworks is amazing.

The following list contains some of the more popular frameworks for AGI scripting:

Language Framework URL
PERL Asterisk PERL

Library
http://asterisk.gnuinter.net/

PHP PHPAGI http://sourceforge.net/projects/phpagi/

Python py-Asterisk http://py-asterisk.berlios.de/py-asterisk.
php

C libagiNow http://www.open-tk.de/libagiNow/

.NET MONO-
TONE

http://gundy.org/asterisk

The AGI application
The following is the documentation of the AGI dialplan command, as it appears in
the Asterisk documentation:

 -= Info about application 'AGI' =-

[Synopsis]
Executes an AGI compliant application

[Description]
 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface
compliant program on a channel. AGI allows Asterisk to launch external
programs written in any language to control a telephony channel, play
audio, read DTMF digits, etc. by communicating with the AGI protocol
on stdin and stdout.

 This channel will stop dialplan execution on hangup inside of this
application, except when using DeadAGI. Otherwise, dialplan execution
will continue normally.

Chapter 4

[81]

 A locally executed AGI script will receive SIGHUP on hangup from
the channel except when using DeadAGI. This can be disabled by setting
the AGISIGHUP channel variable to "no" before executing the AGI
application.

 Using 'EAGI' provides enhanced AGI, with incoming audio available
out of band on file descriptor 3

 Use the CLI command 'agi show' to list available agi commands
 This application sets the following channel variable upon
completion:
 AGISTATUS The status of the attempt to the run the AGI
script text string, one of SUCCESS | FAILURE | HANGUP

Confusing? Well, for the first time you read this, it may actually be very confusing.
Let's demystify AGI, shall we?

The AGI execution flow
Once an AGI script has been invoked, a preset information flow is performed
between the AGI script and Asterisk. It is imperative to understand this information
flow, as the structure of your AGI script depends on this flow.

The following diagram describes the steps that occur when an AGI script is executed
from within the Asterisk dialplan:

Asterisk

Step 1
Step 2

Step 7
Step 6

Step 5

Step 4

Step 3

Dialplan Execution

AGI Termination

AGI
ScriptDialplan

User

A Primer to AGI: Asterisk Gateway Interface

[82]

If you are familiar with UML, the immediately preceding diagram
may seem a little weird, as it doesn't follow the exact rules of the UML
diagram. The diagram is meant for non-UML readers to be able to relate
to the information.

As you can see, most of the interaction between Asterisk and our AGI script happens
between the third and the fifth stages,. Let's examine what happens in these stages,
using the following dialplan example:

exten => _X.,1,Answer
exten => _X.,n,Set(DID=${EXTEN})
exten => _X.,n,Set(CLID=${CALLERID(num)})
exten => _X.,n,AGI(SomeScript.php)

As our AGI script is being executed from the Asterisk dialplan, Asterisk will pass
a preset number of variables, along with general AGI execution information to our
AGI script, which requires initial processing, prior to the actual AGI script execution.

AGI Variable Description
agi_request Name of the agi script that is being called
agi_channel Channel that the call is coming from
agi_language Language that is configured on the server
agi_type Call type; mainly the channel type
agi_uniqueid A unique identifier for this session
agi_callerid Caller ID number
agi_calleridname Caller ID name, where available; not supported on all channel

types
agi_callingpres PRI Call ID presentation variable
agi_callingani2 Caller ANI2 (PRI channels), where applicable
agi_callington Caller type of number (PRI channels)
agi_callingtns Transit Network Selector (PRI channels)
agi_dnid Dialed number identifier
agi_rdnis Redirected Dial Number ID Service (RDNIS)
agi_context Current context from which the AGI script was executed
agi_extension Extension that was called
agi_priority Current priority in the dialplan, that is, priority of the AGI script

execution
agi_enhanced 0.0
agi_accountcode Account code

Chapter 4

[83]

As your script is being executed, all the information presented in the table, will
be dumped into your script execution input, before you receive any other input
from Asterisk.

At the time of writing this book, the set of variables presented in the table were
found to be correct. However, it is highly probable that by the time you read this
book, AGI execution will include some additional variables.

Most AGI scripts may regard the above as "noise", as most AGI scripts
will obtain the information contained within these variables from an
external source. When using a framework, you would notice that most
frameworks simply disregard this information, and continue execution
after simply skipping this portion of the execution.

Once our AGI script has finalized the information reading from Asterisk, our
actual AGI script operations flow will begin, that is, our AGI script logic will begin
its implementation. As we've already learned, AGI uses STDIN and STDOUT to
communicate with Asterisk. In the next chapter, we shall start working with
an actual AGI script. However, in the meantime knowledge of these streams
is enough.

Once an AGI script has terminated its execution, it will return the control back to
Asterisk for the continued execution of the Asterisk dialplan.

The AGI methods API
The following is a complete list of AGI methods, available to the developer via
the AGI interface. This list was correct at the time of writing this book, although it
may change slightly by the time you read this book. It is best to update yourself via
the Asterisk documentation of the AGI command, or via the agi show command,
available from your Asterisk CLI.

*CLI> agi show
 answer Answer channel
 channel status Returns status of the connected channel
 database del Removes database key/value
 database deltree Removes database keytree/value
 database get Gets database value
 database put Adds/updates database value
 exec Executes a given Application
 get data Prompts for DTMF on a channel
 get full variable Evaluates a channel expression
 get option Stream file, prompt for DTMF, with timeout
 get variable Gets a channel variable

A Primer to AGI: Asterisk Gateway Interface

[84]

 hangup Hangup the current channel
 noop Does nothing
 receive char Receives one character from channels
 supporting it
 receive text Receives text from channels supporting it
 record file Records to a given file
 say alpha Says a given character string
 say digits Says a given digit string
 say number Says a given number
 say phonetic Says a given character string with phonetics
 say date Says a given date
 say time Says a given time
 say datetime Says a given time as specfied by the format
 given
 send image Sends images to channels supporting it
 send text Sends text to channels supporting it
 set autohangup Autohangup channel in some time
 set callerid Sets callerid for the current channel
 set context Sets channel context
 set extension Changes channel extension
 set music Enable/Disable Music on hold generator
 set priority Set channel dialplan priority
 set variable Sets a channel variable
 stream file Sends audio file on channel
 control stream file Sends audio file on channel and allows the
 listner to control the stream
 tdd mode Toggles TDD mode (for the deaf)
 verbose Logs a message to the asterisk verbose log
 wait for digit Waits for a digit to be pressed

The ten rules of AGI development
Developers, who are given the task of developing an AGI script for the first time,
tend to superimpose their traditional development techniques over the development
of AGI scripts. By far, this is the most dangerous thing that can be done, as AGI
scripting and traditional programming vary immensely. The following section will
list the do's and don'ts that need to be followed, so that your AGI scripts work and
function properly.

Chapter 4

[85]

Rule #1: An AGI script should terminate as
fast as possible
First-time AGI developers tend to develop their entire application within an AGI
script. As you develop your entire application within an AGI script, you may gain the
power of the scripting language, but will incur a cost of performance. Always make
sure that the AGI scripts that you develop terminate their execution as fast as possible,
returning to the dialplan as fast as possible. This concept dictates that each AGI script
being run should behave quickly as an atomic unit—hence the name "Atomic AGI".
We will learn the concepts of "Atomic AGI" development in Chapter 6.

Rule #2: Blocking applications have no
place in AGI
As a direct continuation to rule #1, you should never execute a blocking application
from within an AGI script. Initiating a blocking application from within an AGI script
will make your Asterisk environment explode slowly. Why is that? Because for every
blocking application that you run from within the AGI script, you will have both your
AGI script and the blocking application running for the duration of the block. Imagine
that you were to initiate the Dial application from within an AGI script, and the call
created would last over thirty minutes. For those thirty minutes, your AGI script is still
active. This isn't much of a problem when dealing with small-scale systems. But when
trying to run 50 concurrent scripts, be prepared for failure.

Blocking applications include the following: Dial, MeetMe, MusicOnHold, Playback
(when dealing with long playbacks), Monitor, ChanSpy, and other applications that
have an unknown execution duration.

Rule #3: Asterisk channels are
stateful—use them
An Asterisk channel, once operational, is like a big bucket of information. Channel
variables can be used to carry information from your AGI script to the dialplan and
back. The variables remain as part of the channel untill the channel is terminated,
when memory is then freed.

Using this "bucket" enables you to carry variables and information obtained via an
AGI script and then pass these to an application in the dialplan. For example, imagine
that you are developing a pre-paid platform. A decision on the call timeout is taken
via an AGI script. However, the actual dialling of the call is performed from the
dialplan itself.

A Primer to AGI: Asterisk Gateway Interface

[86]

Rule #4: AGI scripts should manipulate
data—no more
Most developers tend to think of AGI scripting as a functional unit, meaning that
they enclose multiple functionalities into the AGI script. While AGI is fully capable of
performing telephony functionality, it is best to leave this functionality to the dialplan.

Utilize your AGI script to set and reset channel variables and communicate with
out-of-band information systems. The concept of allowing out-of-band information
flow into Asterisk's operational flow of channel, enables new functionality and
possibilities. Not all logic should be handled by your AGI script. Sometimes, it is
better to use the AGI script as a data conduit, while letting an external information
system handle the data manipulation.

Rule #5: VM based languages are bad for
AGI scripting
Virtual machine based programming languages' are bad for AGI scripting. Putting
aside the rules #1 and #2, imagine that your application is built using an AGI script
using the Java programming language. If you are familiar with Java, you most
probably know that for each program that you execute using Java, a full Java virtual
machine is invoked.

While this practice may seem fairly normal for information systems, Asterisk and
IVR development vary. Imagine that our system is required to handle a maximum
number of 120 concurrent channels, which means that the maximum number of
concurrent AGI scripts will be 120. According to this concept, our Java environment
will be fully invoked for each of these 120 instances. In other words, too many
resources are being used just for the VM.

If you really feel that you want to develop AGI scripts using Java, FastAGI is the way
to go for you.

Rule #6: Binary-compiled AGI is not always
the answer
While evaluating rules #1, #2 and #5, we can't but reach an almost immediate
conclusion that we need to have our AGI script binary compiled. While in terms of
efficiency and performance, a binary compiled AGI may provide better performance,
the time required to develop it may be longer. In some cases, scripting languages such
as PHP, PERL, and Python may provide near-similar performance at a lesser cost.

Chapter 4

[87]

Also, when using binary compiled AGI scripts, you are always in charge of the
memory allocation and cleanup. Even the most experienced developer can commit
errors while dealing with memory allocation, so binary compiled AGI need not be
the solution always.

If your system truly requires the performance edge of a binary compiled AGI, we
encourage you to develop a prototype using a scripting language. Once you have
your prototype working, start developing your binary version.

Rule #7: Balance your scripts with
dialplan logic
While evaluating rules #1, #2 and #4, we must keep in mind that developing IVR
systems with Asterisk resembles a high-wire balancing act. The fine art of balancing
your dialplan with AGI scripts proves to be a powerful tool, especially when
developing complex IVR systems.

Many developers tend to externalize functionality from the dialplan into AGI, while
the same functionality can be achieved by writing dialplan macros or dialplan
contexts. Using Asterisk's branching commands (goto, gotoif, exec, execif, gosub
and gosubif) can easily remove redundant AGI code, passing the control from the
AGI back to the dialplan.

When I developed my first system, I was amazed at the sheer
magnitude of the impact that rule #7 can have on a system. A system
that was developed entirely with AGI, and a system achieving the
same functionality using a combination of AGI and dialplan, differed
by a magnitude of eight (instead of being able to sustain fifteen calls,
the system sustained 120 calls), in favour of the AGI and dialplan
combination. Of course, your results may vary, according to your system.

Rule #8: Balance your scripts with
web services
When evaluating rule #4, one may ask: "What is an out-of-band information
system?" We shall explain now. Most Asterisk developers tend to develop their
systems with the data information system—either embedded into their Asterisk
server or communicating with an information system installed on the same server
with the Asterisk server.

A Primer to AGI: Asterisk Gateway Interface

[88]

While, for small systems, this proves to be both efficient and economic, when
developing a high-end system that requires scalability and redundancy, this
methodology proves to be counter-productive. One of the methodologies (although
many others exist) for interconnecting Asterisk with an out-of-band information
system is web services. Communication to the web service is performed via AGI; the
web-service protocol—you can use your favourite one.

The choice of protocol isn't that important, as almost any protocol type
used for web services would do. Be it SOAP, WSDL, XML-RPC, WDDX or
any other, take your pick, and the performance and scalability should be
similar in any of these.

Rule #9: Syslog is your friend—use it
Every developer knows that using log files for debugging and monitoring purposes is
a must. Be it for using a binary compiled AGI or a scripting language based AGI, make
sure to utilize the logging facility. Trying to debug an AGI application from within the
Asterisk console, though possible, can prove to be a tedious task. Sending log entries to
a well-formatted log can save you much time and headache.

Scripting languages, such as PHP and PERL, do not offer a direct debugging
facility, making the debugging of such AGI scripts even harder. Using log files as a
debugging point for your AGI script will prove very useful when developing highly
complex systems.

In order to make your syslog more readable, assign a self-created unique
ID to each of your calls. When writing to your log, make sure that the
unique ID appears in each log entry, so that you can trace a specific
session flow through Asterisk. Remember, an Asterisk channel is stateful.
The unique ID will remain as part of the channel untill it is removed from
the system.

Rule #10: The Internet is for Asterisk
As bad as the following may sound, if you have a problem or an idea, remember
that someone else had almost definitely come across it before you did. I don't want
to discourage you, but actually, I want you to make use of the multitude of Asterisk
resources available on the Internet.

The amount of information relating to Asterisk and platform development that
has been accumulated by search engines is staggering. Over the course of the past
two years, the amount of information available has multiplied two times (at least),
making it the best source to find answers to your questions.

Chapter 4

[89]

Asterisk user forums exist today in almost every country around the world; in some
countries, there is more than one forum. These forums provide fast answers and
professional guidance, allowing you to concentrate on your development, instead of
concentrating on obtaining information.

When I first started developing AGI applications (almost six years ago),
information was fairly scarce. While websites like www.voip-info.
org and www.asterisk.org contained most of the information, much
of the experience of the other developers was not documented. Today,
most of these developers write personal blogs, updated almost daily,
with answers and techniques for almost any Asterisk related issue. User
forums have become more and more professional, thereby making these
your best choice for information.
Other sources of information include the Asterisk IRC channel (#asterisk
@ irc.freenode.net), the various Asterisk mailing lists available at the
Asterisk community website, and of course the almighty Google.

A preface to what's coming ahead
Over the course of the forthcoming chapters, we shall begin our descent into AGI
development. The choice of programming language for this book is PHP, due to its
popularity and ease of development. If you feel uncomfortable with PHP, we are
confident that you will be able to translate the code snippets into the programming/
scripting language of your choice.

Chapter 5 will deal with your first AGI script; think of it as your "Hello-World"
program from "Programming 101".

Chapter 6 will introduce a PHP based AGI class library, called PHPAGI. While
PHPAGI is a fairly old library, and is compatible with all the versions of Asterisk,
AGI hasn't changed dramatically from one the Asterisk version to the next. By using
PHPAGI and the nine rules we just saw, we shall show that even an old, slightly
outdated library, can do wonders.

Chapter 7 will introduce the basic elements of a FastAGI server, again using PHP
and PHPAGI.

Chapter 8 will introduce the Asterisk Manager Interface (AMI), an Asterisk
proprietary CTI (Computer Telephony Integration) interface.

Chapter 9 will take you through the steps of developing a full click-2-call application,
using all the concepts you've learned. Chapter 9 can be used as a basis for a large
scale service, such as JaJah or RebTel.

A Primer to AGI: Asterisk Gateway Interface

[90]

Summary
We have now completed our introduction to Asterisk's AGI technology. While AGI
proves to be a fairly simplistic development API, the usage of AGI within your
system requires you to be fully aware of your technological barriers. Be it Asterisk
itself, your choice of programming/scripting language, your information systems, or
the required user interaction, all these have to come into play while developing IVR
systems with Asterisk and AGI.

AGI Scripting with PHP
Theory is when you know something, but it doesn't work. Practice is when
something works, but you don't know why. Programmers combine theory and
practice: Nothing works and they don't know why.–Anonymous Developer

While much can be said about the theory of programming in general and the theory
of developing with the Asterisk framework, one thing remains—any working
solution is considered a good solution.

This chapter deals with your first ever AGI script, using the PHP scripting language.
While the chapter deals with the most basic elements of AGI scripting and the
information contained within, it won't be used as it is in the rest of the book. So
take time to familiarize yourself with this chapter, especially if you intend to use a
language different from PHP.

PHP-CLI vs. PHP-CGI
Most Linux distributions include both versions of PHP when installed, especially
if you are using a modern distribution such as CentOS or Mandriva. When writing
AGI scripts with PHP, it is imperative that you use PHP-CLI, and not PHP-CGI.

Why is this so important? The main issue is that PHP-CLI and PHP-CGI handle their
STDIN (standard input) slightly differently, which makes the reading of channel
variables via PHP-CGI slightly more problematic.

AGI Scripting with PHP

[92]

The php.ini configuration file
The PHP interpreter includes a configuration file that defines a set of defaults for the
interpreter. For your scripts to work in an efficient manner, the following must be
set—either via the php.ini file, or by your PHP script:

 ob_implicit_flush(false);
 set_time_limit(5);
 error_log = filename;
 error_reporting(0);

The above code snippet performs the following:

Directive Description

ob_implicit_
flush(false);

Sets your PHP output buffering to false, in order
to make sure that output from your AGI script to
Asterisk is not buffered, and takes longer to execute .

set_time_limit(5); Sets a time limit on your AGI scripts to verify
that they don't extend beyond a reasonable time
of execution; there is no rule of thumb relating to
the actual value; it is highly dependant on your
implementation.
Depending on your system and applications, your
maximum time limit may be set to any value;
however, we suggest that you verify your scripts,
and are able to work with a maximum limit of
30 seconds.

error_log = filename; Excellent for debugging purposes; always creates
a log file.

error_reporting(E_
NONE);

Does not report errors to the error_log; changes
the value to enable different logging parameters;
check the PHP website for additional information
about this.

AGI script permissions
All AGI scripts must be located in the directory /var/lib/asterisk/agi-bin,
which is Asterisk's default directory for AGI scripts. All AGI scripts should have
the execute permission, and should be owned by the user running Asterisk. If
you are unfamiliar with these, consult with your system administrator for
additional information.

Chapter 5

[93]

The structure of a PHP based AGI script
Every PHP based AGI script takes the following form:

#!/usr/bin/php -q
<?
	 $stdin = fopen('php://stdin', 'r');
	 $stdout = fopen('php://stdout', 'w');
	 $stdlog = fopen('my_agi.log', 'w');

	 /* Operational Code starts here */
	 ..
	 ..
	 ..
?>

As indicated in the previous chapter, upon execution, Asterisk transmits a set of
information to our AGI script via STDIN. Handling of that input is best performed in
the following manner:

 #!/usr/bin/php -q
<?
	 $stdin = fopen('php://stdin', 'r');
	 $stdout = fopen('php://stdout', 'w');
	 $stdlog = fopen('my_agi.log', 'w');

/* Handling execution input from Asterisk */

while (!feof($stdin))
{
 	 $temp = fgets($stdin);
 	 $temp = str_replace("\n","",$temp);
 	 $s = explode(":",$temp);
 	 $agivar[$s[0]] = trim($s[1]);
 	 if $temp == "")

{
 	 break;
 	 }
}

	 /* Operational Code starts here */
	 ..
	 ..
	 ..
?>

Once we have handled our inbound information from the Asterisk server, we can
start our actual operational flow.

AGI Scripting with PHP

[94]

Communication between Asterisk
and AGI
As indicated in the previous chapter, the communication between Asterisk and an
AGI script is performed via STDIN and STDOUT (standard output). Let's examine
the following diagram:

Initial information from Asterisk to AGI Script
(Sent upon execution)

AGI Command
(ASC: STDOUT, AST: STDIN)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI Command
(ASC: STDOUT, AST: STDIN)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI Command
(ASC: STDOUT, AST: STDIN)

Script
Logic

Script
Logic

Asterisk
AGI

Script

In the above diagram, ASC refers to our AGI script, while AST refers to
Asterisk itself.

As you can see from the diagram above, the entire flow is fairly simple. It is just a set
of simple I/O queries and responses that are carried through the STDIN/STDOUT
data streams.

Chapter 5

[95]

Let's now examine a slightly more complicated example:

SQL Query

SQL Response

Script
Logic

Script
Logic

Script
Logic

Script
Logic

Web Service Request

Web Service Response

Initial information from Asterisk to AGI Script
(Sent upon execution)

AGI Command
(ASC: STDOUT, AST: STDIN)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI Command
(ASC: STDOUT, AST: STDIN)

AGI Command
(ASC: STDOUT, AST: STDIN)

AGI Command Response
(ASC: STDIN, AST:STDOUT)

AGI
Script Database Web

Service
Asterisk

The above figure shows an example that includes two new elements in our AGI
logic—access to a database, and to information provided via a web service. For
example, the immediately preceding image illustrates something that may be used
as a connection between the telephony world and a dating service. This leads to an
immediate conclusion that just as AGI is capable of connecting to almost any type
of information source, depending solely on the implementation of the AGI script
and not on Asterisk, Asterisk is capable of interfacing with almost any type of
information source via out-of-band facilities.

Enough of talking! Let's write our first AGI script.

The AGI Hello-World program
Just as with any other programming language, we shall begin our journey with a
simple "Hello-World" AGI script.

AGI Scripting with PHP

[96]

In order to make our life easier, we shall use an astRead function and an astWrite
function that will help us read and write information, to and from Asterisk in a more
efficient manner.

function astRead()
{
 global $stdin, $debug, $stdlog;
 $input = str_replace("\n", "", fgets($stdin, 4096));
 if ($debug) fputs($stdlog, "read: $input\n");
 return $input;
}

function astWrite($agiCommand)
{
 global $debug, $stdlog;
 if ($debug) fputs($stdlog, "write: $agiCommand\n");
 echo $agiCommand."\n";
}

The astRead function reads information from a global variable, indicated by the $in
variable. The $in variable will simply indicate our STDIN stream. The astWrite
function writes its $agiCommand directly to STDOUT, simply passing the AGI
command directly to Asterisk.

Let's combine everything together:

#!/usr/bin/php -q
<?
 	 ob_implicit_flush(false);
 	 set_time_limit(6);

	 $stdin = fopen('php://stdin', 'r');
	 $stdlog = fopen('my_agi.log', 'w');

$debug = false;

/* Read input from Asterisk and output via $astOutput */
function astRead()
{
	 global $stdin, $debug, $stdlog;
 $astOutput = str_replace("\n", "", fgets($stdin, 4096));
 if ($debug) fputs($stdlog, "read: $input\n");
 return $astOutput ;
}

/* Write AGI command to Asterisk */
function astWrite($agiCommand)
{
 global $debug, $stdlog;
 if ($debug) fputs($stdlog, "write: $agiCommand\n");

Chapter 5

[97]

 echo $agiCommand."\n";
}

/* Handling execution input from Asterisk */

while (!feof($stdin))
{
 	 $temp = fgets($stdin);
 	 $temp = str_replace("\n","",$temp);
 	 $s = explode(":",$temp);
 	 $agivar[$s[0]] = trim($s[1]);
 	 if ($temp == "")

{
 	 break;
 	 }
}

	 /* Operational Code starts here */

	 ..
	 ..
	 ..

	 /* Finalization of AGI script and clean-ups */

	 fclose ($stdin);
	 fclose ($stdlog);
	 exit(0);

?>

The above code snippet will form our basic AGI script construct. We've now defined
our stream handling functions and our Asterisk input execution handling, as we get
ready to start our first AGI script.

Our first script will make use of the AGI command STREAM FILE (if you don't
remember what STREAM FILE does, please refer to the previous chapter). Another
command that we shall use will be SAY NUMBER.

Let's examine the following piece of code:

	 /* Operational Code starts here */

	 /* Playback the demo-congrats.gsm file from the
 * directory /var/lib/asterisk/sounds/
 */

	 astWrite("STREAM FILE demo-congrats #");
	 astRead();

	 /* Say the number 123456 */
	 astWrite("SAY NUMBER 123456 #");
	 astRead();

AGI Scripting with PHP

[98]

This AGI code performs a fairly simplistic function—upon execution, it plays back
the demo-congrats.gsm file, followed by the number 123456. Ok, that's simple
enough; so let's put everything together:

File: helloworld.php
#!/usr/bin/php -q
<?
 	 ob_implicit_flush(false);
 	 set_time_limit(6);

	 $stdin = fopen('php://stdin', 'r');
	 $stdlog = fopen('my_agi.log', 'w');

$debug = false;

/* Read input from Asterisk and output via $astOutput */
function astRead()
{
	 global $stdin, $debug, $stdlog;
 $astOutput = str_replace("\n", "", fgets($stdin, 4096));
 if ($debug) fputs($stdlog, "read: $input\n");
 return $astOutput ;
}

/* Write AGI command to Asterisk */
function astWrite($agiCommand)
{
 global $debug, $stdlog;
 if ($debug) fputs($stdlog, "write: $agiCommand\n");
 echo $agiCommand."\n";
}

/* Handling execution input from Asterisk */
$agivar = array();
while (!feof($stdin))
{
 	 $temp = fgets($stdin);
 	 $temp = str_replace("\n","",$temp);
 	 $s = explode(":",$temp);
 	 $agivar[$s[0]] = trim($s[1]);
 	 if ($temp == "")

{
 	 break;
 	 }
}

	 /* Operational Code starts here */

	 /* Playback the demo-congrats.gsm file from the

Chapter 5

[99]

 * directory /var/lib/asterisk/sounds/
 */

	 astWrite("STREAM FILE demo-congrats #");
	 astRead();

	 /* Say the number 123456 */
	 astWrite("SAY NUMBER 123456 #");
	 astRead();

	 /* Finalization of AGI script and clean-ups */

	 fclose ($stdin);
	 fclose ($stdlog);
	 exit(0);

?>

In order to execute our AGI script, we are required to define an extension in our
extensions.conf configuration file, and indicate the execution of our script from
there. The following is an extract from the"default" context of my Asterisk server.
You may insert these into any other context or extension, depending on your
Asterisk server configuration:

exten => 999,1,Answer
exten => 999,n,Wait(0.5)
exten => 999,n,AGI(helloworld.php)

exten => 999,n,Hangup()

This code snippet will add a new extension named 999 to your dialplan. When this
extension is dialed, your AGI script will be invoked. As your script is executed, the
following can be observed on the Asterisk CLI console:

AGI Scripting with PHP

[100]

Note that as your AGI script is being executed, the only thing you will see on the
CLI is the result of the AGI command, and not the actual execution of the AGI script.
Also note that CLI output may vary, depending on your configuration.

AGI debugging
Asterisk provides a means of debugging AGI Scripts as these are executed. In order
to use the AGI debugger, you need to have access to Asterisk's CLI interface, and
issue the following command:

agi debug

As your script is executed with debug mode enabled, your CLI output would look
like this:

Chapter 5

[101]

As you can see, the example in the preceding screenshot shows the full execution
of the AGI script, including the initial information sent from Asterisk to the AGI
script. Information traversing from Asterisk to our AGI script is prefixed with the
AGI Tx >> marking, while information from our AGI script to Asterisk is prefixed
with the AGI Rx >> marking. Although this may look weird, it is perfectly logical
when examined from Asterisk's point-of-view.

Disabling AGI debug mode is done using the command:

agi debug off

If you have enabled AGI debugging, it is imperative that you turn it off
once you have completed your debug session. Debug mode outputs much
information to the Asterisk console and log files, causing your Asterisk
performance to be degraded.

Summary
Congratulations! You have just written your first Asterisk AGI script. While the
example that we saw previously was shown using the PHP scripting language, I am
confident that you will be able to translate these examples into the programming
language of your choice.

If you are an experienced programmer, we urge you to take a break from the book
at this point and try to implement something different with AGI. If you are familiar
with the activation of web services via CURL, try to write an AGI script to read
information(like the weather) from a website and to read it out. Another option is to
interface your AGI script with a database, create a username/password IVR script,
and let your imagination go wild!

PHPAGI: An AGI Class
Library in PHP

Complexity kills. It sucks the life out of developers, it makes products difficult to
plan, build and test, it introduces security challenges and it causes end-user and
administrator frustration. – Ray Ozzie

When dealing with any type of development, there is nothing truer than the above
statement. Complex solutions will most probably make your code difficult to maintain,
and in some cases non-functional, if you are dealing with Asterisk AGI scripting.

Over the past six years, my experience has taught me that most AGI
developers who are just starting out tend to create overly complex AGI
scripts. When you try to debug these, they wreak havoc on your brain and
eyes. If you are already familiar with PHPAGI, the next few chapters will
teach you how to utilize it better. If you are new to PHPAGI, you are at
the best starting point ever.

PHPAGI had been created as a PHP-based class library, to enable faster and
modular AGI development using the PHP library. PHPAGI was created in 2005, in
version 1.0.X of Asterisk, making it slightly incompatible with the current version
of Asterisk. However, the main incompatibility lies in how PHPAGI connects to the
Asterisk manager for a specific function. However, we'll deal with that later. So in
general terms, PHPAGI will provide you with a full class library for writing AGI
scripts efficiently and easily.

PHPAGI: An AGI Class Library in PHP

[104]

Obtaining PHPAGI
PHPAGI can be obtained from its community website at: http://phpagi.
sourceforge.net/. At the time of writing this book, the released version on the
PHPAGI website is 2.14. However, if you are to check the latest CVS snapshot, the
latest version is 2.17.

PHPAGI is released under the LGPL (Lesser General Public License), making
it an ideal library for developing your AGI scripts and re-distributing them
commercially—as long as your remember to include the PHPAGI license indication.

The file structure of PHPAGI
The PHPAGI class library includes two class library files:

phpagi.php•	 : A class library for working with standard Asterisk AGI API.
phpagi-asmanager.php•	 : A class library for working with Asterisk's Manager
interface via PHP. This class library is complementary to the previous one.
When loaded to your AGI script, it will automatically load the previous class
library as well.

In addition to the just mentioned class library files, PHPAGI includes several
additional files that we'll use:

phpagi-fastagi.php•	 : This is a FastAGI bootstrap written in PHP, for
turning your PHPAGI scripts into FastAGI servers.
phpagi.conf.example•	 : This is an example of the PHPAGI configuration file.
This file is mandatory for your PHPAGI class library to work properly. For
starters, it's enough to rename the file to phpagi.conf, in order to get your
new scripts to work.
fastagi.xinetd•	 : This is a xinetd configuration handler for the Fast
AGI bootstrap.

As we indicated earlier, all AGI scripts reside under the /var/lib/asterisk/
agi-bin directory. It is always wise to keep all your class libraries close at hand. So,
create a directory named /var/lib/asterisk/agi-bin/include, and copy your
PHPAGI files into that directory.

A very simple PHPAGI example
Let's assume that your PHPAGI class library files are indeed located at /var/lib/
asterisk/agi-bin/include, and let's look at the following example:

Chapter 6

[105]

 1. #!/usr/bin/php -q
 2. <?
 3. set_time_limit(30);
 4. require('include/phpagi.php');
 5. error_reporting(E_ALL);
 6.
 7. $agi = new AGI();
 8.
 9. $agi->answer();
10.
11. $agi->stream_file("demo-congrats","#");
12. do
13. {
14. 		 $agi->stream_file("enter-some-digits","#");
15. 		 $result = $agi->get_data('beep', 3000, 20);
16. 		 $keys = $result['result'];
17. 		 $agi->stream_file("you-entered","#");
18. 		 $agi->say_digits($keys);
19. } while($keys != '111');
20. $agi->hangup();
21. ?>

Don't forget to grant execution rights to your script (chmod 755
yourscript.php), so that Asterisk can execute it.

Let's examine the AGI script we've just seen:

Lines 1-5: These provide a generic startup for our AGI script. Please note that •	
these will be in every AGI that appears in this book.
Line 7: This is the AGI class constructor. From this point onwards, every •	
interaction with Asterisk will be performed via the $agi object.
Line 9: This is our first PHPAGI directive, indicating the class library to •	
invoke the AGI function called answer.
Line 11: At this point, we are asking PHPAGI to play back the •	
demo-congrats file, while allowing play back to be stopped by the # key.
Lines 12-19: These form a loop that asks for a numeric input from the user, •	
and then simply plays back that input to the user, using the say_digits
AGI command.

Ok, that was simple enough to understand. But AGI scripts are surely more
complicated than theone we saw previously, right? Of course they are! But before we
continue with more complex examples, let's examine some new concepts.

PHPAGI: An AGI Class Library in PHP

[106]

The AGI/Dialplan high-wire act
Before we continue with our script, we must learn the concept of AGI/Dialplan
balancing. As you've already learned in the previous chapters, Asterisk's dialplan
scripting language provides most of the facilities to enable basic IVR functionality.
However, when dealing with databases and external information sources, the
dialplan lacks that ability.

While versions 1.4 and onwards of Asterisk introduced a MySQL
application directly from the dialplan (part of the asterisk-addons
package), its usage and results aren't easily interfaced. Thus, using
external information sources via AGI is simpler and makes for a more
readable dialplan.

Most developers that are just starting off with AGI tend to do the same
mistake—program everything in AGI. Why is that methodology wrong?
The main reason is due to the way Asterisk runs AGI scripts.

In the early versions of Asterisk, an AGI script would run in a forked Asterisk process.
This meant that for every AGI script that was run, Asterisk would basically create a
child process of itself, and run theAGI script within that child process. Once the AGI
completed, the duplicate would be destroyed and resources will be returned.

Modern versions of Asterisk (versions 1.4 and upwards) no longer do the
above. However, they perform a context-switch by running your AGI script within
a small Asterisk thread. While this methodology of running an AGI script is less
resource-consuming, we are still confronted with the basic problem of running AGI
scripts, that is, we have a complete shell environment running for the duration of the
script's work.

This behaviour immediately negates several programming languages from being used
as AGI scripting candidates. For example, Java and C# maintain a full virtual machine
for each execution, immediately encoring a high resource toll on your server.

In my early days as an AGI developer, I've written several platforms
with Java as my AGI scripting framework. That proved to be a bust,
as I was never able to sustain more than ten virtual machines running on
the server at any given time.

At this point,you would immediately say: "Well, PHP and PERL don't use a virtual
machine, but the interpreter is just as bad." Right? Yes, it is true. However, the short
bootstrapping of PHP and PERL makes them a more ideal choice for AGI scripting.
However, it means that we need to change the way we think about AGI scripting.

Chapter 6

[107]

Introducing Atomic-AGI
Firstly, Atomic-AGI isn't a new form of AGI execution application from the dialplan.
Atomic-AGI is the name I devised for a methodology for developing and deploying
AGI scripts. This methodology has proved to be highly robust and reliable during
the past three years.

Atomic-AGI was devised initially during the development of an
International Operator Services platform for Bezeq International in
Israel. During the course of the development, the initial version was
developed using a Java-based AGI framework, which proved to
be problematic—both from the maintenance point of view and the
performance point of view.

The term Atomic-AGI is based upon the idea that an AGI script is supposed to
be as short and as simple as possible. The Atomic-AGI concept dictates the
following methodologies:

AGI scripts are used to traverse information from/to Asterisk to/from •	
external sources.
External sources of information are considered out-of-band information •	
sources, and as such should be able to maintain a session for each request to
the external source.
State information should be stored within your Asterisk channel structure, •	
unless required otherwise.
AGI scripts never execute dialplan blocking applications (Dial, MeetMe, •	
Voicemail, Record, and so on).
AGI scripts should be executed from a unified execution handler, enabling •	
a uniform methodology for handling information within the AGI script. A
unified execution handler will take care of providing your AGI scripts with
the proper environment they require, using various global variables, and
verifying that all your AGI scripts conform to a single code style.
AGI scripts should terminate as soon as possible, returning resources back to •	
the Operating System/Asterisk as soon as possible.

The term Atomic means that we are performing particle development. Each AGI
script performs a very small portion of the work, the combination between the AGI
scripts and the Asterisk dialplan creates the whole.

PHPAGI: An AGI Class Library in PHP

[108]

Atomic-AGI—a dialplan example
Let's examine the following example, showing how Atomic-AGI concepts are used
within the Asterisk dialplan:

 [atomic-example]
1. exten => _X.,1,Answer
2. exten => _X.,n,AGI(SetSessionID.agi)
3. exten => _X.,n,AGI(agiWrapper.agi,small_agi_routing_script)
4. exten => _X.,n,Goto(atomic-${CONTEXT_FROMAGI},${EXTEN},1)

So, what can we see from this code snippet? On the face of it, not much, but let's
examine it deeper:

Line 1: Answers the inbound call to the PBX; nothing special there.•	

Line 2: This seems like an AGI script. We shall examine the •	 SetSessionID.
agi soon. In the meantime, the script simply sets a channel variable called
id_session. This variable will be used in the later sections.
Line 3: Executes a new script called •	 agiWrapper.agi with a parameter of
small_agi_routing_script. The agiWrapper.agi script is actually a script
wrapper, to be used for all of our AtomicAGI development. The result of the
script is a channel variable called CONTEXT_FROMAGI.
Line 4: Performs a •	 Goto to the context that was set by the previous script.

As you can see, the idea here is to use the AGI scripts to basically set/unset the
channel variables, and then utilize these variables within the Asterisk dialplan.

You are probably wondering: "Why isn't SetSessionID.agi running
via the agiWrapper.agi script?" Well, the main reason is that the id_
session variable is used by the agiWrapper.agi script, so it has to be
created before agiWrapper.agi is run. I admit that doing it this way is
like shooting myself in the foot, but it's the simplest way to do it.

SetSessionID.agi—meet your state maintainer
As noted in the previous chapters, Asterisk channels can be considered to be a
stateful execution environment. This means that once a channel is active, its stored
information is available for any component interaction with the channel for the
entire duration of the channel's life. Interacting components may include the Asterisk
dialplan, AGI script, external logic, or any other facility that may be devised by the
publishing of this book.

Chapter 6

[109]

Bear in mind that Asterisk is an open source project. Thus, by the time
this book gets published, additional information and features will be
available to the developer.

Now, while the Asterisk channel is a stateful environment, our AGI scripts are not. In
order to make sure that our scripts always interact with the same set of information
for a specific session, we are required to generate an external session manager.
SetSessionID.agi is exactly that session manager—a session initiator so to speak.
Let's take a look at the SetSessionID.agi script:

#!/usr/bin/php -q
<?php
 /*
 * Script: SetSessionID.agi
 * Usage: Preset a session ID for a channel
 * By: Nir Simionovich, nirs@greenfieldtech.net
 * Date: 21/05/2007
 */

 $BASE_PATH="/var/lib/asterisk/agi-bin/";
 require $BASE_PATH."include/phpagi/phpagi.php";

 $sessionId = md5(uniqid());

 $agiWrapper = new AGI($BASE_PATH."include/phpagi/phpagi.conf");
 $agiWrapper->set_variable("id_session",$sessionId);
 $call_cli = $agiWrapper->get_variable("CALLERID(NUM)");

 define_syslog_variables();
 openlog("[".$sessionId."/".basename($argv[0],".php")."]",
 LOG_PID | LOG_PERROR, LOG_LOCAL2);
 syslog(LOG_INFO, "Creating session: [".$sessionId."] for CLID:
 ".$call_cli['data']);

?>

Let's examine the above script section-by-section:

 $BASE_PATH="/var/lib/asterisk/agi-bin/";
 require $BASE_PATH."include/phpagi/phpagi.php";

These lines include the basic PHPAGI environment in our script. Please note that I'm
using the $BASE_PATH variables as a means to enable inclusion of additional PHP
scripts in the future.

 $sessionId = uniqid(TRUE);

 $agiWrapper = new AGI($BASE_PATH."include/phpagi/phpagi.conf");
 $agiWrapper->set_variable("id_session",$sessionId);
 $call_cli = $agiWrapper->get_variable("CALLERID(NUM)");

PHPAGI: An AGI Class Library in PHP

[110]

Using the PHP directive uniquid, the script will generate a unique identification
key for our channel. Once the unique ID is generated, it is stored in the $sessionId
variable. At this point, we initiate our AGI class, assigning the created object to
$agiWrapper. From this moment onwards, any interaction with Asterisk will be
performed using the $agiWrapper object. Our first order of business is to create a
channel variable called id_session that will create our session ID.

 $agiWrapper->set_variable("id_session",$sessionId);

Then we retrieve the inbound CALLER ID number for later use.

Off topic: Why are we enabling more_entropy on the uniqid?
The PHP function uniqid generates a unique identifier, based on the
current time in microseconds. While it is fully possible for two machines
to generate the same uniqid at the same time, it is fairly impossible to
generate two identical unique IDs when more_entropy=TRUE.

 define_syslog_variables();
 openlog("[".$sessionId."/".basename($argv[0],".php")."]",
 LOG_PID | LOG_PERROR, LOG_LOCAL2);
 syslog(LOG_INFO, "Creating session: [".$sessionId."] for CLID:
 ".$call_cli['data']);

This code snippet registers our execution to the syslog facility, indicated by Local2.
Bear in mind that there is no direct way to debug a running AGI script based on
PHP. So, your best bet would be to use proper logging.

agiWrapper.agi—an all purpose AGI
execution wrapper
Here's a problem with writing scripts: There is no unified execution and
bootstrapping. What does that mean? It means that unlike normal compiled
languages, most scripts tend to be somewhat chaotic, and most people developing
scripts tend to do it in a fairly disorganized manner.

Another problem related to script development is the development language. As
you may have noticed, this book focuses mainly on PHP. The reason it focuses
on PHP is because PHP is a fairly simple and robust environment for developing
Asterisk AGI scripts. However, as a friend of mine once put it: "In PHP, both a skilful
developer and a newbie can develop the same application. The main difference is the
maintainability of that application from that point onwards." What does that mean?
It means that while you are fully capable of developing AGI scripts using vanilla
PHP paradigms, the lack of proper development structures will make your AGI
application difficult to maintain.

Chapter 6

[111]

A classic example of how poor PHP skills can develop highly complex
systems is PHPNUKE. PHPNUKE is a PHP-based content management
system, which has been around on the Internet for the better part of
the past eight years. However, the availability and simplicity of PHP
has spawned multiple, poorly written add-ons for PHPNUKE, usually
resulting in serious security issues with PHPNUKE.

So, in order to make sure that our scripts always run in a unified environment, we'll
need some form of bootstrapping facility for all our scripts. Our aim is to make sure
that our bootstrapping script actually loads all our required include files and the
channel information we may require, thereby enabling proper logging and more.
So, instead of just talking about what it does, let's take a look at one of my AGI
execution wrappers:

This script is split up into four distinct sections—the mandatory include files,
initiation of the PHPAGI class, inclusion of an additional configuration file (we'll
explain that in a while), and finally the inclusion of our actual operational code.

Let's examine how this code works. However as we are dealing with the inclusion
of files, we first need to understand the directory structure. As you already know,
all AGI scripts reside in /var/lib/asterisk/agi-bin. Over the course of time,
I've found that the following directory structure helps me ensure that my scripts
behave nicely:

PHPAGI: An AGI Class Library in PHP

[112]

Directory Purpose
%var_ast%/php-common A directory to hold my general PHP include files

including database handling files, general variables,
and general configuration files.

%var_ast%/agi-bin/
[PROJECT]

In a normal situation, I would associate all my AGI
scripts to a specific project; the PROJECT directory
makes sure that all my script inserts are in the same
place; moreover, project-specific configurations are
stored in the project directory.

Let's now examine our wrapper script:

$BASE_PATH="/var/lib/asterisk/agi-bin/";

include $BASE_PATH."../php-common/database.inc.php";
include $BASE_PATH."../php-common/config.inc.php";
require $BASE_PATH."../php-common/phpagi.php";

As you can see, the $BASE_PATH variable simply holds the physical location of the
agi-bin directory. We use the $BASE_PATH variable to simply load our proper
include files. In our case, they include the database.inc.php file (Sven Wagener's
Database connection class), a config.inc.php file (a general configuration file) and
of course, the phpagi.php file (the actual PHPAGI class file).

Sven's database class library can be obtained from
http://www.phpclasses.org/browse/author/39845.html.
I have been using Sven's library for over three years now, and I've found
it to be more than sufficient for simple MySQL usage.

define_syslog_variables();

// Initiate an AGI instance
$agiWrapper = new AGI($BASE_PATH."../php-common/phpagi.conf");

$id_session = $agiWrapper->get_variable("id_session");

openlog("[".$id_session['data']."/".$argv[1]."]", LOG_PID |
LOG_PERROR, LOG_LOCAL2);

Chapter 6

[113]

Once our include files and required classes have all been loaded, we need to initiate
our environment. The PHP directive define_syslog_variables() initiates the
PHP syslog facility, which will be used extensively in this book. The $agiWrapper
variable is our AGI connector object. The $agiWrapper will provide us with the
facility to communicate with Asterisk, while our AGI scripts are being executed.
$id_session holds our independent session identifier. The id_session channel
variable was created via the SetSessionID.agi script, prior to execution of our AGI
script. Once we have constructed our AGI connector object and have obtained our
session identifier, we open our log file for writing, so that we may send log entries
from our AGI script. Note the following format:

[".$id_session['data']."/".$argv[1]."]

This format suffixes our log entries with the identified session and the value of
$argv[1]. As indicated earlier, the variables passed from the Asterisk dialplan
are passed via the $argv facility. So, in our case, $argv[1] will be the information
contained in the first variable after the script name. This format will generate a log
entry that looks like this:

Aug 16 16:03:43 centos513148 [83cf9239197797/PROJ^script1][13380]

In this manner, when analyzing our log files, we can easily filter the log according to
our session identifier, and then follow the execution path of our dialplan and
AGI scripts.

Ok, all the include files are in place, and the syslog facility is ready. Now we need to
know which project directory to access, and what project subscript to include into
the execution path.

// Lets parse the parameters from AGI execution
$agiParameters = $argv[1];
$agiList=array();
$agiList=explode("^",$agiParameters);
syslog(LOG_INFO, "agiParameters: ".$argv[1]);

Ok, I admit that the above is somewhat dirty. However, it is backward
compatible with versions 1.2 and 1.0 of Asterisk. I prefer to have a
backward compatible script, rather than re-write my scripts over and over
and over again.

The wrapper relies on the idea that all information relating to the project and
subscript are available via the argv[1] argument and are formatted as a ^ delimited
string. For example, if our dialplan looks like this:

exten => _X.,n,AGI(agiWrapper.agi,PROJ^sub-script)

PHPAGI: An AGI Class Library in PHP

[114]

What we intend to do is activate the subscript AGI script of the project indicated
by PROJ.

Once we have parsed our project and subscript, we are then ready to include our
project and subscript to the AGI execution path:

// Now that we have the AGI parameters list, lets see what
 we are going to execute
// Include the Platform configuration environment
include "/var/lib/asterisk/agi-bin/".$agiList[0]."/config.inc.php";

// echo "Executing ".$agiList[0]." AGI\n";
syslog(LOG_INFO, "Initiating : Platform: ".$agiList[0].
 " Module: ".$agiList[1]." execution");
include "/var/lib/asterisk/agi-bin/".$agiList[0]."/".$agiList[1].
 ".inc.php";

Pay attention to the inclusion of the config.inc.php project file. This is a different
configuration file, and may override the original config.inc.php if you may wish
to do so.

Now that you are familiar with the agiWrapper, let's move to a slightly more
complex example.

A slightly more complex PHPAGI example
Congratulations! You've just been hired by the Free Telephone Services Corporation
(FTSC) to develop a groundbreaking telephony application. FTSC would like to
allow its customers to call an IVR system, enter a phone number, and make a
five-minute call—free of cost.

The following flow chart has been sent to you by the marketing department
(which has no idea how to write a flow chart):

User calls in
User enters

a phone number
to dial

validate that the
number is allowed

as a target
Call the target Hangup

Chapter 6

[115]

How annoying! The marketing people of FTSC are idiots! This flow chart doesn't
help me much, and is just a general description. Can't they describe it in a little
more detail? Ok, let's take a deeper look and try to develop this into something
more usable. So, we need to validate the number that the user wishes to connect
to. So basically, we'll need to create some form of database based, country prefix
authentication mechanism. So, now that we know what authentication mechanism
we need, let's elaborate our flow chart.

User calls in

playback
prt_welcome

${TARGET}

DATABASE:
validate
Target

playback
prt_notvalid

Validated?

Dial
${TARGET}

DATABASE:
register

CDR

Disconnect

Ok, now this makes a bit more sense. To start with, let's describe our database
scheme. It is clear that we need two tables—one to handle our destination prefixes
and the other to handle the CDRs (Call Detail Records). The following image
describes our database tables:

PHPAGI: An AGI Class Library in PHP

[116]

Ok, so we have a database scheme. Let's get down with some dialplan programming:

[ftsc-callthrough]
exten => _X.,1,Answer1.	
exten => _X.,n,AGI(SetSessionID.agi)2.	
exten => _X.,n,Playback(prt_welcome)3.	
exten => _X.,n(ReadTarget),Read(TARGET,"prt_target",,,5,5)4.	
exten => _X.,n,AGI(agiWrapper.agi,FTSC^db_validate_target)5.	
exten => _X.,n,GotoIf($[${VALID} = 0]?ReadTarget)6.	
exten => _X.,n,Dial(Zap/g1/${TARGET},120,L(300000,60000,30000))7.	
exten => _X.,n,Softhangup(${CHANNEL})8.	

exten => h,1,DeadAGI(agiWrapper.agi,FTSC^db_register_cdr)9.	

Ok, let's review our dialplan:

Line 1: Answer the call.•	

Line 2: Preset a session variable, indicating our session for the rest of the •	
execution path. We've already discussed this script before.
Line 3: Play back the welcome message.•	

Lines 4-6: Read a DTMF sequence from the user, validate the target, and •	
proceed if possible.
Line 7: Dial the target number. We've defined the dialing timeout as •	 120
seconds, allowing the remote target to ring for no more than 120 seconds.
In addition, the L parameter indicates a time limitation on the phone. We've
defined a maximum call duration of 300000mSec (300 seconds), with an
alert at 60000mSec (60 seconds) prior to the automatic termination of the
call, repeated every 30000mSec (30 seconds) untill the call is hung up by the
Asterisk server.
Line 8: Hang up the call when the call is completed. Using the •	 Softhangup
application enables us to hang up the call, and, when required, also continue
the execution of the dialplan from that point onwards. This is very useful for
pre-paid systems and timed calls scenarios.
Line 9: Execute CDR handling once the call is completed. As you can see, •	
we've created two new AGI script modules—db_validate_target and
db_register_cdr.

An important factor when writing AGI scripts is the naming convention
of your modules. For example, you may have notice that I prefixed my
modules with the abbreviation db_, indicating that this module deals
with database access. As redundant as this may seem to you, following
a preset naming convention will help you keep your script modules
under control.

Chapter 6

[117]

db_validate_target.inc.php
The purpose of the db_validate_target.inc.php script module is to connect to
our database, issue a SQL query to validate the target number, and then return a
channel variable called VALID to the dialplan, indicating whether the validation was
successful or not.

The following section makes use of SQL queries. If you are unfamiliar with
the SQL language (using the MySQL SQL engine), please refer
to an SQL training manual or an online MySQL tutorial.
A nice SQL primer on using MySQL is available at
http://www.lsbu.ac.uk/ict/authoring/mysql/startup.shtml

The following is our script code:

<?
 $VALID_FLAG = 0; // Call is not valid at this point yet

 // Get the session ID information
 $session_id_raw = $agiWrapper->get_variable("id_session");
 $session_id = $session_id_raw['data'];

 // Connect to the database - exit if error
 $db = new database(

"mysql",
"localhost",
"FTSC",
"ftscuser",
"ftscpass");

 if (!$db) {
 syslog(LOG_INFO,"Connection to database failed");
 syslog(LOG_INFO,"SQL Error: ".mysql_error());
 exit(99);
 }

 // Get the target input from Asterisk
 $target_raw = $agiWrapper->get_variable("TARGET");
 $target = $target_raw['data'];

 // Check the target with the countries tables
 $query = "select * from countries where '"

.$target."' like CONCAT(prefix,'%') "

PHPAGI: An AGI Class Library in PHP

[118]

."and allowed=1";

 if(!$db->query($query)) {
 syslog(LOG_INFO,"MySQL query failed");
 syslog(LOG_INFO,"SQL Error: ".mysql_error());
 exit(98);
 }

 if ($db->count_rows) {
 $VALID_FLAG = 1; // Cal is valid
 }

 $agiWrapper->set_variable("VALID",1);
 $db->disconnect();
?>

We won't dwell into the script's inner workings. However, we would dwell into
a particular section—the retrieval and assignment of variables to and from
the dialplan.

As you can see, I'm using a two-stage retrieval method:

 // Get the target input from Asterisk
 $target_raw = $agiWrapper->get_variable("TARGET");
 $target = $target_raw['data'];

The get_variable method of PHPAGI returns an array. The array essentially
contains the three parameters returned from Asterisk by using the AGI command
get_variable. These include result, data, and code. As the DTMF is captured via
the "Read" application, the data captured by the TARGET variable is the dialplan
that is retrieved via the get_variable method, while the data itself is stored in the
'data' key of the result.

While AGI is fully capable of receiving data via the get_data method,
this imposes an interesting issue. As long as the get_data method is
active, our AGI script is active, which means that we are running the
PHP interpreter for something that can be accomplished by the dialplan.
Remember, the fine balance between AGI and the dialplan. Sometimes,
using the dialplan for simple tasks is much faster and more reliable.

Chapter 6

[119]

db_register_cdr.inc.php
The purpose of the db_register_cdr.inc.php script module is to record the
information of our call to our CDR database. CDR databases are used primarily for
call logging and billing purposes. As you've probably noticed from the dialplan, the
execution of this module is performed via the DeadAGI application, as this module
needs to be executed once our call has completely terminated.

While we've showed you the previous script, we'll let you write this
specific script on your own, as a small exercise to write an AGI script
using what you've learned so far.

AGI Scripts in popular Asterisk
applications
As the Asterisk community grew, so did the number of applications available for it.
Asterisk applications these days range from management interfaces, IVR systems,
pre-paid systems, micro payment systems, and content delivery platforms.

We shall take a look at two of the most common applications for Asterisk—a
management GUI and a pre-paid calling card platform. We'll specifically take a look
at FreePBX™ and A2Billing™.

FreePBX™—the most popular Asterisk
management GUI
FreePBX™ is the de-facto standard these days for an Asterisk management GUI.
Being adopted by almost all of the automatic Asterisk PBX installers (TrixBox,
Elastix, PBX-in-a-flash), it is currently the most complete implementation of an
Asterisk-based office PBX system.

FreePBX™ makes use of a few AGI scripts, but we'll focus on only one:
dialparties.agi.

If you've read my previous book on AsteriskNOW, you must have noticed
that Digium has its own Asterisk management GUI, called AsteriskGUI.
As of version 1.5 of AsteriskNOW, the Asterisk GUI in AsteriskNOW has
been replaced by FreePBX.

PHPAGI: An AGI Class Library in PHP

[120]

The dialparties.agi script uses the PHPAGI class library, so you should be able
to go about and read it fully. The purpose of this script is to intercept calls as they
traverse the PBX system, analyze their origin and target, and decide how to route the
calls according to the configuration of FreePBX.

While dialparties.agi directly answers the "Atomic-AGI" concept, the FreePBX™
project is a spin-off from the Asterisk Management Portal project. This automatically
resulted in a multitude of developers contributing code, some of whom were a bit
messier than the others.

FreePBX™ makes use of a few other scripts, written by different people. If you
were to analyze these scripts, you would easily notice that these scripts are
completely different. That means that each script needs to be handled differently.
Thus, a developer wishing to get into the FreePBX™ project would be required to
study three different coding styles. Experienced developers would argue: "A good
developer should be able to find heads and tails, regardless of the coding style!"
Well, that is true. But why make life so complicated? If all these scripts use a single
bootstrap script, and utilize the same object abstraction, it would make life so much
easier for other developers to contribute.

The FreePBX™ project is available at http://www.freepbx.org.

A2Billing™—a pre-paid calling card system
A2Billing™ (a.k.a. Asterisk2Billing) is an Asterisk-based pre-paid/post-paid calling
cards and ITSP solution, capable of rendering services to thousands of users with up
to 240 concurrent connections. The limit isn't hard coded and depends upon your
hardware. It's simply a number that has been measured by various sources.

Currently, A2Billing is being used in a multitude of installations across
the world, specifically operating within the calling-card market and the
call-shops market.

Unlike FreePBX™, A2Billing™ uses a single AGI script to do all its magic. A
short examination of the installation instructions shows that the AGI activation is
as follows:

[a2billing]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,2,Wait,2
exten => _X.,3,DeadAGI,a2billing.php
exten => _X.,4,Wait,2
exten => _X.,5,Hangup

Chapter 6

[121]

The methodology of activating an AGI using the DeadAGI application
after answering the call is wrong. While it was working just fine with
Asterisk 1.2.X, in Asterisk 1.4.X, it started generating warnings. In
Asterisk 1.6.X, it will simply turn the execution from DeadAGI to
AGI automatically, making the entire A2Billing application perform
incorrect billing.

For each inbound call into the A2Billing application, the AGI script is invoked
(a2billing.php). However, it means that for the entire duration of the call, the AGI
script is alive and kicking, which exactly is the opposite of the Atomic-AGI concept.

The A2Billing™ project is available at http://www.a2billing.org.

Summary
Like any other development technology, development of AGI with PHPAGI
requires a certain level of finesse. Unlike traditional methodologies of development,
encapsulating your entire application logic into your AGI script can be
counterproductive.

If you are familiar with web technologies, try and think of developing AGI scripting
using Atomic AGI concepts as an Asterisk MVC (Model View Controller) structure,
using the PHP language. Asterisk provides our "View" layer the AGI Asterisk
application, the agiWrapper script provides the "Controller", while our script
modules provide the "Models".

At the end of Chapter 5, we'd asked you to write a slightly more advanced script,
using a combination of CURL. Try to redevelop your script, using the concepts
you've learned in this chapter.

FastAGI: AGI as a TCP
Server

The first 90% of the code accounts for the first 90% of the development time.
The remaining 10% of the code accounts for the other 90% of the development time.
–Tom Cargill

As we discussed in the previous chapters, one of the major pit-falls of AGI scripting
is the methodology with which Asterisk executes AGI scripts. The nature of
loading the entire script environment, whenever an AGI script is invoked, poses an
interesting problem. In order to understand the problem better, let's imagine the
following dialplan example:

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(callingcard.sh)
exten => _X.,n,Hangup

Now, let's imagine that the callingcard.sh shell script executes an AGI application,
developed using a Java framework. The immediate result will be that for each
invocation of the AGI script, we will automatically pay the overhead of a full virtual
machine running in memory.

While one or two will not impose a serious load on our server, having ten or fifteen
concurrent virtual machines running is a big no-no. Now, imagine that we have
the ability to completely separate the AGI logic from our Asterisk server. FastAGI
provides exactly this facility!

FastAGI: AGI as a TCP Server

[124]

FastAGI provides a facility whereby Asterisk communicates with your AGI script
via a TCP socket, instead of via the standard STDIN/STDOUT interface. FastAGI
enables the developer with a means to spread the load of the application across
several servers, enabling the Asterisk server to reach its top performance, because
the server resources are not used for running external logic, apart from Asterisk.

The previous dialplan extract will look like this using FastAGI:

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(agi://192.168.0.1)
exten => _X.,n,Hangup

By default, Asterisk will connect to the FastAGI server via the TCP port 4573.
However, that can be changed according to your requirements. Consider the
following dialplan extract:

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(agi://192.168.0.1:6060)
exten => _X.,n,Hangup

Most FastAGI servers tend to implement a single application flow. However, there
may be times where you may want to implement multiple AGI flows, using a single
FastAGI server. In order to do that, FastAGI provides a facility to invoke a specific
network location.

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(agi://192.168.0.1:6060/callingcard)
exten => _X.,n,Hangup

The above code snippet will connect to the FastAGI server located at 192.168.0.1
on port 6060, and will execute the AGI script indicated by the name callingcard.

FastAGI argument handling
Similar to AGI, FastAGI provides the ability to pass variables directly from the
dialplan to the FastAGI server. However, when doing so, we must pay attention to
the version of Asterisk that we are using, as variations exist between the different
branches of the Asterisk project.

Chapter 7

[125]

Asterisk 1.2.X and 1.4.X
Versions 1.2.X and 1.4.X of Asterisk handle argument passing to FastAGI server by
using an HTTP GET format. Consider the following:

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(agi://192.168.0.1/callingcard&exten=${EXTEN}&c=12)
exten => _X.,n,Hangup

It is the responsibility of your FastAGI server to parse the information from the
request, and pass the arguments to your application accordingly. Asterisk 1.2.X and
1.4.X do not provide a standard facility for passing arguments to a FastAGI server.

Asterisk 1.6.X
Asterisk 1.6.X introduced a means of passing arguments to FastAGI servers.
Consider the following:

[callingcard-platform]
; CallingCard application
exten => _X.,1,Answer
exten => _X.,n,AGI(agi://192.168.0.1/cc,${EXTEN},12,${CALLERID(num)})
exten => _X.,n,Hangup

The above example creates three arguments that are passed to our FastAGI server.
As the AGI script is executed on the remote machine, the AGI information will
contain the following:

agi_network: yes
agi_network_script: /cc
agi_arg_1: 972732557799
agi_arg_2: 12
agi_arg_3: 972546981111

Bear in mind that Asterisk 1.6.X still supports the previous methodology described.
However, future versions may not.

FastAGI error handling
Error handling of FastAGI is dramatically different between the different
Asterisk versions.

FastAGI: AGI as a TCP Server

[126]

Asterisk 1.2.X
Asterisk 1.2.X has a fairly limited capability of handling errors encountered in the
execution of a FastAGI remote script. Actually, the handling is so limited that if, for
some reason, a FastAGI script fails during execution, Asterisk will simply disconnect
the call.

A patch was made available for Asterisk 1.2.X to fix the above behavior.
However, as Asterisk 1.2.X is no longer supported by Digium and
community, we shall not dwell on this.

Asterisk 1.4.X and 1.6.X
Asterisk 1.4.X introduced a new methodology, similar to the one used by
the normal AGI application. Upon completion of the script—be it successful or
not—Asterisk will set the AGISTATUS channel variable with any one of the following
values: SUCCESS, FAILURE, or HANGUP.

SUCCESS•	 : Indicates that the FastAGI server has completed its
operation normally
FAILURE•	 : Indicates that the FastAGI server has terminated with an error,
and should be handled accordingly
HANGUP•	 : Indicates that the call that invoked the AGI script has hung up the
call, while the FastAGI server continues to execute the script

This methodology enables the developer to verify the results of the FastAGI server
as it returns control back to Asterisk, thereby allowing the branching of the dialplan
in accordance with the FastAGI server's response.

FastAGI with PHPAGI and xinetd
If you are an experienced PHP developer, the term "Network Server" and PHP
doesn't mix all that well in your mind, while a PHP-based "Network Client" seems
just fine. The idea of a "Network Server", usually associated with the ability to run in
multi-threaded mode, seems like an oxymoron.

However, as much as the connection between PHP and a TCP Network Server
appears to be unnatural (or in some cases, downright crazy), PHPAGI includes
a facility to turn your normal AGI scripts into FastAGI servers, using a FastAGI
bootstrap and using the xinetd nework service.

Chapter 7

[127]

Introducing xintetd—the Internet services
daemon
Xinetd is the successor of the inetd super-server daemon. Technically speaking,
almost any modern UNIX operating system will have either an inetd or an xinetd
daemon (xinetd is more secure than inetd)

The term "Super-Server" is derived from inetd's multiple port binding behavior.
The super-server will "listen" on a multiple, designated Internet service ports, such
as POP3, FTP, and telnet. Once a connection is made to one of the "listening" ports,
the Super-Server will activate the related server binary that is associated with that
specific port.

In the past, most network services were operated via the inetd super-server. As
modern operating system design has evolved and with the introduction of simpler
multi-threading techniques, the use of super-server has slowly diminished.
However, it is still available for use, and in some cases, allows for greater granularity
in security for compatible server binaries.

One of the added values of using inetd/xinetd is the fact that your server binary no
longer needs to care for network-related tasks. The super-server communicates with
your server binary via the STDIN/STDOUT/STDERR streams, thus allowing almost
any program to become a network server.

Configuring xinetd for FastAGI and PHPAGI
Now let's take a look at how to configure xinetd for FastAGI and PHPAGI

For more information about the xinetd server, please refer to the xinetd
community website, located at http://www.xinetd.org/.

As indicated previously, in order to turn our AGI script into a FastAGI server,
we must first configure xinetd. The following is an example of what the xinetd
configuration may look like:

default: off
description: fastagi is a remote AGI interface
service fastagi
{
 socket_type = stream
 user = root
 group = nobody
 server = /var/lib/asterisk/agi-bin/fastagiWrapper.php
 wait = no

FastAGI: AGI as a TCP Server

[128]

 protocol = tcp
 bind = 127.0.0.1
 port = 4573
 disable = no
}

The socket_type indicates what type of service is associated with this specific
configuration. In our case, the keyword stream indicates that we are dealing
with a stream-based service.

The user indicates which user ID is to be used for running the related server
executable. If you require a different user to be used, you may change this setting.
However, make sure that your settings allow for proper usage.

The group indicates which group ID is to be used for running the related server
executable. If you require a different user to be used, you may change this setting.
However, make sure that your settings allow for proper usage.

The server indicates the server executable to be executed upon receiving a
connection to the designated bound IP number and port.

The wait determines if the service is single-threaded or multi-threaded, and who
accepts the connection—the xinetd or the server program. If its value is yes, the
service is single-threaded, meaning that xinetd will start the server, and will stop
handling requests for the service until the server dies, while the server software will
accept the connection. If the attribute value is no, the service is multi-threaded, and
xinetd will keep handling new service requests and will accept the connection.

The protocol indicates what type of protocol we are using—TCP or UDP.

The bind and port settings indicate which IP number and PORT number our server
is bound to.

The disable directive indicates whether our server will be available on the network
or not.

As you may see from the above example, the server executable is set to
/var/lib/asterisk/agi-bin/fastagiWrapper.php. The fastagiWrapper.php
script is actually a bootstrapping facility, which will enable us to activate the proper
AGI script via our newly-created xinetd server.

Once we have configured our xinetd super-server, we need to notify your Linux
server of the new TCP service. In order to do this, add the following line to your
/etc/services file:

fastagi 4573/tcp # Asterisk FastAGI Server

Chapter 7

[129]

The first parameter indicates the name of the new service to be rendered by xinetd.
The second parameter indicates the port number and the type of IP protocol to listen
to (UDP or TCP).

Once you have finished your configuration, you may run the following command:

service xinetd restart

The "service" command is mainly used with distributions such as
FedoraCore, RedHat, CentOS, and the likes. If you're using a Debian
distribution, or any other distribution, you may need to use a
different script. Consult your distribution documentation for
additional information.

If everything has been performed correctly, using the netstat –apn | less
command should emit an output similar to the following:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 10.10.220.202:3306 0.0.0.0:*
LISTEN 2546/mysqld
tcp 0 0 0.0.0.0:5038 0.0.0.0:*
LISTEN 2771/asterisk
tcp 0 0 127.0.0.1:4573 0.0.0.0:*
LISTEN 9807/xinetd
tcp 0 0 10.10.220.202:44728 10.10.220.204:3306
ESTABLISHED 9670/php
tcp 0 0 10.10.220.202:43243 10.10.220.204:3306
ESTABLISHED 2771/asterisk
tcp 0 0 127.0.0.1:32963 127.0.0.1:4573
ESTABLISHED 2771/asterisk
tcp 0 0 127.0.0.1:32947 127.0.0.1:4573
ESTABLISHED 2771/asterisk

Note the following line:

tcp 0 0 127.0.0.1:4573 0.0.0.0:*
LISTEN 9807/xinetd

Our xinetd is bound to TCP port 4573, as we expect it to activate our AGI script via
that port.

FastAGI: AGI as a TCP Server

[130]

Configuring PHPAGI for FastAGI
Before we start handling the actual FastAGI bootstrap, we must first configure the
FastAGI environment of our PHPAGI class. By editing the phpagi.conf file, verify
that the following code appears in it:

[fastagi]
setuid=true; drop privileges to owner of script
basedir=/var/lib/asterisk/agi-bin/; path to script folder

These settings will be used by our FastAGI bootstrap script.

The fastagiWrapper.php bootstrap
The following code is based on the code available with the PHPAGI distribution:

#!/usr/bin/php-cgi -q
<?php

	 $BASE_PATH="/var/lib/asterisk/agi-bin/";
	
 include $BASE_PATH."../php-common/database.inc.php";
 include $BASE_PATH."../php-common/config.inc.php";
 require $BASE_PATH."../php-common/phpagi.php";

 define_syslog_variables();

 // Initiate an array for local channel variable keeping
 $agiVariables = array();

 // Initiate an AGI instance
 $agiWrapper = new AGI($BASE_PATH."../php-common/phpagi.conf");

	 if(!isset($agiWrapper->config['fastagi']['basedir']))
		 $fastagi->config['fastagi']['basedir'] = dirname(__FILE__);

	 $script = $fastagi->config['fastagi']['basedir'] .
 DIRECTORY_SEPARATOR . $agiWrapper->request['agi_network_script'];
	
 $id_session	 = $agiWrapper->get_variable("id_session");
 openlog("[".$id_session['data']."/".$agiWrapper->request
 ['agi_network_script']."]", LOG_PID | LOG_PERROR, LOG_LOCAL2);

	 // make sure the script executable exists, or bail out
	 if(!file_exists($script)) {
		 syslog(LOG_INFO,"$script does not exist");
		 exit;

Chapter 7

[131]

	 }
	
	 // drop privileges
	 if(isset($agiWrapper->config['fastagi']['setuid']) &&
 $agiWrapper->config['fastagi']['setuid']) {
		 $owner = fileowner($script);
		 $group = filegroup($script);
		 if(!posix_setgid($group) || !posix_setegid($group)
 || !posix_setuid($owner) || !posix_seteuid($owner)) {
			 syslog(LOG_INFO,"$script failed to lower
 priviliges");
			 exit;
		 }
	 }	
	
	 // make sure script is still readable
	 if(!is_readable($script)) {
		 syslog(LOG_INFO,"$script is no longer readable");
		 exit;
	 }
	
	 require_once($script);	
?>

While the script we just saw is fairly similar to the one we've used as our PHPAGI
wrapper, it is slightly different. Let's examine the main differences:

	 if(!isset($agiWrapper->config['fastagi']['basedir']))
		 $fastagi->config['fastagi']['basedir'] = dirname(__FILE__);

	 $script = $fastagi->config['fastagi']['basedir'] .
 DIRECTORY_SEPARATOR . $agiWrapper->request['agi_network_script'];

The above snippet of code checks the PHPAGI configuration and extracts the FastAGI
basedir definition. As you may have noticed before, we set our FastAGI basedir to
/var/lib/asterisk/agi-bin. Once we have established the location of the FastAGI
basedir, we construct the execution path of our FastAGI script, indicated by the
agi_network_script variable (as indicated above).

For example, let's imagine that our script is invoked using the following
diaplan directive:

exten => _X.,n,AGI(agi://192.168.0.1:6060/callingcard)

FastAGI: AGI as a TCP Server

[132]

So, our $script variable will now contain the following:

$script = "/var/lib/asterisk/agi-bin/callingcard";

So, we've established where to read our AGI script executable from. Let's continue.

	 // drop privileges
	 if(isset($agiWrapper->config['fastagi']['setuid'])
 && $agiWrapper->config['fastagi']['setuid']) {
		 $owner = fileowner($script);
		 $group = filegroup($script);
		 if(!posix_setgid($group) || !posix_setegid($group)
 || !posix_setuid($owner) || !posix_seteuid($owner)) {
			 syslog(LOG_INFO,"$script failed to lower
 priviliges");
			 exit;
		 }

	 }	

The above code snippet sets the execution privileges of our AGI script to those of the
script owner. The reason we are doing this is because the xinetd super server is run
using the root privilege, thus introducing a massive security hole.

Unlike running an AGI script on its own, using a FastAGI introduces
an interesting security concern. Although Asterisk will execute the
connection to the FastAGI server using Asterisk's privileges, the FastAGI
server may be run with a completely different privilege set. This is
especially true if your FastAGI server is running on a completely different
server. Remember, if you run your FastAGI servers as root, you may
expose your system to security issues. So, never run your FastAGI servers
as root (unless you really have to)!

As a rule of thumb, create an unprivileged user to run your AGI scripts, thereby
locking your scripts to run in a closed environment—a good practice to follow.

	 // make sure script is still readable
	 if(!is_readable($script)) {
		 syslog(LOG_INFO,"$script is no longer readable");
		 exit;
	 }
	
	 require_once($script);	

Chapter 7

[133]

Once we have changed the privileges of the execution, we must verify that our script
is readable, prior to the execution of the script. This will verify that our current script
privileges and the script executable are compatible, and that the script file can be
read by our bootstrap.

Once this is achieved, the next step is to perform a require_once to our AGI script
file, and our FastAGI is now ready to run.

Performance consideration
As indicated before, PHP isn't an all round multi-threading environment! In
order to make the above statement clean, examine the following output of the
ps auxf command:

asterisk 9817 0.0 0.1 192280 11604 ? Ss 13:32 0:00
_ /usr/bin/php-cgi -q /var/lib/asterisk/agi-bin/fastagi.php
asterisk 9852 0.0 0.1 192280 11604 ? Ss 13:33 0:00
_ /usr/bin/php-cgi -q /var/lib/asterisk/agi-bin/fastagi.php
asterisk 9944 0.9 0.1 192288 11608 ? Ss 13:40 0:00
_ /usr/bin/php-cgi -q /var/lib/asterisk/agi-bin/fastagi.php

This is an output from a system that runs three sessions of a FastAGI server, based
on PHP and PHPAGI. As you can see, there is no difference between running three
instances of a simple AGI script and running three instances of the same script as a
FastAGI instance.

FastAGI with PHPAGI and Google
As we've already learned, PHP isn't the most natural approach for writing FastAGI
servers. However, that doesn't have to be the default. Although PHP provides
facilities for creating non-blocking sockets, writing a multi-client TCP daemon using
PHP isn't a simple task. Thankfully, the good people at Google had released an LGPL
library for creating non-blocking, asynchronous, high-performance socket routines,
based on PHP. Initially, the project was created as a base for an IRC web application.

Google's library is available at the following URL:
http://code.google.com/p/phpsocketdaemon/

Google's library is fairly simplistic. However, it may assist a developer with the
development of high-performance FastAGI scripts with PHP. The library is fully
objectified. So, if you're not familiar with PHP-OO, the following code could seem
really wierd. The following code creates a simple HTTP socket server, using the
Google library:

FastAGI: AGI as a TCP Server

[134]

httpd.php:
#!/usr/bin/php -Cq
<?
/*
phpSocketDaemon 1.0
Copyright (C) 2006 Chris Chabot <chabotc@xs4all.nl>
See http://www.chabotc.nl/ for more information

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/

ini_set('mbstring.func_overload', '0');
ini_set('output_handler', '');
error_reporting(E_ALL | E_STRICT);
@ob_end_flush();
set_time_limit(0);
include("socket.php");
include("httpServer.php");

$daemon = new socketDaemon();
$server = $daemon->create_server('httpdServer', 'httpdServerClient',
0, 2001);

$daemon->process();

This code creates a socket server that is listening at TCP port 2001. The method
called create_server actually receives the name of a server object, which describes
the methods that the server implements.

The httpdServer object indicated in the code, is included from the httpServer.php
file that is included at the beginning of the script.

Chapter 7

[135]

httpServer.php:
<?
/*
phpSocketDaemon 1.0 - httpd server demo implementation
Copyright (C) 2006 Chris Chabot <chabotc@xs4all.nl>
See http://www.chabotc.nl/ for more information

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
class httpdServer extends socketServer {
}

class httpdServerClient extends socketServerClient {
 private $max_total_time = 45;
 private $max_idle_time = 15;
 private $keep_alive = false;
 private $accepted;
 private $last_action;

 private function handle_request($request)
 {

 if (!$request['version'] || ($request['version'] != '1.0'
 && $request['version'] != '1.1')) {
 // sanity check on HTTP version
 $header = 'HTTP/'.$request['version']." 400 Bad Request\r\n";
 $output = '400: Bad request';
 $header .= "Content-Length: ".strlen($output)."\r\n";
 } elseif (!isset($request['method']) || ($request['method']
 != 'get' && $request['method'] != 'post')) {

FastAGI: AGI as a TCP Server

[136]

 // sanity check on request method (only get and post are
allowed)
 $header = 'HTTP/'.$request['version']." 400 Bad Request\r\n";
 $output = '400: Bad request';
 $header .= "Content-Length: ".strlen($output)."\r\n";
 } else {
 // handle request
 if (empty($request['url'])) {
 $request['url'] = '/';
 }
 if ($request['url'] == '/' || $request['url'] == '') {
 $request['url'] = '/index.html';
 }
 // parse get params into $params variable
 if (strpos($request['url'],'?') !== false) {
 $params = substr($request['url'],
 strpos($request['url'],'?') + 1);
 $params = explode('&', $params);
 foreach($params as $key => $param) {
 $pair = explode('=', $param);
 $params[$pair[0]] = isset($pair[1]) ? $pair[1] : '';
 unset($params[$key]);
 }
 $request['url'] = substr($request['url'], 0,
 strpos($request['url'], '?'));
 }

 $file = './htdocs'.$request['url'];
 if (file_exists($file) && is_file($file)) {
 $header = "HTTP/{$request['version']} 200 OK\r\n";
 $header .= "Accept-Ranges: bytes\r\n";
 $header .= 'Last-Modified: '.gmdate('D, d M Y H:i:s T',
 filemtime($file))."\r\n";
 $size = filesize($file);
 $header .= "Content-Length: $size\r\n";
 $output = file_get_contents($file);
 } else {
 $output = '<h1>404: Document not found.</h1>';
 $header = "'HTTP/{$request['version']} 404 Not Found\r\n".
 "Content-Length: ".strlen($output)."\r\n";
 }
 }
 $header .= 'Date: '.gmdate('D, d M Y H:i:s T')."\r\n";
 if ($this->keep_alive) {
 $header .= "Connection: Keep-Alive\r\n";

Chapter 7

[137]

 $header .= "Keep-Alive: timeout={$this->max_idle_time}
 max={$this->max_total_time}\r\n";
 } else {
 $this->keep_alive = false;
 $header .= "Connection: Close\r\n";
 }
 return $header."\r\n".$output;
 }

 public function on_read()
 {
 $this->last_action = time();
 if ((strpos($this->read_buffer,"\r\n\r\n")) !== FALSE ||
 (strpos($this->read_buffer,"\n\n")) !== FALSE) {
 $request = array();
 $headers = split("\n", $this->read_buffer);
 $request['uri'] = $headers[0];
 unset($headers[0]);
 while (list(, $line) = each($headers)) {
 $line = trim($line);
 if ($line != '') {
 $pos = strpos($line, ':');
 $type = substr($line,0, $pos);
 $val = trim(substr($line, $pos + 1));
 $request[strtolower($type)] = strtolower($val);
 }
 }
 $uri = $request['uri'];
 $request['method'] = strtolower(substr($uri, 0,
 strpos($uri, ' ')));
 $request['version'] = substr($uri, strpos($uri, 'HTTP/')
 + 5, 3);
 $uri = substr($uri, strlen($request['method']) + 1);
 $request['url'] = substr($uri, 0, strpos($uri, ' '));
 foreach ($request as $type => $val) {
 if ($type == 'connection' && $val == 'keep-alive') {
 $this->keep_alive = true;
 }
 }
 $this->write($this->handle_request($request));
 $this->read_buffer = '';
 }
 }

FastAGI: AGI as a TCP Server

[138]

 public function on_connect()
 {
 //echo "[httpServerClient] accepted connection from
 {$this->remote_address}\n";
 $this->accepted = time();
 $this->last_action = $this->accepted;
 }

 public function on_disconnect()
 {
 //echo "[httpServerClient] {$this->remote_address}
 disconnected\n";
 }

 public function on_write()
 {
 if (strlen($this->write_buffer) == 0 && !$this->keep_alive) {
 $this->disconnected = true;
 $this->on_disconnect();
 $this->close();
 }
 }

 public function on_timer()
 {
 $idle_time = time() - $this->last_action;
 $total_time = time() - $this->accepted;
 if ($total_time > $this->max_total_time ||
 $idle_time > $this->max_idle_time) {
 echo "[httpServerClient] Client keep-alive time exceeded
 ({$this->remote_address})\n";
 $this->close();
 }
 }
}

Technically speaking, we are required to implement each one of the class methods
to handle the various inputs and outputs of our TCP server. While the example
we just saw implements an HTTP server, it can be modified to handle FastAGI
requests instead.

The following is a simple framework for creating an AGI server, using the
phpSocketDaemon library:

Chapter 7

[139]

FastAGI.php:
#!/usr/bin/php -Cq
<?
/*
 A Simple FastAGI server using phpsocketserver.php
*/

 ini_set('mbstring.func_overload', '0');
 ini_set('output_handler', '');
 error_reporting(E_ALL | E_STRICT);
 @ob_end_flush();
 set_time_limit(0);
 include("socket.php");
 include("fastagiServer.php");

 $daemon = new socketDaemon();
 $server = $daemon->create_server('fastagiServer',
 'fastagiServerClient', 0, 4573);
 $daemon->process();
?>

Now, we need to create our fastagiServer class.

fastagiServer.php:
<?
/*
 A Simple FastAGI server class for phpsocketserver.php
*/

class fastagiServer extends socketServer {

}

class fastagiServerClient extends socketServerClient {

 private $max_total_time = 45;
 private $max_idle_time = 15;
 private $keep_alive = false;
 private $accepted;
 private $last_action;

 public function on_read() {
 // handle incomming data which is in $this->read_buffer,for
 // example the following looks for \r\n, then parses the complete

FastAGI: AGI as a TCP Server

[140]

 // instruction to 'handle_request'
 .
 .
 .
 }

 public function on_connect() {
 // Invoked when a client connects to the binded port
 .
 .
 .
 }
 public function on_disconnect() {
 // Invoked when a connected client disconnects from the binded
 // port
 .
 .
 .
 }
 public function on_timer() {
 // Invoked upon a connected client's keep alive setting is
 // exceeded
 .
 .
 .
 }

}

At this point, you can surely imagine ways to incorporate the PHPAGI class library with
the phpsocketserver class library, to enable a better PHP-based FastAGI server.

FastAGI with other tool kits
As indicated earlier, PHP isn't the most native choice for writing FastAGI servers.
PERL and Java are more popular for developing FastAGI servers. While the
methodology is slightly different, the general concepts remain identical.

Asterisk::FastAGI—a PERL module for
FastAGI handling
Asterisk has several PERL modules for developing AGI scripts and FastAGI
servers. While Asterisk::AGI provides a simple interface for AGI development,
Asterisk::FastAGI provides a similar facility for FastAGI development.

Chapter 7

[141]

The Asterisk::FastAGI module is available from the CPAN repository.

Asterisk::FastAGI has become fairly popular for FastAGI development, as it
handles the network and process forking by itself, freeing the developer from that
task. The following is an example:

 use base 'Asterisk::FastAGI';

 sub fastagi_handler {
 my $self = shift;

 my $param = $self->param('foo');
 my $callerid = $self->input('calleridname');

 $self->agi->say_number(1000);
 }

Asterisk-JAVA—a Java package for Asterisk
Asterisk-Java has become highly popular over the past few years, as more
and more Java developers have made the transition to Asterisk development.
Asterisk-Java is fully compatible with versions 1.0, 1.2, 1.4 and 1.6 of Asterisk,
and is an ideal candidate for code portability and compatibility.

The main drawback of using Asterisk-Java is Java, as it requires a hefty toll to be paid
for using a Java core (in terms of complexity and performance—not financially).

However, thanks to Java's fairly simplistic networking and multi-threading abilities,
Asterisk-Java has become the default choice for many developers for FastAGI
server development.

Asterisk-JAVA is available at http://www.asterisk-java.org.

While Asterisk-JAVA is at version 0.3 and is considered to be under constant
development, it is highly stable and debugged.

FastAGI: AGI as a TCP Server

[142]

Summary
As we've learned so far, AGI and FastAGI provide for a highly versatile and robust
programming environment for developing interactive voice applications. Each one
has its own pros and cons. However, a balanced use of the two, combined with
Asterisk's dialplan applications and functions, can make for a highly mature and
flexible IVR framework.

An intresting question is raised at this point: "Can we interact with Asterisk outside
the channel or the dialplan construct? Can we instruct Asterisk to perform a function
without being in call at all?" The answer to these is: Yes, we can—by using the
Asterisk Manager Interface.

At this point, we suggest that you take a short break from the book, in order to fully
digest what you've learned so far. Try redeveloping your previously developed
scripts as FastAGI servers, and get to learn the FastAGI mechanism better.

AMI: The Asterisk Manager
Interface

The metaphor is perhaps one of man's most fruitful potentialities. Its efficacy
verges on magic, and it seems a tool for creation which God forgot inside one of His
creatures when He made him.-Jose Ortega Y Gasset

Just like the Metaphor, Asterisk Manager Interface (AMI) is some kind of a
magical thing, capable of performing highly complex telephony operations in a
simple manner.

Judging from a technical point of view, the Manager Interface is one of the most
simple devices that Asterisk can offer to the developer. However, even though it
is simple and straightforward, it is also a pivotal point for applications, which if
developed incorrectly, could generate a completely different set of results.

Understanding the capabilities and constraints of using the AMI interface is the key
to developing AMI-aware applications. This chapter will get you up and running
with AMI.

AMI—the history
The AMI Interface was available with Asterisk almost from day one. Its initial
use was a means for obtaining runtime information about Asterisk's runtime
environment. As time progressed, the AMI interface slowly expanded, and
additional functions were added to it. One of the pitfalls of AMI is its lack of proper
documentation. Thus, AMI is a set of highly undocumented events and actions,
sometimes yielding a slightly different result from the one you expect.

AMI: The Asterisk Manager Interface

[144]

How does AMI work?
The AMI interface is actually a TCP server, which is automatically executed with
Asterisk and is connected directly to the Asterisk core. As calls are passed through
the Asterisk core, the AMI interface will emit events to any TCP client connected to
the AMI TCP server.

Like any other portion of Asterisk, the AMI interface is controlled by a specific
configuration file, in our case, /etc/asterisk/manager.conf.

manager.conf:
;
; Asterisk Call Management support
;
[general]
enabled = yes
port = 5038
bindaddr = 0.0.0.0

[amiclient]
secret = amiclient111
deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/255.255.255.0
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

By default, the AMI interface is not enabled. If your applications require
AMI functionality, you should enable it via the configuration file.

Like any other Asterisk configuration file, the manager.conf file is made up of
configuration contexts. While the [general] context is fairly simple, every other
context simply defines the various AMI access users and their permissions.

Pay special attention to the port and enabled parameters. By default, the enabled
parameters will be set to no, disabling the Asterisk Manager. The port parameter
indicates which TCP port to bind the Asterisk Manager to—5038 being the
default one.

The following context—amiclient— specifies the username that is allowed to
connect to the Asterisk Manager. Pay special attention to the fact that usernames
and secrets (aka: passwords) are case sensitive.

Chapter 8

[145]

A connected AMI user may connect from hosts or networks defined in the permit
configuration directive. Note that the following example denies access from the
Internet (0.0.0.0/0.0.0.0) and permits access only from specific hosts or networks:

deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/255.255.255.0

Once we have defined our access list, we are required to predefine a set of events and
actions that our user is allowed to access. This is defined using the read and write
directive. While read indicates that the events of the types indicated are sent to the
connected AMI user, the write directive indicates that the AMI interface will allow
the user to initiate actions for these types of events only.

The following is a short explanation of the information available for each of these
event/action types:

system: Actions and events related to Asterisk's core elements, such as SIP •	
peers and the Asterisk Database
call: Actions and events related directly to Asterisk's extension statuses, and •	
call progress and call control
log: The source documentation doesn't provide detailed information about •	
the nature of information provided by events of this type.
verbose: The source documentation doesn't provide detailed information •	
about the nature of information provided by events of this type.
command: This directive enables our connected user to send commands to •	
the Asterisk CLI interface
Agent: Actions and events related to Asterisk's queue applications•	

User: User events can be generated from the dialplan, using the •	 UserEvent
application. Using user events are a valuable tool when developing
applications that incorporate dialplan, AGI, and AMI at the same time.

It would be fair to say that by the time this book gets published,
additional commands and events will have been added to the Asterisk
Manager. It would be a good practice to dig into the Asterisk code
documentation and learn what has been added and/or modified.

AMI with Asterisk 1.0 and 1.2
In the early days of Asterisk, the AMI interface was one of Asterisk's main pitfalls.
The main reason for this pitfall was its single-threaded nature. Thus, users connected
to the AMI interface ran into serious deadlocks, especially when trying to both read
and write information into the manager interface at the same time.

AMI: The Asterisk Manager Interface

[146]

AMI with Asterisk 1.4 and 1.6
Asterisk version 1.4, and its successor 1.6 have introduced a major rewrite to some
of the AMI interface servers, thereby allowing multi-threaded operations and better
flow control over connected users. The chances of running into a deadlock still exist,
however, these have become fairly rare in these versions.

AMI–understanding basics
Before any interaction with the AMI interface can be performed, the user must first
need to log in to the manager interface. The simplest way to illustrate this is using
the 'telnet' application. Simply initiate a telnet to the Asterisk Manager Interface, and
you will be greeted with the following:

[root@venus ~]# telnet 127.0.0.1 5038
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
Asterisk Call Manager/1.0

From this point onwards, the AMI interface expects you to interact without using
text-based commands, as described by the interface.

Please note that if you are using Asterisk version 1.6 or SVN, Asterisk
Manager's version is 1.1 and not 1.0.

Events and Actions
The Asterisk Manager provides two main facilities of communications—events and
actions. Events are invoked by the various parts of Asterisk, be it channel drivers,
applications, resources, or any other component connected directly to the Asterisk
core. The purpose of an event is to enable an external system to obtain information
from Asterisk, by collecting these events, parsing them, correlating them, and
initiating actions in accordance with these events. Actions provide a method of
allowing an external system to send operational commands to Asterisk, asking it to
perform a specific task. While an action may result in true operational results (such
as originating an outbound call), it may also result in new events being sent to the
Asterisk Manager with new information.

Chapter 8

[147]

Logging in to the Manager Interface
The first thing we'll need to do is to actually log in to the interface, using the login
action. Simply type the following text into your connected AMI interface:

 Action: login
 Username: admin
 Secret: god

Please note that after the last line of input, you will be required to press your Enter
key again, as the AMI interface requires an empty line feed at the end of the input,
to indicate that the input has been completed (if you are familiar with SMTP servers,
this doesn't seem all that weird).

Another variant would be to add the Events: off directive, after the Secret
directive. This will tell the AMI interface not to send manager events to your
connected user.

Sending actions to the Manager Interface
An action comprises an action directive, a set of keys, and variables (if required).
The format of an action request is as follows:

 Action: <action type><CRLF>
 <Key 1>: <Value 1><CRLF>
 <Key 2>: <Value 2><CRLF>
 ...
 Variable: <Variable 1>=<Value 1><CRLF>
 Variable: <Variable 2>=<Value 2><CRLF>
 ...
 <CRLF>

The following is a small example of an Asterisk Manager action that includes some
variables and keys:

Action: Originate
Channel: SIP/203
Context: default
Exten: 204
Priority: 1
Callerid: 203
Variable: call_originator=jollyroger

The above example will generate a call to the SIP device, registered as 203. Once the
SIP device 203 picks up, Asterisk will then direct the connected channel to the default
context, trying to dial extension number 204. The variable call_originator is set to
jollyroger and may be used later on within the Asterisk dialplan.

AMI: The Asterisk Manager Interface

[148]

Logging off from the Manager Interface
Once you have completed your interaction with the AMI interface, simply log off.
While some developers may argue that this is redundant, it is good practice to
close the connection properly and indicate a logoff from the manager, as in some
application cases this may be a requirement (especially in a call center or contact
center scenario). Simply type the following text into your connected AMI interface:

 Action: logoff

The response from the AMI interface should be as follows:

Response: Goodbye
Message: Thanks for all the fish.

Off topic: If the term "Thanks for all the fish" seems weird for this point,
we suggest that you read Douglas Adams's The Hitch Hiker's Guide to the
Galaxy. You will also find out that the universal truth is 42, but that's a
completely different thing.

PHPAGI and the AMI Interface
PHPAGI includes a class library for interacting easily with the AMI interface. In
order to utilize the AMI interface with PHPAGI, we must first configure our AMI
login information in the phpagi.conf file. The following is an example, according
to the amiclient configuration example seen previously:

[asmanager]
server=192.168.80.130 ; server to connect to
port=5038 ; default manager port
username=amiclient ; username for login
secret= amiclient111 ; password for login

Once you have configured your AMI interface information, you are required to
initiate the Asterisk Manager class from your PHP script. This is available in two
different methods—invoking the AMI interface class directly from its own class,
or invoking it via the PHPAGI class library.

Direct AMI interface invocation
The following code snippet shows how to invoke the AMI interface directly:

 1. <?
 2.
 3. $BASE_PATH="/var/lib/asterisk/agi-bin/";

Chapter 8

[149]

 4.
 5. require $BASE_PATH."../php-common/phpagi.php";
 6. /* your script does some stuff here */
 7. .
 8. .
 9. /* Now we connect to the AMI interface */
10. $astManager = new AGI_AsteriskManager();
11. $res = $astManager->connect($ast_host, $ast_user, $ast_pass);
12. if(!$res) {
13. syslog(LOG_INFO, "Connection to Asterisk manager failed.");
14. die(100);
15. }
16. /* Now we do some manager stuff here */
17. .
18. .
19. /* Now we close the connection and logout */
20. $astManager->disconnect();
21.
22. ?>

The code snippet just seen tries to connect to the manager interface (lines 10-11). If
the connection is unsuccessful (lines 12-15), the script will simply die and return a
value of 100 to the operating system.

Once we are connected to the AMI interface, we can interface with it.

AMI interface invocation via the PHPAGI class
The following code snippet shows how to invoke the AMI interface directly:

1. <?
 2.
 3. $BASE_PATH="/var/lib/asterisk/agi-bin/";
 4.
 5. require $BASE_PATH."../php-common/phpagi.php";
 6. /* your script does some stuff here */
 7. .
 8. .
 9. /* Now we connect to the AMI interface */
10. $agiWrapper = new AGI ();
11. $astManager = $agiWrapper->new_AsteriskManager*();
12. $res = $astManager->connect($ast_host, $ast_user, $ast_pass);
13. if(!$res) {
14. syslog(LOG_INFO, "Connection to Asterisk manager failed.");
15. die(100);

AMI: The Asterisk Manager Interface

[150]

16. }
17. /* Now we do some manager stuff here */
18. .
19. .
20. /* Now we close the connection and logout */
21. $astManager->disconnect();
22.

23. ?>

This code snippet invokes the AGI class. Once invoked, it initiates an Asterisk
Manager interface via the new_AsteriskManager method (lines 10-11). As before, we
first validate that our manager connection is available, and if not, we simply kill our
script with a return value of 100 (lines 13-16).

Interacting with the AMI interface
Once our AMI interface is connected, we need to interact with it. Interaction is
performed via actions and events. In order to initiate an action, we are required
to utilize the send_request method. In order to trigger events correctly, we are
required to create handling functions and declare these as event callbacks.

Sending actions to the AMI inteface
Sending an action to the AMI interface once connected, using the send_request
method, is very simple. The send_request directive syntax is as follows:

$as->send_request($eventname, $arrayofparameterstopass);

Here $as specifies your AMI interface object. The next is a short example of how this
is done:

$res = $as->send_request('EventName',
 array('Channel'=>'Zap/1/16045551212',
 'SomeParameter'=>'data'));

echo "Dump of returned data:\n";

foreach($res as $var=>$val) echo "$var = $val\n";

The above code sends an action called EventName followed by the parameters
detailed by the array in the send_request method.

Chapter 8

[151]

Event callbacks from AMI interface
As events are fired from the AMI to our program, we sometimes need to process
these events. PHPAGI enables a methodology of defining various handling
functions, and then attaching these functions to specific events via a callback facility.

For example, let's imagine that we'd like to add an event handler for an event called
Dial, indicating that a call was just dialed from a certain source to a specific channel.

<?
 .
 .
 function evt_dial($ecode, $data, $server, $port) {
 /* Do something here */
 }

 $astManager->add_event_handler('dial','evt_dial');
 .
 .

?>

If you would like to create a catch all event, simply define the * event handler.
For example:

<?
 .
 .
 function evt_all($ecode, $data, $server, $port) {
 /* Do some thing here */
 }

 $astManager->add_event_handler('*','evt_all');
 .
 .
?>

In the above case, any event generated will automatically invoke the evt_all function.

Events are processed using a block socket. This means that as events are
processed, your code will not be able to execute additional actions to the
AMI interface. If you want to be able to read events and send actions
independently, make sure you use two different connections for this, with
different sets of permissions.

AMI: The Asterisk Manager Interface

[152]

PHPAGI AMI originate quirk
As we've learned before, PHPAGI was initially developed to be compatible with
Asterisk versions 1.0 and 1.2. One of the actions that has changed slightly from
version 1.2 of Asterisk to its later versions is the Originate action.

The Originate action is used to instruct Asterisk to initiate a call to a pre-defined
channel and then connect the call to an Asterisk dialplan context. The Originate
action is commonly used in phone callback scenarios, call center and contact center
dialers, and alerting systems.

To be more precise, the thing that changed wasn't the action itself, but how Asterisk
deciphers the variables provided to the Originate action. However, in order to
understand the quirk, let's first examine the Originate action. The following is a
direct extract from the Asterisk code base (extracted from manager.c):

static char mandescr_originate[] =
"Description: Generates an outgoing call to a Extension/Context/
Priority or\n"
" Application/Data\n"
"Variables: (Names marked with * are required)\n"
" *Channel: Channel name to call\n"
" Exten: Extension to use (requires 'Context' and 'Priority')\n"
" Context: Context to use (requires 'Exten' and 'Priority')\n"
" Priority: Priority to use (requires 'Exten' and 'Context')\n"
" Application: Application to use\n"
" Data: Data to use (requires 'Application')\n"
" Timeout: How long to wait for call to be answered (in ms)\n"
" CallerID: Caller ID to be set on the outgoing channel\n"
" Variable: Channel variable to set, multiple Variable: headers are
allowed\n"
" Account: Account code\n"
" Async: Set to 'true' for fast origination\n";

The mandatory action key is Channel, because when originating a call we are
originating it from a specific channel. The interesting part here is the information
passed to the Variable key, and how these variables are parsed. Examination
of the manager.c code indicates that the variables are parsed using the
ast_variable function.

The key difference is that while versions 1.0 and 1.2 used the pipe (|) symbol as
a variable separator, in versions 1.4 and 1.6 of Asterisk, we are required to enter
multiple Variable lines, instead of using a variable separator.

Chapter 8

[153]

This distinct difference poses an issue when sending an Originate event via the
pre-canned Originate manager action with PHPAGI. Let's now take a look at the
PHPAGI pre-canned Originate action code:

phpagi-asmanager.php—Originate function
/**
* Originate Call
*
* @link
* http://www.voip-info.org/wiki-Asterisk+Manager+API+Action+Originate
* @param string $channel Channel name to call
* @param string $exten Extension to use (requires 'Context' and
* 'Priority')
* @param string $context Context to use (requires 'Exten' and
* 'Priority')
* @param string $priority Priority to use (requires 'Exten' and
* 'Context')
* @param string $application Application to use
* @param string $data Data to use (requires 'Application')
* @param integer $timeout How long to wait for call to be
* answered (in ms)
* @param string $callerid Caller ID to be set on the outgoing
* channel
* @param string $variable Channel variable to set
* (VAR1=value1|VAR2=value2)
* @param string $account Account code
* @param boolean $async true fast origination
* @param string $actionid message matching variable
*/
function Originate($channel,
 $exten=NULL, $context=NULL, $priority=NULL,
 $application=NULL, $data=NULL,
 $timeout=NULL, $callerid=NULL, $variable=NULL,
 $account=NULL, $async=NULL, $actionid=NULL)
{
 $parameters = array('Channel'=>$channel);

 if($exten) $parameters['Exten'] = $exten;
 if($context) $parameters['Context'] = $context;
 if($priority) $parameters['Priority'] = $priority;

 if($application) $parameters['Application'] = $application;
 if($data) $parameters['Data'] = $data;

AMI: The Asterisk Manager Interface

[154]

 if($timeout) $parameters['Timeout'] = $timeout;
 if($callerid) $parameters['CallerID'] = $callerid;
 if($variable) $parameters['Variable'] = $variable;
 if($account) $parameters['Account'] = $account;
 if(!is_null($async)) $parameters['Async'] =
 ($async) ? 'true' : 'false';
 if($actionid) $parameters['ActionID'] = $actionid;

 return $this->send_request('Originate', $parameters);
}	

As you can see, the PHPAGI Originate action function expects to receive the
variables as a single string, and not as a full set of Variable directives.

In order to bypass this limitation, we shall simply construct our variables set as
a single string, separated by the \r\n combination. For example, the following
Originate method will be compatible with versions 1.0 and 1.2, while the latter
will be compatible with versions 1.4 and 1.6.

PHPAGI Originate for versions 1.0 and 1.2
$res = $astManager->Originate(
 'SIP/Vonage/12127773456', /* The channel */
 '1001', /* The Extension to connect */
 'MyContext', /* The Extension context */
 1, /* The Extension Priority */
 NULL, /* The application to use */
 NULL, /* The data for the application */
 120000, /* Timeout for answer in msec */
 '1732557799',/* The caller ID to use */
 'var1=1|var2=3|var3=book', /* variables */
 NULL, /* Account code to assign */
 0, /* 1 for fast origination */
 NULL) /* Action ID for the originate */

PHPAGI Originate for versions 1.4 and 1.6
$res = $astManager->Originate(
 'SIP/Vonage/12127773456', /* The channel */
 '1001', /* The Extension to connect */
 'MyContext', /* The Extension context */
 1, /* The Extension Priority */
 NULL, /* The application to use */
 NULL, /* The data for the application */
 120000, /* Timeout for answer in msec */
 '1732557799',/* The caller ID to use */

Chapter 8

[155]

 'var1=1\r\nVariable: var2=3\r\nVariable: var3=book',
 /* variables */
 NULL, /* Account code to assign */
 0, /* 1 for fast origination */
 NULL) /* Action ID for the originate */

Asynchronous Originate actions
One of the most confusing keys of the Originate action is the Async key. While
the documentation says: "For the origination to be asynchronous (that is allowing
multiple calls to be generated without waiting for a response)", it leaves out a very
important fact. Setting your Originate action to Async=1 will always return a
success for your Originate action, freeing the manager to handle another action.

This means that Async=1 will result in a fast Originate, however a less reliable
one, as you will be required to check the status of your Originate action using
another method.

Click-2-Call and Web-Callback
If you are a telephony developer, the previous section may have surely brought
the following ideas and thoughts to your head: "Asterisk AMI interface includes an
originate function, allowing me to generate outbound calls. Wouldn't it be cool to
create an Asterisk-based click-2-call/callback application? But the question is—HOW?"

Creating a reliable callback/click-2-call application with Asterisk is one of the best
kept secrets of this business. In fact, companies like JAJAH, HeyCosmo, and others,
have raised considerable amount of cash from the idea of using Asterisk's originate
action in creative ways.

Demystifying the Asterisk Originate
manager action
The Originate action expects to receive the following information:

 *Channel: Channel name to call
 Exten: Extension to use (requires 'Context' and 'Priority')
 Context: Context to use (requires 'Exten' and 'Priority')
 Priority: Priority to use (requires 'Exten' and 'Context')
 Application: Application to use
 Data: Data to use (requires 'Application')
 Timeout: How long to wait for call to be answered (in ms)
 CallerID: Caller ID to be set on the outgoing channel

AMI: The Asterisk Manager Interface

[156]

 Variable: Channel variable to set, multiple Variable: headers are
 allowed
 Account: Account code
 Async: Set to 'true' for fast origination

From Asterisk's point of view, the only mandatory variable is the Channel variable.
While the others are not mandatory, careful use of them will facilitate the creation of
a callback/click-2-call functionality.

By defining the Exten, Context, and Priority variables, we provide Asterisk a
dialplan routing point for our originated channel, to be connected to, once the
called Channel has been answered. This means that if we originate with the
following information:

 *Channel: SIP/Vonage/12127773456
 Exten: 12127773456
 Context: movie-phone-crawler
 Priority: 1

Asterisk will originate a call to the phone indicated in the channel. Once the call is
connected, it will route the call to the movie-phone-crawler context, with extension
number 12127773456 set at priority 1.

This seems simple enough. So, how do we create a web-based click-2-call application,
similar to what JAJAH has?

Welcome to Jabka—the world's favourite
Click-2-Call
Jabka is a prepaid web-based Click-2-Call application, allowing users from around
the world to connect two telephone numbers via the service. The web developers
have indicated that in order to initiate a call, they will be sending the following
variables to your Asterisk application, according to the following XML-RPC scheme:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
 <methodName>jbk.init_callback</methodName>
	 <struct>
 		 <member>
 		 <name>session</name>
 		 <value><string>MD5_SESSION_HASH</string></value>
 		 </member>
 		 <member>
 		 <name>origination_number</name>
 		 <value><string>ORIGIN_NUMBER_TO_CALL</string></value>

Chapter 8

[157]

 		 </member>
 		 <member>
 		 <name>target_number</name>
 		 <value><string>TARGET_NUMBER_TO_CALL</string></value>
 		 </member>
 		 <member>
 		 <name>max_duration</name>
 		 <value><int>MAX_DURATION_FOR_CALL_IN_mSEC
 </int></value>
 		 </member>
 		 </struct>
		 </methodCall>

If you are unfamiliar with XML-RPC, please visit the
http://www.xmlrpc.org website for additional information.

According to the above, we basically receive four parameters—the origin of the call,
the target of the call, the maximum duration, and a session hash—which is more
than enough. Now, let's translate this into an Originate request (we shall assume
that all the channels will be based on SIP going to the Vonage SIP peer):

 Action: Originate
 Channel: SIP/Vonage/%origination_number%
 Context: jabka-dial-target
 Exten: %target_number%
 Priority: 1
 Timeout: 120000
 Variable: maximumtime=%max_duration%

Ok, so we originate a call to the number indicated by origination_number and then
connect to the jabka-dial-target context with the remaining information. Let's
examine the jabka-dial-target context:

[jabka-dial-target]
exten => _X.,1,Noop(Starting Callback)
exten => _X.,n,Dial(SIP/Vonage/${EXTEN},120,rL(${max_duration}))

exten => h,1,Noop(Notify Billing System)
exten => h,n,DeadAGI(Your_CDR_and_Billing_AGI_Go_Here)

That's it! We're more or less done, as this is the basic structure.

You are most probably wondering to yourself that, if it's so simple, why
doesn't everybody do it? Well, while the basic structure is fairly simple and
straightforward, creating a full-blown service out of what we have just seen is
slightly more problematic.

AMI: The Asterisk Manager Interface

[158]

The Manager's unique manner of operations introduces interesting problems and
challenges (which are way beyond the scope of this book). The various billing
aspects and user flow aspects that need to be met are as important as the application
itself; in other words, plan your application carefully.

AMI proxy servers
As indicated previously in this chapter, if you are using versions of Asterisk prior
to 1.4, you may run into deadlock issues when using the AMI interface. These issues
can be resolved by using an AMI proxy server. Generally speaking, you would be
required to work via some form of AMI proxy in every situation you interact with
the AMI.

As you may have already figured out, the AMI interface emits messages for almost
any type of event that occurs during the traversal of a call via an Asterisk server.
While this is a required behavior, it can surely generate a multitude of messages
when dealing with high capacity systems, such as call centers, for example. The
purpose of the AMI proxy server is to filter out the events that are relevant for our
use, pass these to our application, and subsequently, pass information from the
application back to the AMI interface in an orderly fashion.

AMI Proxy servers are available from the Asterisk community, in various
programming languages and with varied performance and feature sets. Whatever be
the proxy server you choose, make sure you verify that it is the correct one for you.

Developing a proxy server for AMI is beyond the scope of this book, as
a proxy needs to be tailored to suit your requirements. To read more
information about AMI Proxy servers, please refer to the voip-info
Asterisk Manager Proxy page, located at: http://www.voip-info.
org/wiki-Asterisk+Manager+Proxy.

AJAM—AJAX Enabled Manager
As Asterisk has evolved, so have web technologies. With the introduction of Asterisk
1.4 to the world, a new method of interfacing with the Asterisk Manager was created.
This new method combines the somewhat simple manner of meshing Web 2.0
applications via JavaScript with the fierce abilities of the Asterisk Manager.
The newly-created interface was named AJAM (Asynchronous JavaScript
Asterisk Manager).

Chapter 8

[159]

Some people argue that AJAM stands for AJAX Asterisk Manager, which
makes for one of the world's longest acronyms: Asynchronous JavaScript
and XML Asterisk Manager.

AJAM is a standard part of Asterisk 1.4 and onwards. However, its not activated by
default. As this book is concentrating on PHP and AGI, we won't go neck-deep into
the AJAM interface. To find out additional information about AJAM, the best place
to start your quest would be the voip-info website, at: http://www.voip-info.org/
wiki/view/Aynchronous+Javascript+Asterisk+Manager+(AJAM).

The AsteriskGUI used in versions 1.0.2 of AsteriskNOW and some other Asterisk-
based applications relies heavily on AJAM to perform its functions.

Summary
Congratulations! You have now mastered both the basic and advanced concepts of
developing IVR/CTI applications with Asterisk—the open source PBX. At this point,
your mind is most probably racing with ideas and thoughts of how to apply your
new know-how to create new applications.

Before you go on and develop your own application, we suggest that you take a day's
leave from this book, and return to Chapter 9 later. Chapter 9 will describe a project
for you to develop, which will allow you to better practise all that you've learned.

Final Programming Project
Welcome to the final programming project. The purpose of this project is to
introduce to you a project, that has already been developed, and to let you go
through the various requirements and develop the solution on your own.

There is no solution provided for this final project, as the purpose of this project is
to make you think, code, debug, and to better understand the Asterisk AGI/AMI
development structures.

While this book has introduced all the topics using the PHP programming language
and the PHPAGI class library, you may utilize whatever programming language you
like and utilize whatever tools you may require. Anything goes!

The project described can be developed by an experienced developer in not more than
two weeks. My assumption is that it may take you up to three weeks to develop it.

If you decide to implement the project and run into problems, feel free to
contact me at asteriskdevbook@greenfieldtech.net, or via the
support forums at http://www.greenfieldtech.net/support.
Personal Note:
If you have completed the project, and you are feeling mighty proud of
yourself (more than you should), I urge you to send me your solution
via email, so I can go over it, and if possible, give you a few pointers as to
whether you could have done it better. If I find your solution to be perfect
as is, it will be published in my website with a credit to you, for all to see.

Final Programming Project

[162]

ACRG—Asterisk Call Recording Gateway
Call recording systems are being used by call centers and contact centers around
the world. No matter whether it's an ISP technical support center or a bank's stock
market trading center, call recording is essential for monitoring and assurance
purposes. Companies such as Verint and NICE have made it their business to
provide highly reliable call and transaction recordings, thereby building solutions
that can cost up to hundreds of thousands of dollars. Our intention is to enable
similar capabilities with Asterisk at a much lower cost.

Requirements
You are required to provide a solution for recording calls, as they traverse a "call
recording" gateway that you will develop. Calls may traverse the recording gateway
in either TDM or VoIP technology, as supported by the Asterisk Open PBX System.

The Call Recording Gateway shall support the following features:

Transparent call recording of calls into a single audio file; both channels shall •	
be recorded to the same file
All calls should be logged to a centralized database, such as MySQL or Oracle•	

All recordings should be saved to •	 /var/lib/asterisk/sounds/archive

Recordings should be available for retrieval via a web interface•	

All recordings should be saved in the MP3 file format•	

The recording system should provide an HTTP-based API for retrieval of •	
calls, without interaction with the recording system database
The recording system should allow the manager to specify which calls to •	
record and which aren't supposed to be recorded, depending on the
CallerID of the call
The recording system should be able to record up to 120 concurrent calls•	

All calls should be uniquely identified•	

The recording system should provide full logging and debugging •	
information via syslog

Chapter 9

[163]

Network connectivity—PSTN
Due to the nature of call recording and the fact that we can't record an E1/T1 circuit
without interfacing with it (at least not without additional hardware), our call
recording system will be interconnected with the existing PSTN and PBX system in
accordance with the following diagram.

Recorded
PBX System

4xE1 4xE1

Asterisk
Recorder

PSTN

While the diagram shows E1 circuits, the recording system should be able to utilize
the same structure of connectivity for T1 circuits or VoIP connectivity.

Project implementation guide
Every project should be split into several distinct steps. While each software
development and project management methodology may define different steps,
the following are the minimum number of steps required to implement our project.

Step 1: Analysis of the requirements •	
In my view, this is the most crucial part of the project flow, as every other
step is a direct derivative of this one. The analysis stage should contain a
complete investigation of the platform's requirements, the possible pitfalls,
and more importantly, the possible implementation paths to be taken.
If your project requires the utilization of multiple business entities or
departments, this would be the time to identify the various critical paths in
the implementation.
Step 2: Understanding operational constraints •	
Understanding the operational constraints can be described as: "knowing
your game field". Each computing and hardware environment will impose
a different set of constraints on your developed system. Be it the operating
system, file system, hardware, or network constraints, these should be
evaluated at this point, and proper solution methodologies should be
devised. If step 1 has identified multiple critical paths, it would be advisable
to allow a step to evaluate the operational constraint of each path (if
required), and deal with each of these independent of the others.

Final Programming Project

[164]

Step 3: Detailed call flow charts •	
We are dealing with a telephony system, so we must take into consideration
the general feel of the system from the user's point of view. Describing this
using a flow chart is the simplest and the fastest way to do so. Don't dwell
too much on the semantics of the flow chart; sometimes even a simple block
diagram will be enough for a developer to understand what you want.
Step 4: The Asterisk dialplan •	
By finalizing steps 2 and 3, we should already have a clear view of what
Asterisk is supposed to do—at least for the dialplan portion of the project.
This would be a good place to start developing the system. If you are
required (and you most probably are) to develop AGI scripts, creating AGI
stubs and inserting them into the proper dialplan locations will allow you
for rapid development and prototyping. Always test your dialplan as you
develop it; this will shorten your QA time in step 6.
Step 5: Human interface development •	
If you require the development of human interfaces (usually web-based),
these can be developed in parallel to your voice application. Make sure you
use a well-proven, well-documented framework to develop your human
interface; it will make life easier in the testing step.
Step 6: Test, test, and test again•	
Devise proper testing procedures for your system, based on the specifications
and analysis provided in steps 1 and 2. Bear in mind that your system should
do what it's supposed to do, and not other things. Remember, sometimes
better is worse than good.

To learn more about critical path and constraint-based project and
development management, please refer a book named: Critical Chain by
Eliyahu M. Goldrat. The "Critical Chain" theory is part of a greater theory
called The Theory of Constraints, and it has helped me finish projects
and developments much faster in the past—thanks to a clearer view of
what projects are.

Now let's see each step in great detail.

Step 1: Analysis of the requirements
The ACRG project requires that we utilize several components that are not a part of
Asterisk, mainly, a database server for logging all the calls and an MP3 encoder to
encode our recordings in MP3 format.

Chapter 9

[165]

While the use of a database server is fairly simple, the conversion to MP3 isn't. It
would seem fairly natural that Asterisk should be fully capable of recording MP3
files. However, this is not the case. Due to various license restrictions, Asterisk
includes an MP3 file playback ability (via the Asterisk-addons package), but not
MP3 recording capabilities. This dictates that we need to use an external MP3
encoder—LAME in our case.

The LAME project website is available at http://lame.sourceforge.
net/. If you are using any of the well-known distributions (Fedora,
Ubuntu, SUSE, and so on), you should have a LAME package available
via your distribution. It is better, for the sake of simplicity, to use the
pre-packaged version that came with your distribution of Linux, rather
than compile your own.

Another issue that needs to be taken into account is the fact that encoding files
from WAV to MP3 requires CPU resources. A recording system can easily have any
number of calls running concurrently, depending on its overall capacity. This means
that if my system has to record 120 channels, statistically speaking, at any given time
I may have 30-40 recordings ready to be encoded. If you try to encode multiple MP3
files, you would notice that the CPU will most probably spike, and will result in a
generally degraded performance across the entire server.

Step 2: Understanding operational constraints
As we've described before, one of our main constraints is the resources required
for converting a WAV file to an MP3 file. However, we have two more constraints
that are as important as the conversion—file system utilization, and structure and
database indexes.

Let's discuss the issue of file system utilization and structure first. As you may
or may not know, any file system has a preset number of constraints, which, if
surpassed, will make the file system slow or completely unusable. For example,
Linux by default uses the EXT3 file system. While EXT3 is a perfect file system for
anything that has to be done, it cannot effectively deal with thousands of file entries
in a single directory.

Actually, one of the built-in recording interfaces that is available with
FreePBX/TrixBox is called ARI (Asterisk Recording Interface). ARI
has a web interface that interacts directly with the file system. When the
file system reaches a number of over 3000 recordings, the ARI interface
becomes unresponsive.

Final Programming Project

[166]

So, our aim is to create a directory + file structure that will enable us to better utilize
our file system constraints. The following diagram illustrates a directory structure
that will enable an extendable directory structure, while ensuring that we don't
surpass our file system limitations (at least within normal operational conditions).

The above diagram illustrates a directory structure in which each year is represented
by a directory, followed by the number of month in a year. Each month directory
contains further directories for the days of the month. The directory for each day will
contain up to twenty-four different directories, each one indicating a discrete hour of
the day.

The file-naming convention of the recordings is as follows:

Chapter 9

[167]

The directory structure and the file naming convention shown in the immediately
preceding diagram, allow us to navigate the file system easily and identify each
recording uniquely, yet preserving a highly simplistic structure, readable to most
people, including those who are not computer savvy.

Now that we have addressed our directory and file structure constraint, we can
approach our database constraint.

If you have ever had to work with a DBA, you may have surely noticed that DBAs
tend to be highly protective of their indexes. The indexes of a database table may
sometimes dictate whether the application is usable or completely useless. A
recording system needs to register each call into the CDR (Call Detail Record) table
and the recordings table. However, it must go about and maintain a proper set of
indexes, so that we are able to query and filter these tables in an efficient manner.

The following diagram illustrates a possible structure for the recordings table in
the database:

Final Programming Project

[168]

As you may notice from the immdiately previous diagram, our recorder_cdr table
contains the following fields:

Field name Field type Description
id INTEGER(16) Numerical sequence ID
Uniqueid VARCHAR(255) Hash identifier for the recording
Callerid VARCHAR(10) The caller ID of the recording
Target VARCHAT(50) The target ANI number
Dt_callstart Datetime The date and time of the call start
Duration INTEGER(6) The duration of the call in seconds
Disposition VARCHAR(10) The disposition status of the call
Recording VARCHAR(255) The location of the recording in the file system
URL VARCHAR(255) A URL identifier where the recording can be

retrieved from using the web server

While the table fields are more or less understandable, we need to take a look at the
indexes of the table:

Index Field of Index Description
Uniqueid Uniqueid An index according to the unique hash identifier of

a specific recording
Callerid Callerid An index according to the caller ID of the recording
Dt_callstart Dt_callstart An index according to the date and time of the

recording
Date_disposition Dt_callstart

disposition
An index according to the date and time of
the recording, intersected with the recording's
disposition

Date_callerid Dt_callstart
callerid

An index according to the date and time of the
recording, intersected with the caller ID of the
recording.

I'm not a DBA; actually, I'm quite far from it. I'm confident that the
above is more or less an overkill, although this is what I've used in my
implementation, and it has worked well.

Once all our constraints had been met, we can start thinking about what our
application would look like, both from the Asterisk dialplan side and from the
user interface side.

Chapter 9

[169]

Step 3: Detailed call flow charts
As with any other application, we are required to create a flow chart describing our
application. In our case, the flow chart will describe what happens in the recorder, as
a call traverses it. Let's examine the following flow chart:

Yes
Yes

End.

Call Hangup

Convert the
recording to

MP3

Register the
CDR with the

recording
information

Was the call
recorded?

Inbound call
to Recorder

Set a unique
recording

session hash

NO

NO

Set recording
parameters

Dial Target
ANI number

Call Hangup

Record Call?

The flow chart illustrates a two stage recording operation—one that is conducted
prior to the actual call and the other that is performed after the call has terminated.
Let's examine the left-hand side of the flowchart.

As you can see, we are required to assign a unique session hash identified to our call
(later on used as the uniqueid in the database). We then check if we are required
to record the call (according to a preset rule set, defined with the caller's ID). Once
we've established whether the call should be recorded or not, we set the recording
parameters and then perform the actual dial. Once the call is completed, our
execution flow is handed to the right-hand of the diagram.

As a call is terminated, we need to check if the call was recorded or not. If it was
recorded, we need to convert the recording to an MP3 file, to be stored in the archive.
If the call was not recorded, we simply register the CDR and finish.

Final Programming Project

[170]

Step 4: The Asterisk dialplan context
It is clear that our context will have two main extensions defined in it—a catch-all
extension that would simply catch every dial that passes through the context, and the
h extension to be invoked upon the finalization of a call.

Generally speaking, our dialplan will look similar to the following:

[recorder]
exten => _X.,1,[Do the recording flow chart]
exten => h,1,[Do the call registration and compression flow chart]

Ok, I admit this is far too general. But my aim here is to have you start
thinking about how the implementation actually works. As I indicated at
the beginning, this is a programming project/challenge. So it's your task
to figure out what the dialplan really looks like.

Step 5: Develop your human interfaces
No system is complete without a proper human interface. In our case, the interface
will be a web-based interface.

Alert: This is not a web developer's book, but an Asterisk book!
True, this is an Asterisk book, so I won't go about and start explaining the
basics of web development. However, here are a few pointers to help you
get started faster.

When developing a web interface, it is very important that you standardize your
development. This means that you need to go about and conform to some form of
web development toolkit of framework. As this book uses PHP, I suggest that you
try Zend Framework, Code-Igniter, or Kohana, all of which are valid options. Each
one of these will make sure that you don't go about and create a mess of display and
logic together, making for a really clean web interface implementation. Here are
some URLs to get you started with your web interface:

CodeIgniter—•	 http://www.codeigniter.com

KohanaPHP—•	 http://www.kohanaphp.org

Zend Framework—•	 http://framework.zend.com

CakePHP—•	 http://www.cakephp.org

Chapter 9

[171]

If you want to make your interface spiffy and shiny, you most probably will look
into some JavaScript/AJAX frameworks. Here is a short list of the ones I've been
using for a while now:

DOJO—•	 http://www.dojotoolkit.org

jQuery—•	 http://www.jquery.com

Scriptaculous—•	 http://script.aculo.us/

Step 6: Test, test, and test again
As with any other computer application, make sure that you test your system.
A recording system requires not only functionality testing, but also performance
testing, to verify whether it can handle the load.

Devise a set of tests to examine the system, test each scenario, and evaluate
your results.

Your target number is: being able to record up to 120 concurrent calls.

The above steps illustrate what I do whenever I'm confronted with a new
Asterisk application project (well, not exactly like that, but you get the
idea). As you gain experience, you would notice that you are able to skip
portions of the process. However, the general manner will always remain.

Additional programming projects
The following is a list of additional projects that you may find interesting, each one
with its own unique set of challenges and constraints. I'm confident that these may
inspire you with ideas about possible uses for Asterisk.

Click-2-Call
Click-2-Call applications have become the latest craze in the telephony business over
the past few years. Companies such as Jajah, Mobivox, and others have created various
click-2-call applications, lowering the rate of international calling around the world.

Personal Disclosure: The first application I ever wrote for Asterisk was a
click-2-call application, way back in 2003. To this day, I'm still developing
various click-2-call applications for various companies, each one with a
different twist.

Final Programming Project

[172]

Jajah.Com
Jajah made its name by providing low cost, highly reliable, highly available
international web-based callback services. Essentially speaking, web-based callback
services are a derivative of click-2-call applications. Click-2-call applications include
(but are not limited to) the following: web-based callback, predictive dialers, preview
dialers, and others.

Stateful call masking
Stateful call masking is a call masking service, capable of assigning a single (or
more) local DID (Direct Inward Dial) number (or numbers) to multiple target ANI
numbers, while preserving the call routing mask according to the caller ID.

Chapter 9

[173]

Too complicated? I'll simplify. Let's examine the following diagram:

User A
447903048021

User B
44780213452

Asterisk Server
Inbound DID: 442001343212

Target B
972732557799

Target A
12127773457

The left-hand of the diagram illustrates the location where the system is active (in our
case the UK), while the right-hand side illustrates various call targets. A stateful call
masking service will be able to assign the inbound DID number (442001343212) to any
of the ANI numbers on the right-hand side, according to the inbound caller ID.

One of the services that started out as a stateful call masking service is Rebtel.
Actually, what Rebtel did was a little more complicated, as they also modified the
outbound caller ID number on the receiving end, allowing the receiver to call back
the initiator, without changing the number.

Final Programming Project

[174]

Punk'ed call
Punk'ed calls are a combination of a preview dialer (click-2-call subset) and a set of
recordings and/or a text-to-speech engines. Punk'ed calls are the next step in the
evolution of the everlasting "prank call". With Punk'ed call, you can play a prank on
the entire city at the same time. Well, this is not something that I would recommend
doing, but it's funny and can be done with Asterisk—so why not?

Date rescue call
You are most probably familiar with this scenario: you've been set up on a blind date
with a friend of a friend's girlfriend. You are sitting in the coffee shop, or wherever you
had agreed to meet, slowly nibbling on your nails, hoping that your blind date doesn't
turn up to be the most horrific creature on the face of the planet. At this point you wish
to yourself: "I wish I could have had a friend call me up in the middle of the date. If the
date goes bad, I'll excuse myself with the reason that I need to go and help him out. If
the date goes nice, I'll notify him that everything is going fine."

Date rescue call is exactly that kind of a friend. You only have to pretend that you
are actually talking to someone on the phone. You will need to set up your Asterisk
server to call you at a specific date and time, and start playing back some pre-
recorded message.

Personal Disclosure: I've actually used my Asterisk servers as a "Date
rescue call" system when I was on the dating circuit. Today I'm happily
married. While this may sound targeted at a male audience, it is equally
applicable to our feminine readers.

Conference bridge
Conference bridges are one of the cornerstones of modern business practices. I can't
even imagine doing business with people without having the ability to conduct a
multiple participant conference call.

The main problems with conference calls are usually these:

Conference services are usually limited to a geographic area, typically a •	
specific country.
Conference services are usually limited by the number of •	
concurrent participants.
Generating a recording from a conference call isn't simple, and providers •	
usually charge an arm and a leg for that.

Chapter 9

[175]

Even if I do get a recording of a conference call, that recording is highly •	
volatile, meaning that it is usually not digitally signed. If the recording has
been modified or tampered with, there is no direct way of knowing this.

Asterisk includes a conference application called MeetMe. Using MeetMe and a
smart provisioning database, you can create your own conference bridge that can
easily overcome these limitations. In addition, using services such as DIDX and
DIDWW will enable you to assign globally available access numbers to your service,
thus making your service available worldwide.

Summary
By now, your mind should be racing with ideas for various projects and applications,
applicable to the telephony world and especially to Asterisk. The projects listed
previously have been created in the past and are available in various forms. Websites
such as www.freeconference.com, www.didww.com and www.didx.net couldn't
have existed without the existence of Asterisk, as it has lowered the bar on the entry
level for the creation of such services.

Let your imagination run wild, and see where it takes you.

Scaling Asterisk Applications
The more sophisticated we get, the more advanced our buildings and vehicles
become, the more vulnerable we are. - Stephen Ambrose

While Stephen Ambrose's quote relates mainly to general engineering, the same
concept applies to software development in general, and Asterisk AGI/AMI
programming in particular. Unlike most programming languages or frameworks,
Asterisk is constantly in a state of development and flux. It thus makes the entire
Asterisk framework evolve at a rapid pace, enabling new features, new API
structures, new paradigms, and more stability.

A while back, I was part of a panel discussing the validity of scripting languages as
programming languages. As you may know, scripting languages such as PERL, PHP,
Ruby, and python are very easy to learn, do not require any special development
environment, and will let you get up and running really fast. Programming languages
such as C, C++, C#, and Java, usually require the utilization of a compiler and linker,
making the development process slightly more complex and also making it slower.
Part of the debate during the panel was: "Can scripting languages be considered as
programming languages?" While the actual debate isn't important at this point, one
of the issues that arose from the debate was: "Languages like PHP and Ruby allow an
inexperienced developer to create ingenious applications, without the need to actually
learn any specific development paradigm. However, while it makes things easy,
it allows the unskilled developer a huge margin of error, thereby creating a highly
unmaintainable code". To be honest, I couldn't argue with that issue, as we have more
and more PHP/Ruby projects out there, created by non-developers, usually consisting
of multiple lines of code without any distinct structure.

Scaling Asterisk Applications

[178]

Asterisk, as a framework, provides similar flexibility to the developer, allowing a
non-experienced developer to create an IVR/CTI (Interactive Voice Response/
Computer Telephony Integration) application at ease. As the number of Asterisk
built-in functions and applications grows, the number of people using it will grow,
and the entry bar for developing applications will come down dramatically. This
chapter will try to deal with some of the more advanced topics of developing
Asterisk applications—mainly, scalability and performance issues.

Scaling Asterisk platforms
Most developers, who begin to work with Asterisk, end up developing platforms
that look more or less like the following diagram:

Web
Front end

Asterisk
IVR

Application
Logic

Database

Well, as long as your application is more or less static in size, the above design may
surely allow you to run your application smoothly and easily. However, like any other
service-oriented platform, any Asterisk platform tends to grow over the course of time.

Believe or not, IVR services are serious money makers around the world.
IVR-based dating services and conferencing services can easily generate
thousands of US dollars per month (for the service operator), thereby
making it essential to enable rapid and stable scaling of the platform.

So, in order to scale the system, you would most probably say: "No problem,
everything is handled by the database, so let's just put in more Asterisk servers and
we're done!" However, you must bear in mind that your database server also has
limitations, and that the web front end imposes an unknown stress factor on the
platform. It is also possible that while a web user is generating a large report, the
entire platform performance is degraded for that period of time; our intention is to
negate that option.

We shall introduce several technologies and paradigms of platform development that
will assist you in scaling up your Asterisk platforms at a greater ease than before.

Chapter 10

[179]

Database query caching
One of the most problematic issues with scaling any application is the ever annoying
database bottleneck. While Asterisk is fully capable of handling hundreds of
concurrent calls, and your web front end is fully capable of serving a similar number,
combine the two into a single mix, and you would end up with a database that is
fairly loaded.

Modern SQL engines such as MySQL and PostgreSQL provide a certain level of
caching. However, their caching is fairly limited to certain types of queries being run
on the database, and even then, their optimization is questionable at best. Taking
that into consideration, it is clear that we require a different approach to query
caching—one that is agnostic to the actual database engine, and which is scalable.
So, let's turn our attention to memcached.

According to the memcached website (http://www.danga.com/memcached/):

memcached is a high-performance, distributed memory object caching system,
generic in nature, but intended for use in speeding up dynamic web applications
by alleviating database load.

Ok, that doesn't really say much, does it? In general, memcached will allow you to
free up valuable database time and resources, by caching some of the information
provided by the database server to the application in an external storage facility.

Let's take a look at how to work with memcached.

Starting up
Unlike many other UNIX/Linux services, memcached doesn't have a configuration
file. It actually uses a set of command line options to run your memcached service.
Let's consider the following example:

./memcached -d -m 2048 -l 192.168.2.52 -p 6636

Technically speaking, memcached doesn't require special privileges.
However, binding it to an unprivileged user or a regular user will be
a good security practice to follow.

In the above example, memcached is initiated with 2GB of cache memory, with a
listening port of TCP 6636 at IP number 192.168.2.52—straightforward, isn't it?

Scaling Asterisk Applications

[180]

If you are using a system that is equipped with a lot of memory (more
than 8GB of RAM), but, if you are running it in a 32Bit environment, you
may initiate multiple memcached daemons to use multiple cache engines.
The upper limit of how many engines you can run is in direct relation
to the amount of RAM you have. In any case, experiment with your
environment to see how much mileage you'll get from it.

Using it in a script
One of the nice things about memcached is that it has a multitude of programming
APIs and libraries. Memcache handling by PHP is now an official part of the
PECL project. If you are using a well-known distribution of Linux, there is a high
probability that your distribution may already have a pre-packaged memcache.
(I would suggest you to refer your distribution documentation for this information.)

As we've seen before, memcached is a TCP socket server. This indicates that
memcached is actually a memory-based storage area, where we can store
information for later processing or retrieval. So, in other words, our script will need
to decide what to cache and when, and then, find out if the information is located in
the cache or not.

The decision of what information to cache is entirely your own. Simply bear in mind
that the cache should be used for result sets that contain small pieces of information.
However, these can take a long time to calculate.

Here's a small example of how to use memcache and PHP (taken from the
http://dev.mysql.com website):

<?php

$memc = new Memcache;
$memc->addServer(‘localhost','11211');
?>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Simple Memcache Lookup</title>
</head>
<body>
<form method="post">
 <p>Film: <input type="text" size="20" name="film"></p>
<input type="submit">
</form>
<hr/>

Chapter 10

[181]

<?php

 echo "Loading data...\n";

$value = $memc->get($_REQUEST[‘film']);

if ($value)
 {
 printf("<p>Film data for %s loaded from
 memcache</p>",$value[‘title']);

 foreach (array_keys($value) as $key)
 {
	 printf("<p>%s: %s</p>",$key, $value[$key]);
 }
 }
 else
 {
 $con = new mysqli(‘localhost','sakila','password','sakila') or
 die ("<h1>Database problem</h1>" . mysqli_connect_error());

 $result = $con->query(sprintf(‘select * from film where title
 ="%s"',$_REQUEST[‘film']));

 $row = $result->fetch_array(MYSQLI_ASSOC);

 $memc->set($row[‘title'],$row);

 printf("<p>Loaded %s from MySQL</p>",$row[‘title']);
 }

?>

In the example that we just saw, we have created a simple form to look up a movie's
details, based on the movie's name. As the form is submitted, the first thing that
happens is that the script will use the memcache get method to check if the movie
name appears in the cache. If it doesn't, it will query the MySQL database and store
the information in the cache. If the information is already available in the cache, it
will output the retrieved result directly from the cache storage.

You are probably wondering what I'm using memcache for; well, the answer to
that is—for storing operational values and enumerators. Most of my applications
make use of a large number of enumerators. These enumerators are usually stored
in a database for easy operations. However, if I was to read my database for every
enumerator that I need, I would more or less kill the database. Whenever I initiate
my memcached service, it will immediately follow with a memcache population
script, populating it with my various enums. As enums may change in the database,
I make sure to update the memcache storage once in a while. In addition, I usually
initiate two instances of memcache—one for storing various enums and the other for
storing actual application related cache. Separating the cache is not really required; I
do it for sake of simplicity and consistency.

Scaling Asterisk Applications

[182]

Utilization of web services
Web services? Isn't this supposed to be an Asterisk book? Well, it is an Asterisk
book, but there is no rule that says: "We shall not use web services with Asterisk!".
Ok, putting the funny bits aside, the utilization of web based services for creating
highly complex and versatile Asterisk-based services is a key factor in scalability
considerations.

Let's consider the previous n-Tier design, where all my Asterisk and web servers
are connected directly to the database. It is clear that at some point in time, the
database will become overloaded. Ok, so we have memcache for caching some of the
information, which is more or less like wrapping a band-aid in order to stop a gusher.

Using memcache-enabled web services, and having your Asterisk and web
applications communicate with these web services via a well-known API, will do
wonders to your application. If you are familiar with web services, acronyms such as
SOAP, WSDL, XML-RPC and REST shouldn't sound strange to you (you may skip to
the next section). If you are unfamiliar with web services, we shall introduce you to
XML-RPC—one of the simplest, yet highly powerful, web services framework.

Introduction to XML-RPC
XML-RPC is a specification and set of implementations that allow software running
on disparate operating systems and in different environments, to make procedural
calls over the Internet (or any other IP-based network).

XML-RPC's remote procedure uses HTTP POST as the transport and XML as the
encoding method. In general, if we were to examine how XML-RPC works, it would
look similar to this:

DATA

DATA

DATA

DATA

DATA

DATA

XML XML
HTTP POST

XML-RPC

The above image is based upon an image from the
http://www.xmlrpc.org website.

Chapter 10

[183]

Taking the above into consideration, it immediately opens a brand new set of
possibilities for companies dealing with Asterisk-based services. Suddenly, you
can decouple the application logic from your Asterisk server, thus allowing your
developers to focus mainly on developing your business logic, while allowing you to
simplify your actual Asterisk application.

Another interesting advantage of using web services for developing Asterisk
platform is the ability to outsource portions of the work to someone else—sometimes,
in a completely different country. As long as they maintain the XML-RPC API in
accordance with your requirements, the platform should work just fine.

Structure of an XML-RPC request and response
An XML-RPC request is made of two distinct pieces of information—a method and
a set of parameters. Parameters may include scalars, numbers, strings, arrays, and so
on. Instead of beating about the bush, let's take a look at an XML-RPC request:

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>41</i4></value>
 </param>
 </params>
 </methodCall>

The above example initiates a method called examples.getStateName, with a value
of 41 in the parameters section. Ok, that seems simple enough; so let's take a look at
the response:

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>

Scaling Asterisk Applications

[184]

 <params>
 <param>
 <value><string>South Dakota</string></value>
 </param>
 </params>
 </methodResponse>

Believe it or not, the response is actually formatted in the same manner as the
request. Ok, that makes life really simple.

In the previous example we passed a single variable to our remote method. How
do we pass more values then? More importantly, how do we distinguish between
these values? Here, the struct parameter comes to the rescue. It is possible to pass
a complete structure as the parameter, thereby allowing the remote server to process
the request accordingly.

Here's a small example:

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.average</methodName>
 <params>
 <struct>
 <member>
 <name>lowerBound</name>
 <value><i4>18</i4></value>
 </member>
 <member>
 <name>upperBound</name>
 <value><i4>139</i4></value>
 </member>
 </struct>
 </params>
 </methodCall>

Now, imagine that you are writing a prepaid calling card platform. You would
like your billing and provisioning system to be based on a Windows system, while
Asterisk performs all the voice functionality—you can, definitely. By creating a
web service on the Windows provisioning side that is capable of implementing the
various functions required for the prepaid platform (such as authenticate user, get
credit, validate destination, and so on), you can easily create a highly extendible
prepaid calling card platform.

Chapter 10

[185]

Apache versus Lighttpd
Apache is the mother of all HTTP servers. Mandriva Linux used to have an
Apache mod_kitchensink module, where you could browse to your Apache HTTP
server with the URL http://localhost/kitchensink, only to encounter the
following page:

Now, if you get everything in it, including the kitchen sink, how much of it is
there that you don't need? Moreover, if Apache is so big, is it really that optimal for
your usage?

The answer isn't really all that clear, but one thing is sure: when dealing with a high
performance Asterisk system, relying on Apache isn't much of a good idea. You
are probably wondering why? Well, in general, the reason would be Apache's ever
increasing resource utilization and your web application usage.

Let's take, for example, a highly popular prepaid calling card application such as
A2Billing. A2Billing makes use of a highly sophisticated web interface to control
each and every aspect of A2Billing. When installing A2Billing for the first time, you
are immediately required to increase the amount of memory your PHP environment
is allowed to consume. If you don't, your web interface is rendered unusable. As
your system grows, these memory requirements tend to grow, especially when
generating reports. This is mainly caused by a lack of optimization on behalf of
A2Billing. But we are not here to discuss A2Billing's faults.

Scaling Asterisk Applications

[186]

The A2Billing website can be found at http://www.a2billing.org

So, let's imagine that I need a maximum PHP environment of 256MB in order for
PHP to be able to generate a report with A2Billing. Now imagine that I would have
a server with 2 GB RAM, and three people are trying to generate reports at the same
time. Oops, the Apache server will simply fail on that one—I should know; I tried it!

In comes Lighttpd to our rescue. Lighttpd is a lightweight, extremely fast HTTP
server and reverse proxy. It is equipped with FastCGI modules and PHP modules,
enabling it to run PHP-based web pages natively. The added value of Lighttpd is its
ability to control the number of instances of a PHP FastCGI server, thereby putting a
physical cap on the amount of resources your web interface will consume.

The following configuration is used on one of my production servers, using Lighttpd
to serve the A2Billing web interface (no changes were made to the A2Billing web
interface):

############ Options you really have to take care of
####################

modules to load
server.modules = (
 "mod_rewrite",
 "mod_redirect",
 "mod_alias",
 "mod_access",
 "mod_auth",
 "mod_fastcgi",
 "mod_userdir",
 "mod_cgi",
 "mod_accesslog")

a static document-root, for virtual-hosting take look at the
server.virtual-* options
server.document-root = "/srv/www/lighttpd/"

where to send error-messages to
server.errorlog = "/var/log/lighttpd/error.log"

files to check for if .../ is requested
index-file.names = ("index.php", "index.html",
 "index.htm", "default.htm")

set the event-handler (read the performance section in the manual)

Chapter 10

[187]

server.event-handler = "freebsd-kqueue" # needed on OS X

mimetype mapping
mimetype.assign = (
 ".rpm" => "application/x-rpm",
 ".pdf" => "application/pdf",
 ".sig" => "application/pgp-signature",
 ".spl" => "application/futuresplash",
 ".class" => "application/octet-stream",
 ".ps" => "application/postscript",
 ".torrent" => "application/x-bittorrent",
 ".dvi" => "application/x-dvi",
 ".gz" => "application/x-gzip",
 ".pac" => "application/x-ns-proxy-autoconfig",
 ".swf" => "application/x-shockwave-flash",
 ".tar.gz" => "application/x-tgz",
 ".tgz" => "application/x-tgz",
 ".tar" => "application/x-tar",
 ".zip" => "application/zip",
 ".mp3" => "audio/mpeg",
 ".m3u" => "audio/x-mpegurl",
 ".wma" => "audio/x-ms-wma",
 ".wax" => "audio/x-ms-wax",
 ".ogg" => "application/ogg",
 ".wav" => "audio/x-wav",
 ".gif" => "image/gif",
 ".jar" => "application/x-java-archive",
 ".jpg" => "image/jpeg",
 ".jpeg" => "image/jpeg",
 ".png" => "image/png",
 ".xbm" => "image/x-xbitmap",
 ".xpm" => "image/x-xpixmap",
 ".xwd" => "image/x-xwindowdump",
 ".css" => "text/css",
 ".html" => "text/html",
 ".htm" => "text/html",
 ".js" => "text/javascript",
 ".asc" => "text/plain",
 ".c" => "text/plain",
 ".cpp" => "text/plain",
 ".log" => "text/plain",
 ".conf" => "text/plain",
 ".text" => "text/plain",
 ".txt" => "text/plain",

Scaling Asterisk Applications

[188]

 ".dtd" => "text/xml",
 ".xml" => "text/xml",
 ".mpeg" => "video/mpeg",
 ".mpg" => "video/mpeg",
 ".mov" => "video/quicktime",
 ".qt" => "video/quicktime",
 ".avi" => "video/x-msvideo",
 ".asf" => "video/x-ms-asf",
 ".asx" => "video/x-ms-asf",
 ".wmv" => "video/x-ms-wmv",
 ".bz2" => "application/x-bzip",
 ".tbz" => "application/x-bzip-compressed-tar",
 ".tar.bz2" => "application/x-bzip-compressed-tar",
 # default mime type
 "" => "application/octet-stream",
)

accesslog module
accesslog.filename = "/var/log/lighttpd/access.log"

deny access the file-extensions
#
~ is for backupfiles from vi, emacs, joe, ...
.inc is often used for code includes which should in general not be
 part
of the document-root
url.access-deny = ("~", ".inc")

$HTTP["url"] =~ "\.pdf$" {
 server.range-requests = "disable"
}

##
which extensions should not be handle via static-file transfer
#
.php, .pl, .fcgi are most often handled by mod_fastcgi or mod_cgi

 static-file.exclude-extensions = (".php", ".pl", ".fcgi")

######### Options that are good to be but not neccesary to be changed
#######

bind to port (default: 80)
server.port = 80

bind to localhost (default: all interfaces)
#server.bind = "127.0.0.1"

to help the rc.scripts
server.pid-file = "/var/run/lighttpd.pid"

change uid to <uid> (default: don't care)
server.username = "apache"

Chapter 10

[189]

change uid to <uid> (default: don't care)
server.groupname = "apache"

fastcgi module
fastcgi.server = (".php" =>
 ("localhost" =>
 (
 "socket" => "/var/run/lighttpd/php-
fastcgi.socket",
 "bin-path" => "/usr/bin/php-cgi",
 "max-procs" => 1,
 "min-procs" => 1
)
)
)

CGI module
cgi.assign = (".pl" => "/usr/bin/perl",
 ".cgi" => "/usr/bin/perl")

For more information about the Lighttpd web server, please refer to the project
website, located at http://www.lighttpd.net/.

Virtualization and cloud computing
The latest craze in the IT industry is virtualization and cloud computing.
Virtualization solutions are popping up all over the IT spectrum, ranging from the
well established VMWARE (now an EMC company), via XEN (now a Citrix-backed
project), to OpenVZ (an Open Source KVM). Virtualization surely is the hottest
thing around. Cloud computing isn't all that common yet. However, solutions such
as Amazon's EC2 platform are available from various cloud computing providers,
making virtualization technologies available to everybody, at a fraction of the cost.

One of the aspects of building highly scalable platforms is their ability to scale well
within a virtualization environment or a cloud computing environment. However,
these pose some interesting issues, directly related to both Asterisk and the
virtualization technology being used.

Before we continue further, we must first understand a few concepts of
virtualization technologies—mainly the difference between the mainstream
virtualization techniques.

Scaling Asterisk Applications

[190]

This is not a book about virtualization, so we won't go into this subject
in depth. However, we will try to evaluate the various aspects of using
Asterisk within a virtualization framework.

Full virtualization
Full virtualization refers to the ability to implement a full hardware simulation of
the underlying computer hardware, in software. While the concept has been known
since the late 1960s, the first commercially-viable product for full virtualization on
the PC was VMWARE, back in 1998. The added value of full virtualization is that it
will support any operating system, without any requirement for special hardware.

Hardware-assisted virtualization
The idea behind Hardware-assisted virtualization is that the underlying hardware
provides some facilities of virtualization—mainly related to the CPU running the
guest operating system. The idea is that the guest operating system and the host
operating system share a common instruction set, thereby allowing for accelerated
performance by offloading some of the work back to the CPU from the host
operating system's virtual CPU. XEN refers to this ability as Hardware Virtual
Machine (HVM).

Paravirtualization
In Paravirtualization, the guest operating system offers each of the host operating
systems, a software interface, which is similar to the underlying hardware—not
identical though. This immediately results in the requirement to port each of the host
operating systems to support the guest operating system's Virtual Machine Monitor
(VMM). The main issue with paravirtualization is that it would be able to execute
most open source operating systems. However, when dealing with operating systems
such as Windows that can't be fully ported—well, I'll let you complete the sentence.

There are a few others, but these are the main ones that you will
encounter along the way.

Asterisk in a virtualized environment
First things first. If you are working within a virtualized environment and hope to
work with any hardware interface card, you can be sure to run into issues. In this
situation, the only virtualization solution you can use would be the one that uses
Hardware-assisted virtualization or Kernel virtualization (not explained here). But
again, the task isn't that simple.

Chapter 10

[191]

Now, let's imagine for the sake of argument that you don't require any PSTN
interfacing, and that you rely completely on VoIP. Life is much simpler at this point.
So, in theory, going to a virtualization solution should be easy—Wrong!

Asterisk is a CPU and I/O hog—an I/O hog to be more accurate. That is because
each SIP call requires UDP sockets. These are more or less file descriptors from the
OS level, thus, it's I /O. File writing and playback also requires I/O. So, in general,
almost any operation that Asterisk performs, relies heavily on I/O functionality.

What is the best virtualization environment for Asterisk? That is dependent on your
I/O consumption. Isn't the I/O consumption of Asterisk a well-known figure? The
answer is no, as it is dependent on how you use Asterisk. For example, an Asterisk
server not dealing with transcoding of media and handling SIP traffic that is fully
capable of being re-invited, will consume much less I/O than an Asterisk server that
is required to do Media pass through.

Confusing? Indeed it is! Here is something from my personal experience. Some of
the projects I've done involved the usage of both VMWARE Server and VMWARE
Server ESX. While some projects that dealt mainly with a calling card application
were capable of handling up to 90 concurrent channels of Media pass through
audio, another platform that was dealing mainly with re-invites was fully capable of
handling up to 300 channels per virtual server.

If you are thinking of using either virtualization or cloud computing, it is imperative
that you perform full regression testing of your application and your installation.
While virtualization and cloud computing allow for fairly rapid growth, the
added value of rapid growth is immediately negated by an improper choice of
virtualization technology.

Summary
Congratulations! You have reached the final chapter of this book and you are
now well-equipped with the information required to build the next Verizon Killer
application. Regardless of whether you are the next Vonage, JaJah, or simply the
neighborhood call shop, I hope this book has assisted you in your quest for Asterisk
development knowledge and know-how.

If you would like to get in touch with me, you are welcome to visit my blog at
http://www.simionovich.com, where I share my insights and thoughts about
Asterisk, technology, open source, and life in general.

Index
A
A2Billing 185, 186
A2Billing™

about 120
web site, for project 121

AA. See automatic attendant
ACRG

features 162
PSTN 163
requirements 162

actions, AMI 146
ADSI programming application 24
AGI

about 75
AGI script, execution flow 81, 82
and Asterisk, diagrammatic

representation 94
application, information 80
DeadAGI 77, 78
dialplan, documentation 80
Enhanced Asterisk Gateway Interface

(EAGI) 77
execution flow 81-83
FastAGI 78
methods 83, 84
programming languages,

applicability 76, 77
scripting, frameworks 80
working 76

AGI/Dialplan
about 106
agiWrapper.agi script 110, 111
Atomic-AGI 107
Atomic-AGI, dial-plan example 108
SetSessionID.agi script 108

AGI script. See also AGI
about 92
A2Billing™ 120
debugging 100
developing, rules 84
FastAGI 123
FreePBX™ 119
hello-world.php 98, 99
hello-world program 95
invoking 76
permissions 92
PHP based 93
STDIN (Standard Input) data stream 76
STDOUT (Standard Output) data stream 76

AGI script, developing rules
Asterisk channel, using 85
balancing, dialplan logic used 87
balancing, web services used 87
binary compiles 86, 87
blocking applications, restricting 85
internet, using 88, 89
syslog, using 88
termination 85
Virtual Machine (VM) based languages,

restricting 86
AJAM 158
AJAX Enabled Manager. See AJAM
AMI

actions 146
actions, sending to 147, 150
and PHPAGI 148
asynchronous originate actions 155
basics 146
event/action, types 145
event call backs 151
events 146

[194]

history 143
interacting with 150
invoking 148
invoking, PHPAGI class used 149
logging in 147
logging off 148
PHPAGI originate, for versions 1.0

and 1.2 154
PHPAGI originate, for versions 1.4

and 1.6 154
proxy servers 158
with Asterisk 1.0 and 1.2 145
with Asterisk 1.4 and 1.6 146
working 144

AMP 7
Apache

vs Lighttpd 185-189
applications, dialplan

about 41
IVR application, creating 41

ARI 165
Asterisk

ACRG 162
additional applications 69
addons stable source code, downloading 11
AGI/Dialplan 106
AGI script, debugging 100
AGI script, PHP based 93
AJAM 158
AMI 143
AMI proxy servers 158
and AGI, diagrammatic representation 94
application section GUI 24
Asynchronous JavaScript and XML Asterisk

Manager (AJAM) 158
busy application 69
call recording gateway 162
call recording gateway, features 162
channel drivers 25
click-2-call application, creating 155
code, compiling 26
configuring 23
congestion application 69
ControlPlayback application 70
DAHDI and Zaptel, differences 21
dialplan 32
dialplan, syntax 33

Digium Asterisk Hardware
Device Interface (DAHDI) 10

Digium hardware 9
downloading 8
Exec application 65
ExecIf application 65
FastAGI 123
Gosub directive 63, 64
GosubIf directive 63
Goto application 59
GotoIf application 60
in virtualized environment 190, 191
Libpri 10
MacroExclusive application 69
macros application 69
MixMonitor application 72
Monitor application 71
MusicOnHold application 73
open source PBX 11
options, defining for compiling 23
originate manager action 155, 156
PHPAGI 103
PHP-CLI vs PHP-CGI 91
php.ini configuration file 92
platforms, scaling 178
project implementation, guidelines 163
SayAlpha application 70
SayDigits application 70
SayNumber application 71
source code, compiling 13
source-stable source code, downloading 11
state machines 32
StopMixMonitor application 72
StopMonitor application 72
SVN source packages 12
TryExec application 66
version 1.6.X, for argument passing

to FastAGI 125
versions 1.2.X and 1.4.X, for argument

passing to FastAGI 125
versions 1.2.X, for FastAGI error

handling 126
versions 1.4.X and 1.6.X, for FastAGI error

handling 126
virtual timer kernel module 9
web site, for variables 38
writing expressions 61

[195]

Zaptel 9
Asterisk 1.2.X

version, for FastAGI error handling 126
Asterisk 1.2.X and 1.4.X

versions, for argument passing
to FastAGI 125

Asterisk 1.4.X and 1.6.X
versions, for FastAGI error handling 126

Asterisk 1.6.X
version, for argument passing

to FastAGI 125
Asterisk2Billing. See A2Billing™
Asterisk application

busy application 69
congestion application 69
ControlPlayback application 70
Exec application 65
ExecIf application 65
Gosub directive 63
GosubIf directive 63
Goto application 59
GotoIf application 59
MacroExclusive application 69
macros application 67
MixMonitor application 72
Monitor application 71
MusicOnHold application 73
read application 56
SayAlpha application 70
SayDigits application 70
SayNumber application 71
StopMixMonitor application 72
StopMonitor application 72
TryExec application 66

Asterisk Call Recording Gateway. See
ACRG; See ACRG

Asterisk channel 58
Asterisk CLI 53
Asterisk JAVA

about 141
drawbacks 141

Asterisk Gateway Interface. See AGI
Asterisk Management Portal. See AMP
Asterisk platforms, scaling

about 178
database query, caching 179
web services, utilizing 182

Asterisk Recording Interface. See ARI; See
ARI

Asterisks Manager Interface. See AMI
Asynchronous JavaScript Asterisk Manager.

See AJAM
Atomic 107
Atomic-AGI

about 107
dial plan, example 108

auto attendant. See automatic attendant
automatic attendant, IVR application

about, 42
application, answer, 44
application, background, 48, 49
application, dial, 44-47
application, EndWhile, 50
application, Hangup, 49
application, playback, 48
application, SoftHangup, 49
application, WaitExten, 49
applications, 43
code, 51
code, debugging, 53
code, dialed extensions management, 52
code, error trapping, 52
code, main context body, 51
flow chart, 42, 43

B
binary compiled 77
built-in channel variables, dialplan

${CALLERID(all)} 37
${CALLERID(name)} 38
${CALLERID(num)} 38
${CHANNEL} 38
${CONTEXT} 38

C
Call Detail Records 115
CDRs 115
click-2-call application

AMI proxy servers 158
Asterisk originate manager action 155, 156
Asynchronous JavaScript Asterisk Manager

(AJAM) 158, 159
Jabka 156, 157

[196]

cloud computing. See virtualization
compiling

Asterisk 23
Asterisk source code 27
code 26
DAHDI kernel module 18
dahdi-tools 21
dahdi-tools package 20
Libpri 22
source code 13
Zaptel 14

Concurrent Versions System. See CVS
configuring

Asterisk 23
dahdi-tools 21
Zaptel 14

congestion 69
CVS 12

D
DAHDI

and Zaptel, differences 21
dahdi kernel module, installing 18, 19
dahdi-tools, compiling 21
dahdi-tools, installing 21
dahdi-tools package, compiling 20
downloading 10
kernel module, compiling 18

database query, caching
memcached, starting up 179, 180
memcached, using in script 180, 181

DeadAGI 77
dialplan

applications 41
context 32, 33
extension 33, 34
finite state machines (FSM) 32
macro, example 67
macro, executing 68
syntax 33
variables 37

Digium Asterisk Hardware Device
Interface. See DAHDI

Digium hardware 9
downloading

Asterisk 8

Asterisk-addons stable source code,
downloading 11

DAHDI 10
Libpri source code 10,11
source-stable source code 11
Zaptel 9

Dual-tone multi-frequency. See DTMF; See
DTMF

DTMF 56

E
EAGI 77
Enhanced Asterisk Gateway Interface. See

EAGI
events, AMI 146
Exec application 65
ExecIf application 65
extension, dialplan

a extension 36
context inclusion 34
failed extension 36
fax extension 36
[general] context 35
[global] context 35
h extension 36
i extension 36
o extension 36
pattern matching, example 35
pattern matching, rules 35
s extension 36
special extension 36
t extension 36
T extension 36
talk extension 36

F
FastAGI

about 124
argument handling 124, 125
arguments passing, Asterisk 1.2.X and

1.4.X used 79
arguments passing, Asterisk 1.6.X used 79
error handling 125
frameworks 79
other tool kits 140
PHPAGI and Google 133

[197]

with PHPAGI and Google 133
with PHPAGI and xinetd 126

FastAGI argument handling
Asterisk version 1.2.X and 1.4.X 125
Asterisk version 1.6.X 125

FastAGI error handling
about 125
Asterisk version 1.2.X 126
Asterisk version 1.4.X and 1.6.X 126

FastAGI, other tool kits
Asterisk::FastAGI module 140,141
Asterisk-JAVA 141
Perl module 140

FastAGI, PHPAGI and Google used
about 133
FastAGI.php 139
fastagiServer.php 139, 140
httpd.php 134
httpServer.php 135-138

FastAGI, PHPAGI and xinetd used
about 126
fastagiWrapper.php bootstrap 130-133
PHPAPI, configuring 130
xinetd, about 127
xinetd, configuring 128, 129

finite state machine. See FSM
Free Telephone Services

Corporation. See FTSC
FreePBX™

about 119,120
website, for project 120

FSM. See also state machines
FSM 32
FTSC 114

G
Gosub directive 63-65
GosubIf directive 63-65
Goto application 59, 60
GotoIf application 60

H
Hardware Virtual Machine. See HVM
HVM 190

I
inheritance 40
installing

Asterisk 23
DAHDI kernel module 18
dahdi-tools 21
Libpri 22
Zaptel 16,17

Interactive Voice Response. See IVR
interpreted language 77
IVR 7, 31
IVR application, creating

application, answer 44
application, background 48, 49
application, dial 44-47
application, EndWhile 50
application, hangup 49
application, playback 48
application, SoftHangup 49
application, WaitExten 49
automatic attendant 42
automatic attendant, applications 43
automatic attendant code 50
automatic attendant, code 51
automatic attendant code, context body 51
automatic attendant code, debugging 53
automatic attendant code, dialed extensions

management 52
automatic attendant code, error trapping 52
automatic attendant code, main context

body 51
automatic attendant code, testing 53

IVR services 178

J
Jabka, click-2-call application 156, 157, 158

K
kernel module, compiling 18

L
Lesser General Public License. See LGPL
LGPL 104
Libpri

[198]

compiling 22
installing 22
source code, downloading 10,11

Lighttpd
vs Apache 185-189

M
MacroExclusive application 69
macros

about 67
example 67
executing 68
variable, ${MACRO_CONTEXT} 68
variable, ${MACRO_EXTEN} 68
variable, ${MACRO_OFFSET} 68
variable, ${MACRO_PRIORITY} 68
variables, about 68

mathematical manipulation, variables 38,39
memcached

about 179
starting up 179, 180
using, in script 180, 181

O
open source PBX system 11

P
PBX system 11
PHP

based, AGI scripts 93
PHPAGI, AGI class library 103
php.ini configuration file 92

php.ini configuration file 92
PHP-CGI

vs PHP-CLI 91
PHP-CLI

vs PHP-CGI 91
PHPAGI

about 103
additional files 104
class library file,

phpagi-asmanager.php 104
class library file, phpagi.php 104
fastagi.xinetd file 104
file structure 104

LGPL 104
obtaining 104
phpagi-asmanager.php,

originate function 153, 154
phpagi.conf.example file 104
phpagi-fastagi.php file 104
simple example 104

PHPAGI AMI, originate
about 152, 153
asynchronous originate actions 155
for versions 1.0 and 1.2 154
for versions 1.4 and 1.6 154
phpagi-asmanager.php function 153

PHPAGI and AMI
actions, sending to AMI 150
AMI, interacting with 150
AMI, invoking 148, 149
AMI invoking, PHPAGI class used 149
event call backs, AMI 151

PHPAGI, complex example
db_register_cdr.inc.php script module 119
db_validate_target.inc.php script

module 117
FTSC 114

PHPAGI, simple example 104
programming projects

click-2-call application 171
conference bridge 174
data rescue call 174
Jajah.Com 172
Punk’ed calls 174
stateful call masking 172

project
additional programming projects 171
click-2-call application 171
conference bridge 174
data rescue call 174
implementation, guidelines 163, 164
Jajah.com 172
Punk’ed call 174
statefull call masking 172

project implementation, guidelines
Asterisk dialplan context 170
call flow charts 164, 169
human interface,

development 164, 170, 171

[199]

operational constraints, understanding
163-168

requirements, analysis 163-165
testing procedure 164, 171

R
read application 56, 57
regular expressions

about 62
operator precedence 63

S
source code, compiling

dahdi kernel module, installing 18, 19
dahdi-tools, compiling 21
dahdi-tools, configuring 20, 21
dahdi-tools, installing 21
dahdi-tools package, compiling 20
kernel module, compiling 18
Libpri, compiling 22
Zaptel, compiling 14, 15, 16
Zaptel, installing 16, 17

SQL Primer, web site 117
state machines

elements 32
string manipulation, variables

about 39
string concatenation 40
substrings 39

Subversion. See SVN
SVN 12
SVN source package, Asterisk

compilation dependencies 13
source code packages, downloading 12, 13

T
TryExec application 66

U
user input 55, 56

V
variables, dialplan

about 37
built-in variables 37
channel variables, types 37
custom variables 38
mathematical manipulation 38, 39
scoping 40, 41
string manipulation 39
string manipulation,

string concatenation 40
string manipulation, substrings 39

version
Asterisk-addons stable release

version, 1.4.6 used 12
versions

Asterisk 1.2.X and 1.4.X, for argument
passing to FastAGI 125

Asterisk 1.2.X, for FastAGI error
handling 126

Asterisk 1.4.X and 1.6.X, for FastAGI
error handling 126

Asterisk 1.6.X for argument passing to
FastAGI 125

virtualization
about 189
full virtualization 190
hardware-assisted virtualization 190
Paravirtualization 190

Virtual Machine Monitor. See VMM
VMM 190

W
Web-Callback. See click-2-call application
web services, utilizing

XML-RPC 182, 183
writing expressions

about 61
arithmetic operators 62, 63
comparison operators 62
logical operators 61, 63
operators used 61

[200]

X
XML-RPC

about 182, 183
request, structure 183, 184
response, structure 183, 184

XML-RPC request, structure 183, 184
XML-RPC response, structure 183, 184

Z
Zapata Telephony Driver. See Zaptel
Zaptel

about 9
and DAHDI, differences 21
compiling 14, 16
configuring 14
downloading 9
installing 16, 17
options,defining for compiling 15

Thank you for buying
Asterisk Gateway Interface
1.4 and 1.6 Programming

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Asterisk Gateway Interface Programming, Packt will have
given some of the money received to the Asterisk project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Building Telephony Systems
With Asterisk
ISBN: 190-4-811-15-9 Paperback: 180 pages

An easy introduction to using and configuring
Asterisk to build feature-rich telephony systems for
small and medium businesses.

1.	 Install, configure, deploy, secure, and
maintain Asterisk

2.	 Build a fully-featured telephony system and
create a dial plan that suits your needs

3.	 Learn from example configurations for
different requirements

TrixBox Made Easy
ISBN: 190-4-81-1-930 Paperback: 160 pages

A step-by-step guide to installing and running your
home and office VoIP system

1.	 Plan and configure your own VoIP and
telephony systems

2.	 Setup voicemail, conferencing, and
call recording

3.	 Clear and practical tutorial with case
study format

	

Please check www.PacktPub.com for information on our titles

Building Telephony Systems
With Asterisk
ISBN: 978-1-847192-88-2 Paperback: 204 pages

A practical guide for deploying and managing
an Asterisk-based telephony system using the
AsteriskNOW Beta 6 software appliance

1.	 Install an Asterisk-based telephony system
fast

2.	 Learn the AsteriskGUI web management
interface

2.	 Configure IP phones and connections
3.	 Configure and use the conferencing system

Building Telephony Systems with
OpenSER
ISBN: 978-1-847193-73-5 Paperback: 303 pages

A step-by-step guide to building a high performance
Telephony System

1.	 Install, configure, and troubleshoot OpenSER

2.	 Use OpenSER to build next generation VOIP
networks from scratch

3.	 Learn and understand SIP Protocol and its
functionality

3.	 Integrate MySQL with OpenSER

Please check www.PacktPub.com for information on our titles

