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Chapter 1

Introduction

This manual describes a software package for image registration: elastix. The software consists of a

collection of algorithms that are commonly used to solve medical image registration problems. A large part

of the code is based on the Insight Toolkit (ITK). The modular design of elastix allows the user to quickly

test and compare different registration methods for his/her specific application. The command-line interface

simplifies the processing of large amounts of data sets, using scripting.

1.1 Outline of this manual

In Chapter 2 quite an extensive introduction to some general theory of image registration is given. Also, the

different components of which a registration method consists, are treated. In Chapter 3, elastix is described

and its usage is explained. Chapter 4 is dedicated to transformix, a program accompanying elastix. A

tutorial is given in Chapter 5, including many recommendations based on the authors’ experiences. More

advanced registration topics are covered in Chapter 6. The final chapter provides more details for those

interested in the setup of the source code and gives information on how to implement your own additions to

elastix. In the Appendices A and B example (transform) parameter files are given. Appendix C contains

the software license and disclaimer under which elastix is currently distributed.

1.2 Quick start

• Download elastix from http://elastix.isi.uu.nl/download.php. See Section 3.2 for details about

the installation. Do not forget to subscribe to the elastix mailing list, which is the main forum for

questions and announcements.

• Read some basics about the program at http://elastix.isi.uu.nl/about.php and in this manual.

• Try the example of usage. It can be found in the About section of the website. If you don’t get the

example running at your computer take a look at the FAQ in the general section:

http://elastix.isi.uu.nl/FAQ.php

• Read the complete manual if you are the type of person that first wants to know.

• Get started with your own application. If you need more information at this point you can now start

reading the manual. You can find more information on tuning the parameters in Chapter 5. A list of all

available parameters can be found at http://elastix.isi.uu.nl/doxygen/pages.html. Also take

a look at the parameter file database at http://elastix.isi.uu.nl/wiki.php, for many example

parameter files.
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• When you are stuck, don’t miss the tutorial in Chapter 5 of this manual. Also, take a look at the FAQ

again for some common problems.

• When you are still stuck, do not hesitate to send an e-mail to the elastix mailing list. In general,

you will soon get an answer.

1.3 Acknowledgements

This manual has mainly been written while the authors worked at the Image Sciences Institute (ISI, http://

www.isi.uu.nl), Utrecht, The Netherlands. We thank the users of elastix, whose questions and remarks

helped improving the usability and documentation of elastix. Specifically, we want to thank the following

people for proofreading (parts of) this manual when we constructed a first version: Josien Pluim, Keelin

Murphy, Martijn van der Bom, Sascha Münzing, Jeroen de Bresser, Bram van Ginneken, Kajo van der Marel,

Adriënne Mendrik (in no specific order).
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Chapter 2

Image registration

This chapter introduces primary registration concepts that are at the base of elastix. More advanced

registration topics are covered in Chapter 6.

Image registration is an important tool in the field of medical imaging. In many clinical situations several

images of a patient are made in order to analyse the patient’s situation. These images are acquired with,

for example, X-ray scanners, Magnetic Resonance Imaging (MRI) scanners, Computed Tomography (CT)

scanners, and Ultrasound scanners, which provide knowledge about the anatomy of the subject. Combination

of patient data, mono- or multi-modal, often yields additional clinical information not apparent in the

separate images. For this purpose, the spatial relation between the images has to be found. Image registration

is the task of finding a spatial one-to-one mapping from voxels in one image to voxels in the other image,

see Figure 2.1. Good reviews on the subject are given in Maintz and Viergever [1998], Lester and Arridge

[1999], Hill et al. [2001], Hajnal et al. [2001], Zitová and Flusser [2003], Modersitzki [2004].

The following section introduces the mathematical formulation of the registration process and gives an

overview of the components of which a general registration method consists. After that, in Sections 2.3-2.8,

each component is discussed in more detail. For each component, the name used by elastix is given, in

typewriter style. In Section 2.9, methods to evaluate the registration results are discussed.

2.1 Registration framework

Two images are involved in the registration process. One image, the moving image IM (x), is deformed to fit

the other image, the fixed image IF (x). The fixed and moving image are of dimension d and are each defined

on their own spatial domain: ΩF ⊂ R
d and ΩM ⊂ R

d, respectively. Registration is the problem of finding a

displacement u(x) that makes IM (x + u(x)) spatially aligned to IF (x). An equivalent formulation is to say

that registration is the problem of finding a transformation T (x) = x+u(x) that makes IM (T (x)) spatially

aligned to IF (x). The transformation is defined as a mapping from the fixed image to the moving image,

i.e. T : ΩF ⊂ R
d → ΩM ⊂ R

d. The quality of alignment is defined by a distance or similarity measure S,

p qT

Figure 2.1: Image registration is the task of finding a spatial transformation mapping one image to another.

Left is the fixed image and right the moving image. Adopted from Ibáñez et al. [2005].
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Figure 2.2: The basic registration components.

such as the sum of squared differences (SSD), the correlation ratio, or the mutual information (MI) measure.

Because this problem is ill-posed for nonrigid transformations T , a regularisation or penalty term P is often

introduced that constrains T .

Commonly, the registration problem is formulated as an optimisation problem in which the cost function

C is minimised w.r.t. T :

T̂ = arg min
T

C(T ; IF , IM ), with (2.1)

C(T ; IF , IM ) = −S(T ; IF , IM ) + γP(T ), (2.2)

where γ weighs similarity against regularity. To solve the above minimisation problem, there are basically

two approaches: parametric and nonparametric. The reader is referred to Fischer and Modersitzki [2004]

for an overview on nonparametric methods, which are not discussed in this manual. The elastix software

is based on the parametric approach. In parametric methods, the number of possible transformations is

limited by introducing a parametrisation (model) of the transformation. The original optimisation problem

thus becomes:

T̂µ = arg min
Tµ

C(Tµ; IF , IM ), (2.3)

where the subscript µ indicates that the transform has been parameterised. The vector µ contains the

values of the “transformation parameters”. For example, when the transformation is modelled as a 2D rigid

transformation, the parameter vector µ contains one rotation angle and the translations in x and y direction.

We may write Equation (2.3) also as:

µ̂ = arg min
µ

C(µ; IF , IM ). (2.4)

From this equation it becomes clear that the original problem (2.1) has been simplified. Instead of optimising

over a “space of functions T ”, we now optimise over the elements of µ. Examples of other transformation

models are given in Section 2.6.

Figure 2.2 shows the general components of a parametric registration algorithm in a block scheme. The

scheme is a slightly extended version of the scheme introduced in Ibáñez et al. [2005]. Several components

can be recognised from Equations (2.1)-(2.4); some will be introduced later. First of all, we have the images.

The concept of an image needs to be defined. This is done in Section 2.2. Then we have the cost function

C, or “metric”, which defines the quality of alignment. As mentioned earlier, the cost function consists of

a similarity measure S and a regularisation term P. The regularisation term P is not discussed in this

4
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Figure 2.3: Geometrical concepts associated with the ITK image. Adopted from Ibáñez et al. [2005].

chapter, but in Chapter 6. The similarity measure S is discussed in Section 2.3. The definition of the

similarity measure introduces the sampler component, which is treated in Section 2.4. Some examples of

transformation models Tµ are given in Section 2.6. The optimisation procedure to actually solve the problem

(2.4) is explained in Section 2.7. During the optimisation, the value IM (Tµ(x)) is evaluated at non-voxel

positions, for which intensity interpolation is needed. Choices for the interpolator are described in Section

2.5. Another thing, not immediately clear from Equations (2.1)-(2.4), is the use of multi-resolution strategies

to speed-up registration, and to make it more robust, see Section 2.8.

2.2 Images

Since image registration is all about images, we have to be careful with what is meant by an image. We

adopt the notion of an image from the Insight Toolkit [Ibáñez et al., 2005, p. 40]:

Additional information about the images is considered mandatory. In particular the information

associated with the physical spacing between pixels and the position of the image in space with

respect to some world coordinate system are extremely important. Image origin and spacing are

fundamental to many applications. Registration, for example, is performed in physical coordi-

nates. Improperly defined spacing and origins will result in inconsistent results in such processes.

Medical images with no spatial information should not be used for medical diagnosis, image

analysis, feature extraction, assisted radiation therapy or image guided surgery. In other words,

medical images lacking spatial information are not only useless but also hazardous.

Figure 2.3 illustrates the main geometrical concepts associated with the itk::Image. In this figure,

circles are used to represent the centre of pixels. The value of the pixel is assumed to exist as

a Dirac Delta Function located at the pixel centre. Pixel spacing is measured between the pixel

centres and can be different along each dimension. The image origin is associated with the

coordinates of the first pixel in the image. A pixel is considered to be the rectangular region

surrounding the pixel centre holding the data value. This can be viewed as the Voronoi region of

the image grid, as illustrated in the right side of the figure. Linear interpolation of image values

is performed inside the Delaunay region whose corners are pixel centres.

Therefore, you should take care that you use an image format that is able to store the relevant information

(e.g. mhd, DICOM). Some image formats, like vpx, do not store the origin and spacing. This may cause

serious problems!
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Up to elastix version 4.2, the image orientation (direction cosines) was not yet fully supported in

elastix. From elastix 4.3, image orientation is fully supported, but can be disabled for backward com-

patibility reasons.

2.3 Metrics

Several choices for the similarity measure can be found in the literature. Some common choices are described

below. Between brackets the name of the metric in elastix is given:

Sum of Squared Differences (SSD): (AdvancedMeanSquares) The SSD is defined as:

SSD(µ; IF , IM ) =
1

|ΩF |

∑

xi∈ΩF

(IF (xi) − IM (Tµ(xi)))
2
, (2.5)

with ΩF the domain of the fixed image IF , and |ΩF | the number of voxels. Given a transformation T ,

this measure can easily be implemented by looping over the voxels in the fixed image, taking IF (xi),

calculating IM (Tµ(xi)) by interpolation, and adding the squared difference to the sum.

Normalised Correlation Coefficient (NCC): (AdvancedNormalizedCorrelation) The NCC is defined

as:

NCC(µ; IF , IM ) =

∑
xi∈ΩF

(
IF (xi) − IF

) (
IM (Tµ(xi)) − IM

)

√ ∑
xi∈ΩF

(
IF (xi) − IF

)2 ∑
xi∈ΩF

(
IM (Tµ(xi)) − IM

)2
, (2.6)

with the average grey-values IF = 1
|ΩF |

∑
xi∈ΩF

IF (xi) and IM = 1
|ΩF |

∑
xi∈ΩF

IM (Tµ(xi)).

Mutual Information (MI): (AdvancedMattesMutualInformation) For MI [Maes et al., 1997, Viola and

Wells III, 1997, Mattes et al., 2003] we use a definition given by Thévenaz and Unser [2000]:

MI(µ; IF , IM ) =
∑

m∈LM

∑

f∈LF

p(f,m;µ) log2

(
p(f,m;µ)

pF (f)pM (m;µ)

)
, (2.7)

where LF and LM are sets of regularly spaced intensity bin centres, p is the discrete joint probability,

and pF and pM are the marginal discrete probabilities of the fixed and moving image, obtained by

summing p over m and f , respectively. The joint probabilities are estimated using B-spline Parzen

windows:

p(f,m;µ) =
1

|ΩF |

∑

xi∈ΩF

wF (f/σF − IF (xi)/σF )

×wM (m/σM − IM (Tµ(xi))/σM ),

(2.8)

where wF and wM represent the fixed and moving B-spline Parzen windows. The scaling constants σF

and σM must equal the intensity bin widths defined by LF and LM . These follow directly from the

grey-value ranges of IF and IM and the user-specified number of histogram bins |LF | and |LM |.

Normalized Mutual Information (NMI): (NormalizedMutualInformation)

NMI is defined by NMI = (H(IF ) + H(IM ))/H(IF , IM ), with H denoting entropy. This expression

can be compared to the definition of MI in terms of H: MI = H(IF ) + H(IM ) − H(IF , IM ). Again,
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with the joint probabilities defined by 2.8 (using B-spline Parzen windows), NMI can be written as:

NMI(µ; IF , IM ) =

∑
f∈LF

pF (f) log2 pF (f) +
∑

m∈LM

pM (m;µ) log2 pM (m;µ)

∑
m∈LM

∑
f∈LF

p(f,m;µ) log2 p(f,m;µ)

=

∑
m∈LM

∑
f∈LF

p(f,m;µ) log2 (pF (f)pM (m;µ))

∑
m∈LM

∑
f∈LF

p(f,m;µ) log2 p(f,m;µ)
. (2.9)

Kappa Statistic (KS): (AdvancedKappaStatistic) KS is defined as:

KS(µ; IF , IM ) =

2
∑

xi∈ΩF

1IF (xi)>0,IM (Tµ(xi))>0

∑
xi∈ΩF

1IF (xi)>0 + 1IM (Tµ(xi))>0
, (2.10)

where 1 is the indicator function.

The SSD measure is a measure that is only suited for two images with an equal intensity distribution,

i.e. for images from the same modality. NCC is less strict, it assumes a linear relation between the intensity

values of the fixed and moving image, and can therefore be used more often. The MI measure is even more

general: only a relation between the probability distributions of the intensities of the fixed and moving image

is assumed. For MI it is well-known that it is suited not only for mono-modal, but also for multi-modal image

pairs. This measure is often a good choice for image registration. The NMI measure is, just like MI, suitable

for mono- and multi-modality registration. Studholme et al. [1999] seems to indicate better performance

than MI in some cases. The KS measure is specifically meant to register binary images (segmentations). It

measures the “overlap” of the segmentations.

2.4 Image samplers

In Equations (2.5)-(2.8) we observe a loop over the fixed image:
∑

xi∈ΩF
. Until now, we assumed that the

loop goes over all voxels of the fixed image. In general, this is not necessary. A subset may suffice [Thévenaz

and Unser, 2000, Klein et al., 2007]. The subset may be selected in different ways: random, on a grid, etc.

The sampler component represents this process.

The following samplers are often used:

Full: (Full) A full sampler simply selects all voxel coordinates xi of the fixed image.

Grid: (Grid) The grid sampler defines a regular grid on the fixed image and selects the coordinates xi on

the grid. Effectively, the grid sampler thus downsamples the fixed image (not preceded by smoothing).

The size of the grid (or equivalently, the downsampling factor, which is the original fixed image size

divided by the grid size) is a user input.

Random: (Random) A random sampler randomly selects a user-specified number of voxels from the fixed

image, whose coordinates form xi. Every voxel has equal chance to be selected. A sample is not

necessarily selected only once.

Random Coordinate: (RandomCoordinate) A random coordinate sampler is similar to a random sampler.

It also randomly selects a user-specified number of coordinates xi. However, the random coordinate

sampler is not limited to voxel positions. Coordinates between voxels can also be selected. The grey-

value IF (xi) at those locations must of course be obtained by interpolation.

7



(a) (b) (c) (d) (e)

Figure 2.4: Interpolation. (a) nearest neighbour, (b) linear, (c) B-spline N = 2, (d) B-spline N = 3, (e)

B-spline N = 5.

While at first sight the full sampler seems the most obvious choice, in practice it is not always used,

because of its computational costs in large images. The random samplers are especially useful in combination

with a stochastic optimisation method [Klein et al., 2007]. See also Section 2.7. The use of the random

coordinate sampler makes the cost function C a more smooth function of µ, which makes the optimisation

problem (2.4) easier to solve. This has been shown in Thévenaz and Unser [2008].

2.5 Interpolators

As stated previously, during the optimisation the value IM (Tµ(x)) is evaluated at non-voxel positions, for

which intensity interpolation is needed. Several methods for interpolation exist, varying in quality and speed.

Some examples are given in Figure 2.4.

Nearest neighbour: (NearestNeighborInterpolator) This is the most simple technique, low in quality,

requiring little resources. The intensity of the voxel nearest in distance is returned.

Linear: (LinearInterpolator) The returned value is a weighted average of the surrounding voxels, with

the distance to each voxel taken as weight.

N-th order B-spline: (BSplineInterpolator or BSplineInterpolatorFloat for a memory efficient ver-

sion) The higher the order, the better the quality, but also requiring more computation time. In fact,

nearest neighbour (N = 0) and linear interpolation (N = 1) also fall in this category. See Unser [1999]

for more details.

During registration a first-order B-spline interpolation, i.e. linear interpolation, often gives satisfactory

results. It is a good trade-off between quality and speed. To generate the final result, i.e. the deformed

result of the registration, a higher-order interpolation is usually required, for which we recommend N = 3.

The final result is generated in elastix by a so-called ResampleInterpolator. Any one of the above can

be used, but you need to prepend the name with Final, for example: FinalLinearInterpolator.

2.6 Transforms

A frequent confusion about the transformation is its direction. In elastix the transformation is defined as a

coordinate mapping from the fixed image domain to the moving image domain: T : ΩF ⊂ R
d →

ΩM ⊂ R
d. The confusion usually stems from the phrase: “the moving image is deformed to fit the fixed

image”. Although one can speak about image registration like this, such a phrase is not meant to reflect

mathematical underlyings: one deforms the moving image, but the transformation is still defined from fixed

to moving image. The reason for this becomes clear when trying to compute the deformed moving image (the

registration result) IM (Tµ(x)) (this process is frequently called resampling). If the transformation would be

defined from moving to fixed image, not all voxels in the fixed image domain would be mapped to (e.g. in
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case of a scaling), and holes would occur in the deformed moving image. With the transformation defined as

it is, resampling is quite simple: loop over all voxels x in the fixed image domain ΩF , compute its mapped

position y = Tµ(x), interpolate the moving image at y, and fill in this value at x in the output image.

The transformation model used for Tµ determines what type of deformations between the fixed and

moving image you can handle. In order of increasing flexibility, these are the translation, the rigid, the

similarity, the affine, the nonrigid B-spline and the nonrigid thin-plate spline like transformations.

Translation: (TranslationTransform) The translation is defined as:

Tµ(x) = x + t, (2.11)

with t the translation vector. The parameter vector is simply defined by µ = t.

Rigid: (EulerTransform) A rigid transformation is defined as:

Tµ(x) = R(x − c) + t + c, (2.12)

with the matrix R a rotation matrix (i.e. orthonormal and proper), c the centre of rotation, and t

translation again. The image is treated as a rigid body, which can translate and rotate, but cannot be

scaled/stretched. The rotation matrix is parameterised by the Euler angles (one in 2D, three in 3D).

The parameter vector µ consists of the Euler angles (in rad) and the translation vector. In 2D, this

gives a vector of length 3: µ = (θz, tx, ty)T , where θz denotes the rotation around the axis normal to

the image. In 3D, this gives a vector of length 6: µ = (θx, θy, θz, tx, ty, tz)
T . The centre of rotation is

not part of µ; it is a fixed setting, usually the centre of the image.

Similarity: (SimilarityTransform) A similarity transformation is defined as

Tµ(x) = sR(x − c) + t + c, (2.13)

with s a scalar and R a rotation matrix. This means that the image is treated as an object, which can

translate, rotate, and scale isotropically. The rotation matrix is parameterised by an angle in 2D, and by

a so-called “versor” in 3D (Euler angles could have been used as well). The parameter vector µ consists

of the angle/versor, the translation vector, and the isotropic scaling factor. In 2D, this gives a vector

of length 4: µ = (s, θz, tx, ty)T . In 3D, this gives a vector of length 7: µ = (q1, q2, q3, tx, ty, tz, s)
T ,

where q1, q2, and q3 are the elements of the versor. There are few cases when you need this transform.

Affine: (AffineTransform) An affine transformation is defined as:

Tµ(x) = A(x − c) + t + c, (2.14)

where the matrix A has no restrictions. This means that the image can be translated, rotated, scaled,

and sheared. The parameter vector µ is formed by the matrix elements aij and the translation vector.

In 2D, this gives a vector of length 6: µ = (a11, a12, a21, a22, tx, ty)T . In 3D, this gives a vector of

length 12.

B-splines: (BSplineTransform) For the category of non-rigid transformations, B-splines [Rueckert et al.,

1999] are often used as a parameterisation:

Tµ(x) = x +
∑

xk∈Nx

pkβ3

(
x − xk

σ

)
, (2.15)

with xk the control points, β3(x) the cubic multidimensional B-spline polynomial [Unser, 1999], pk the

B-spline coefficient vectors (loosely speaking, the control point displacements), σ the B-spline control

point spacing, and Nx the set of all control points within the compact support of the B-spline at x.
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The control points xk are defined on a regular grid, overlayed on the fixed image. In this context we

talk about ‘the control point grid that is put on the fixed image’, and about ‘control points that are

moved around’. Note that Tµ(xk) 6= xk + pk, a common misunderstanding. Calling pk the control

point displacements is, therefore, actually somewhat misleading. Also note that the control point grid

is entirely unrelated to the grid used by the Grid image sampler, see Section 2.4.

The control point grid is defined by the amount of space between the control points σ = (σ1, . . . , σd)

(with d the image dimension), which can be different for each direction. B-splines have local support

(|Nx| is small), which means that the transformation of a point can be computed from only a couple

of surrounding control points. This is beneficial both for modelling local transformations, and for fast

computation. The parameters µ are formed by the B-spline coefficients pk. The number of control

points P = (P1, . . . , Pd) determines the number of parameters M , by M = (P1 × . . . × Pd) × d. Pi in

turn is determined by the image size s and the B-spline grid spacing, i.e. Pi ≈ si/σi (where we use

≈ since some additional control points are placed just outside the image). For 3D images, M ≈ 10000

parameters is not an unusual case, and M can easily grow to 105 − 106. The parameter vector (for 2D

images) is composed as follows: µ = (p1x, p2x, . . . , pP1
, p1y, p2y, . . . , pP2

)T .

Thin-plate splines: (SplineKernelTransform) Thin-plate splines are another well-known representation

for nonrigid transformations. The thin-plate spline is an instance of the more general class of kernel-

based transforms Davis et al. [1997], Brooks and Arbel [2007]. The transformation is based on a set of

K corresponding landmarks in the fixed and moving image: xfix
k and xmov

k , k = 1, . . . ,K, respectively.

The transformation is expressed as a sum of an affine component and a nonrigid component:

Tµ(x) = x + Ax + t +
∑

xfix

k

ckG(x − xfix
k ), (2.16)

where G(r) is a basis function and ck are the coefficients corresponding to each landmark. The

coefficients ck and the elements of A and t are computed from the landmark displacements dk =

xmov
k −xfix

k . The specific choice of basis function G(r) determines the “physical behaviour”. The most

often used choice of G(r) leads to the thin-plate spline, but another useful alternative is the elastic-body

spline Davis et al. [1997]. The spline kernel transforms are often less efficient than the B-splines (because

they lack the compact support property of the B-splines), but they allow for more flexibility in placing

the control points xfix
k . The moving landmarks form the parameter vector µ. Both landmark sets are

needed to define a transformation. Note that in order to perform a registration, only the fixed landmark

positions are given by the user; the moving landmarks are initialized to equal the fixed landmarks,

corresponding to the identity transformation, and are subsequently optimized. The parameter vector

is (for 2D images) composed as follows: µ = (xmov
1x , xmov

1y , xmov
2x , xmov

2y , . . . , xmov
Kx , xmov

Ky )T . Note the

difference in ordering of µ compared to the B-splines transform.

See Figure 2.5 for an illustration of different transforms. Choose the transformation that fits your needs:

only choose a nonrigid transformation if you expect that the underlying problem contains local deformations,

choose a rigid transformation if you only need to compensate for differences in pose. To initialise a nonrigid

registration problem, perform a rigid or affine one first. The result of the initial rigid or affine registration

Tµ̂0
is combined with a nonrigid transformation T NR

µ in one of the following two ways:

addition: Tµ(x) = T NR
µ (x) + Tµ̂0

(x) − x (2.17)

composition: Tµ(x) = T NR
µ (Tµ̂0

(x)) = (T NR
µ ◦ Tµ̂0

)(x) (2.18)

The latter method is in general to be preferred, because it makes several postregistration analysis tasks

somewhat more straightforward.
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(a) fixed (b) moving (c) translation

(d) rigid (e) affine (f) B-spline

Figure 2.5: Different transformations. (a) the fixed image, (b) the moving image with a grid overlayed, (c)

the deformed moving image IM (Tµ(x)) with a translation transformation, (d) a rigid transformation, (e) an

affine transformation, and (f) a B-spline transformation. The deformed moving image nicely resembles the

fixed image IF (x) using the B-spline transformation. The overlay grids give an indication of the deformations

imposed on the moving image. NB: the overlayed grid in (f) is NOT the B-spline control point grid, since

that one is defined on the fixed image!
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Figure 2.6: Iterative optimisation. Example for registration with a translation transformation model. The

arrows indicate the steps akdk taken in the direction of the optimum, which is the minimum of the cost

function.
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2.7 Optimisers

To solve the optimisation problem (2.4), i.e. to obtain the optimal transformation parameter vector µ̂,

commonly an iterative optimisation strategy is employed:

µk+1 = µk + akdk, k = 0, 1, 2, · · · , (2.19)

with dk the ‘search direction’ at iteration k, ak a scalar gain factor controlling the step size along the search

direction. The optimisation process is illustrated in Figure 2.6. Klein et al. [2007] give an overview of

various optimisation routines the literature offers. Examples are quasi-Newton (QN), nonlinear conjugate

gradient (NCG), gradient descent (GD), and Robbins-Monro (RM). Gradient descent and Robbins-Monro

are discussed below. For details on other optimisation methods we refer to [Klein et al., 2007, Nocedal and

Wright, 1999].

Gradient descent (GD): (StandardGradientDescent or RegularStepGradientDescent) Gradient de-

scent optimisation methods take the search direction as the negative gradient of the cost function:

µk+1 = µk − akg(µk), (2.20)

with g(µk) = ∂C/∂µ evaluated at the current position µk. Several choices exist for the gain factor ak.

It can for example be determined by a line search or by using a predefined function of k.

Robbins-Monro (RM): (StandardGradientDescent or FiniteDifferenceGradientDescent) The RM

optimisation method replaces the calculation of the derivative of the cost function g(µk) by an ap-

proximation g̃k.

µk+1 = µk − akg̃k, (2.21)

The approximation is potentially faster to compute, but might deteriorate convergence properties of

the GD scheme, since every iteration an approximation error g(µk) − g̃k is made. Klein et al. [2007]

showed that using only a small random subset of voxels (≈ 2000) from the fixed image accelerates regis-

tration significantly, without compromising registration accuracy. The Random or RandomCoordinate

samplers, described in Section 2.4, are examples of samplers that pick voxels randomly. It is important

that a new subset of fixed image voxels is selected every iteration k, so that the approximation error

has zero mean. The RM method is usually combined with ak as a predefined decaying function of k:

ak =
a

(k + A)α
, (2.22)

where a > 0, A ≥ 1, and 0 ≤ α ≤ 1 are user-defined constants. In our experience, a reasonable choice

is α ≈ 0.6 and A approximately 10% of the user-defined maximum number of iterations, or less. The

choice of the overall gain, a, depends on the expected ranges of µ and g and is thus problem-specific. In

our experience, the registration result is not very sensitive to small perturbations of these parameters.

Section 5.3.6 gives some more advice.

Note that GD and RM are in fact very similar. Running RM with a Full sampler (see Section 2.4),

instead of a Random sampler, is equivalent to performing GD. We recommend the use of RM over GD, since

it is so much faster, without compromising on accuracy. In that case, the parameter a is the parameter

that is to be tuned for your application. A more advanced version of the StandardGradientDescent is

the AdaptiveStochasticGradientDescent, which requires less parameters to be set and tends to be more

robust Klein et al. [2009].

Other optimisers available in elastix are: FullSearch, ConjugateGradient, ConjugateGradientFRPR,

QuasiNewtonLBFGS, RSGDEachParameterApart, SimultaneousPerturbation, CMAEvolutionStrategy.
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2.8 Multi-resolution

For a good overview of multi-resolution strategies see Lester and Arridge [1999]. Two hierarchical methods

are distinguished: reduction of data complexity, and reduction of transformation complexity.

2.8.1 Data complexity

It is common to start the registration process using images that have lower complexity, e.g., images that are

smoothed and possibly downsampled. This increases the chance of successful registration. A series of images

with increasing amount of smoothing is called a scale space. If the images are not only smoothed, but also

downsampled, the data is not only less complex, but the amount of data is actually reduced. In that case,

we talk about a “pyramid”. However, confusingly, the word pyramid is used by us also to refer to a scale

space. Several scale spaces or pyramids are found in the literature, amongst others Gaussian and Laplacian

pyramids, morphological scale space, and spline and wavelet pyramids. The Gaussian pyramid is the most

common one. In elastix we have:

Gaussian pyramid: (FixedRecursiveImagePyramid and MovingRecursiveImagePyramid) Applies smooth-

ing and down-sampling.

Gaussian scale space: (FixedSmoothingImagePyramid and MovingSmoothingImagePyramid) Applies smooth-

ing and no down-sampling.

Shrinking pyramid: (FixedShrinkingImagePyramid and MovingShrinkingImagePyramid) Applies no smooth-

ing, but only down-sampling.

Figure 2.7 shows the Gaussian pyramid with and without downsampling. In combination with a Full

sampler (see Section 2.4), using a pyramid with downsampling will save a lot of time in the first resolution

levels, because the image contains much fewer voxels. In combination with a Random sampler, or Random-

Coordinate, the downsampling step is not necessary, since the random samplers select a user-defined number

of samples anyway, independent of the image size.

2.8.2 Transformation complexity

The second multiresolution strategy is to start the registration with fewer degrees of freedom for the trans-

formation model. The degrees of freedom of the transformation equals the length (number of elements) of

the parameter vector µ.

An example of this was already mentioned in Section 2.6: the use of a rigid transformation prior to

nonrigid (B-spline) registration. We may even use a three-level strategy: first rigid, then affine, then nonrigid

B-spline.

Another example is to increase the number of degrees of freedom within the transformation model. With

a B-spline transformation, it is often good practice to start registration with a coarse control point grid, only

capable of modelling coarse deformations. In subsequent resolutions the B-spline grid is gradually refined,

thereby introducing the capability to match smaller structures. See Section 5.3.5.

2.9 Evaluating registration

How do you verify that your registration was successful? This is a difficult problem. In general, you don’t

know for each voxel where it should map to. Here are some hints:

• The deformed moving image IM (Tµ(x)) should look similar to the fixed image IF (x). So, compare

images side by side in a viewer. You can also display the two images on top of each other with a

checkerboard view or a dragable cross. Besides looking similar, also check that the deformed moving
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(a) resolution 0 (b) resolution 1 (c) resolution 2 (d) original

(e) resolution 0 (f) resolution 1 (g) resolution 2 (h) original

Figure 2.7: Two multi-resolution strategies using a Gaussian pyramid (σ = 8.0, 4.0, 2.0 voxels). The first

row shows multi-resolution with down-sampling (FixedRecursiveImagePyramid), the second row without

(FixedSmoothingImagePyramid). Note that in the first row, for each dimension, the image size is halved

every resolution, but that the voxel size increases with a factor 2, so physically the images are of the same

size every resolution.

image has the same texture as the moving image. Sudden blurred areas in the deformed image may

indicate that the deformation at that region is too large.

• For mono-modal image data you can inspect the difference image. Perfect registration would result in

a difference image without any edges, just noise.

• Compute the overlap of segmented anatomical structures after registration. The better the overlap,

the better the registration. To measure overlap, commonly the Dice similarity coefficient (DSC) is

used:

DSC(X,Y ) =
2|X ∩ Y |

|X| + |Y |
, (2.23)

where X and Y represent the binary label images, and | · | denotes the number of voxels that equal 1.

A higher DSC indicates a better correspondence. A value of 1 indicates perfect overlap, a value of 0

means no overlap at all. Also the Tannimoto (TC) coefficient is used often. It is related to the DSC by

DSC = 2TC/(TC + 1). See also Crum et al. [2006]. It is important to realise that the surface-volume

ratio of the segmented structures influences the overlap values you typically get [Rohlfing et al., 2004].

A value of DSC = 0.8 would be very good for the overlap of complex vessel structures. For large

spherical objects though, an overlap < 0.9 is in general not very good. What is good enough depends

of course on your application.

• Compute the distance after registration between points that you know correspond. You can obtain

corresponding points by manually clicking them in the fixed and the moving image. A less time-

consuming option is the semi-automated approach of Murphy et al. Murphy et al. [2008], which is

designed for finding corresponding points in the lung. Ideally, the registration has found the same

correspondence as the ground truth.

• Inspect the deformation field by looking at the determinant of the Jacobian of Tµ(x). Values smaller

than 1 indicate local compression, values larger than 1 indicate local expansion, and 1 means volume
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preservation. If this value deviates substantially from 1, you may be worried (but maybe not if this is

what you expect for your application). In case it is negative you have “foldings” in your transformation,

and you definitely should be worried.

• Inspect the convergence, by computing for each iteration the exact metric value (and not an approxi-

mated value, when you do random sampling), and plot it. For example for the SSD measure, the lower

the metric value, the better the registration.

16



Chapter 3

elastix

3.1 Introduction

The development of elastix started half to late 2003, and was intended to facilitate our registration research.

After some initial versions we decided to put the separate components of elastix in separate libraries. This

resulted in major version 3.0 in November 2004. elastix 3.0 was also the first version that was made

publicly available on the elastix website, around the same time. The continued development brings us

today (September 12, 2011) to version 4.5.

what where

Website http://elastix.isi.uu.nl

SVN repository https://svn.bigr.nl/elastix/trunkpublic

Dashboard http://my.cdash.org/index.php?project=elastix

WIKI http://elastix.isi.uu.nl/wiki.php

FAQ http://elastix.isi.uu.nl/FAQ.php

Mailing list elastix@bigr.nl (subscription via website)

The website also contains a doxygen1 generated part that provides documentation of the source code.

An overview of all available classes can be found at

http://elastix.isi.uu.nl/doxygen/classes.html.

For each class a description of this class is given, together with information on how to use it in elastix. See

http://elastix.isi.uu.nl/doxygen/modules.html

for an overview of all available components.

3.1.1 Key features

elastix is

• open source, freely available from http://elastix.isi.uu.nl;

• based on the ITK, so the code base is thoroughly tested. Quite some modifications/additions are made

to the original ITK code though, such as the use of samplers, a transformation class that combines

multiple transformation using composition or addition, and more.

1http://www.doxygen.org
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• suitable for many image formats. The use of ITK implies that all image formats supported by ITK

are supported by elastix. Some often used (medical) image formats are: .mhd (MetaIO), .hdr (Ana-

lyze/NIfTI), .gipl, .dcm (DICOM slices). DICOM directories are not directly supported by elastix;

• multi-platform (at least Windows, Linux and Mac OS), multi-compiler (at least Visual C++ 2008,

2010, gcc 4.1.2, 4.2.1, 4.4.3), and supports 32 and 64 bit systems. The underlying ITK code builds

on many more platforms, see www.itk.org/Wiki/ITK_Prerequisites. So, it is highly portable to the

platform of the user’s choice;

• highly configurable: there is a lot of choice for all the registration components. Choosing the configu-

ration that suits your needs is easy thanks to human readable and editable parameter file;

• easy to use for large amounts of data, since elastix can be called easily in a script;

• fast, thanks to stochastic subsampling, if desired;

• relatively easy to extend, i.e. to add new components, so it is very suited for research also.

3.2 Getting started

This section describes how you can install elastix, either directly from the binaries, or by compiling elastix

yourself.

3.2.1 Getting started the really easy way

The easiest way to get started with elastix is to use the pre-compiled binaries.

1. Download the compressed archive from the website:

http://elastix.isi.uu.nl/download.php

2. Extract the archive to a folder of your choice.

3. Make sure your operating system can find the program:

(a) Windows XP: Go to the control panel, go to “System”, go to the tab “Advanced”, click “Envi-

ronmental variables”, add folder to the variable “path”.

(b) Linux: Add the following lines to your .bashrc file:

export PATH=folder/bin:$PATH

export LD LIBRARY PATH=folder/lib:$LD LIBRARY PATH

or call elastix with the full path: fullPathToFolder\elastix. Note that in Linux, you will have to

set the LD LIBRARY PATH anyway.

3.2.2 Getting started the easy way

It is also possible to compile elastix yourself, since the source code is freely available. In this section, we

assume you use the Microsoft Visual C++ 2005 (or higher) compiler under Windows, and the GCC compiler

under Linux/MacOS.

1. Download and install CMake: www.cmake.org.
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2. Download and compile the ITK version 3.20: www.itk.org. Make sure to set the following (advanced)

CMake variables to ON: ITK USE REVIEW, ITK USE REVIEW STATISTICS, ITK USE ORIENTED IMAGE DIRECTION,

ITK IMAGE BEHAVES AS ORIENTED IMAGE, ITK USE CENTERED PIXEL COORDINATES CONSISTENTLY. On

Linux systems with the GCC compiler: set CMAKE BUILD TYPE to “Release”.

3. Obtain the sources. There are three possibilities:

(a) Download the compressed sources from the website. Extract the archive to <your-elastix-folder>

of your choice.

(b) Use subversion (https://subversion.tigris.org) to check out the release from the subversion

repository:

svn co --username elastixguest --password elastixguest

https://svn.bigr.nl/elastix/tagspublic/elastix_XX_X <your-elastix-folder>

where XX X is the major version number (first 2 digits) and the minor version number (1 digit).

So, for example, for version 4.5 this would be 04 5.

(c) Use subversion to check out the latest development version. NB: this version might be unstable!

svn co --username elastixguest --password elastixguest

https://svn.bigr.nl/elastix/trunkpublic <your-elastix-folder>

4. Run CMake for elastix:

(a) Windows: start CMake. Find the src folder with the source code. Set the folder where you

want the binaries to be created. Click “Configure” and select the compiler that you use. Set the

CMAKE INSTALL PREFIX to the directory where you want elastix installed. Click “Configure”

until all cache values are no longer red, and click OK.

(b) Linux: run CMake from the folder where you want the binaries to be created, with as command

line argument the folder in which the sources were extracted: ccmake <src-folder>. Set the

CMAKE BUILD TYPE to “Release” and the CMAKE INSTALL PREFIX to the directory where you want

elastix installed.

CMake will create a project or solution or make file for your compiler.

5. Compile elastix by opening the project and selecting “compile” in release mode, or on Linux by

running make install. Your compiler will now create the elastix binaries. On Windows you can

perform the installation step (which copies the binaries to the CMAKE INSTALL PREFIX directory) by

also ‘compiling’ the INSTALL project.

6. Make sure your operating system can find the program, see above.

For developers: When running CMake, you may toggle the display of the “advanced” options. In this

list you will find several options like USE BSplineTransform ON/OFF. By default only the most commonly

used components are ON. To reduce compilation time, you may turn some components OFF, which you do

not plan to use anyway. Be careful though to not turn off essential components. The released binaries are

compiled with all components ON.

3.3 How to call elastix

elastix is a command line program. This means that you have to open a command line interface (a DOS-

box, a shell) and type in an appropriate elastix command. This also means that there is no graphical user

interface. Help on using the program can be acquired as follows:

19

www.itk.org
https://subversion.tigris.org


elastix --help

which will give a list of mandatory and optional arguments. The most basic command to run a registration

is as follows:

elastix -f fixedImage.ext -m movingImage.ext -out outputDirectory -p parameterFile.txt

where ‘ext’ is the extension of the image files. The above arguments are mandatory. These are minimally

needed to run elastix. The parameter file is an important file: it contains, in normal text, what kind of

registration is performed (i.e. what metric, optimiser, etc.) and what the parameters are that define the

registration. It gives a high amount of flexibility and control over the process. More information about the

parameter file is given in Section 3.4. All output of elastix is written to the output directory, which needs

to be created before running elastix. The output consists of a log file (elastix.log), the parameters of

the transformation Tµ that relates the fixed and the moving image (TransformParameters.?.txt), and,

optionally, the resulting registered image IM (Tµ(x)) (result.?.mhd). The log file contains all messages

that were print to screen during registration. Also the parameterFile.txt is copied into the log file, and

the contents of the TransformParameters.?.txt files are included. The log file is thus especially useful for

trouble shooting.

Besides the mandatory arguments, there are some optional arguments. Mask images can be provided by

adding -fMask fixedMask.ext and/or -mMask movingMask.ext to the command line. An initial transfor-

mation can be provided with a valid transform parameter file by adding -t0 TransformParameters.txt

to the command line. With the command line option -threads unsigned int the user can specify the

maximum number of threads that elastix will use.

Running multiple registrations in succession, each possibly of a different type, and with the output of a

previous registration as input to the next, can be done with elastix in several ways. The first one is to run

elastix once with the first registration, and use its output (the TransformParameter.0.txt that can be

found in the output directory) as input for a new run of elastix with the command line argument -t0. So:

elastix -f ... -m ... -out out1 -p param1.txt

elastix -f ... -m ... -out out2 -p param2.txt -t0 out1/TransformParameters.0.txt

elastix -f ... -m ... -out out3 -p param3.txt -t0 out2/TransformParameters.0.txt

and so on. Another possibility is combine the registrations with one run of elastix:

elastix ... -p param1.txt -p param2.txt -p param3.txt

The transformations from each of the registrations are automatically combined, using one of the equations

(2.17) and (2.18).

On the elastix-website, in the ‘About’ section, you can find an example on how to use the program.

Maybe now is the time to try the example and see a registration in action.

3.4 The parameter file

The parameter file is a text file that defines the components of the registration and their parameter values.

Supplying a parameter works as follows:

(ParameterName value(s))

So parameters are provided between brackets, first the name, followed by one or more values. If the value is

of type string then the values need to be quoted:

(ParameterName "value1" ... "valueN")
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Comments can be provided by starting the line with ‘//’. A minimal example of a valid parameter file is

given in Appendix A. A list of available parameters for each class is given at http://elastix.isi.uu.nl/

doxygen/parameter.html. Examples of parameter files can be found at the wiki: http://elastix.bigr.

nl/wiki/index.php/Parameter_file_database.

Since the choice of the several components and the parameter values define the registration, it is very

important to set them wisely. These choices are what make the registration a success or a disaster. Therefore,

a separate chapter is dedicated to the fine art of tuning a registration, see Chapter 5.
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Chapter 4

transformix

4.1 Introduction

By now you are able to at least run a registration, by calling elastix correctly. It is often also useful

to apply the transformation as found by the registration to another image. Maybe you want to apply the

transformation to an original (larger) image to gain resolution. Or maybe you need the transformation to

apply it to a label image (segmentation). For those purposes a program called transformix is available. It

was developed simultaneously with elastix.

4.2 How to call transformix

Like elastix, transformix is a command line driven program. You can get basic help on how to call it, by:

transformix --help

which will give a list of mandatory and optional arguments.

The most basic command is as follows:

transformix -in inputImage.ext -out outputDirectory -tp TransformParameters.txt

This call will transform the input image and write it, together with a log file transformix.log, to the output

directory. The transformation you want to apply is defined in the transform parameter file. The transform

parameter file could be the result of a previous run of elastix (see Section 3.3), but may also be written

by yourself. Section 4.3 explains the structure and contents that a transform parameter file should have.

Besides using transformix for deforming images, you can also use transformix to evaluate the trans-

formation Tµ(x) at some points x ∈ ΩF . This means that the input points are specified in the fixed image

domain (!), since the transformation direction is from fixed to moving image, as explained in Section 2.6. If

you want to deform a set of user-specified points, the appropriate call is:

transformix -def inputPoints.txt -out outputDirectory -tp TransformParameters.txt

This will create a file outputpoints.txt containing the input points x and the transformed points Tµ(x)

(given as voxel indices of the fixed image and additionally as physical coordinates), the displacement vector

Tµ(x) − x (in physical coordinates), and, if -in inputImage.ext is also specified, the transformed output

points as indices of the input image1. The inputPoints.txt file should have the following structure:

1The downside of this is that the input image is also deformed, which consumes time and may not be needed by the user.

If this is a problem, just run transformix without -in and compute the voxel indices yourself, based on the Tµ(x) physical

coordinate data.
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<index, point>

<number of points>

point1 x point1 y [point1 z]

point2 x point2 y [point2 z]

. . .

The first line indicates whether the points are given as “indices” (of the fixed image), or as “points” (in

physical coordinates). The second line stores the number of points that will be specified. After that the

point data is given.

Instead of the custom .txt format for the input points, transformix also supports .vtk files:

transformix -def inputPoints.vtk -out outputDirectory -tp TransformParameters.txt

The output is then saved as outputpoints.vtk. The support for .vtk files is still a bit limited. Currently,

only ASCII files are supported, with triangle meshes. Any meta point data is lost in the output file.

If you want to know the deformation at all voxels of the fixed image, simply use -def all:

transformix -def all -out outputDirectory -tp TransformParameters.txt

The deformation field is stored as a vector image deformationField.mhd. Each voxel contains the displace-

ment vector Tµ(x) − x in physical coordinates. The elements of the vectors are stored as float values.

In addition to computing the deformation field, transformix has the capability to compute the spatial

Jacobian of the transformation. The determinant of the spatial Jacobian identifies the amount of local

compression or expansion and can be quite useful, for example in lung ventilation studies. The determinant

of the spatial Jacobian can be computed on the entire image only using:

transformix -jac all -out outputDirectory -tp TransformParameters.txt

The complete spatial Jacobian matrix can also be computed:

transformix -jacmat all -out outputDirectory -tp TransformParameters.txt

where each voxel is filled with a d×d matrix, with d the image dimension, instead of a simply a scalar value.

With the command-line option -threads unsigned int the user can specify the maximum number of

threads that transformix will use.

4.3 The transform parameter file

The result of a registration is the transformation Tµ relating the fixed and moving image. The parameters

of this transformation are stored in a TransformParameters.?.txt-file. An example of its structure for a

2D rigid transformation is given in Appendix B. The text file contains all information necessary to resample

an input image (the moving image) to the region specified in the file (by default the fixed image region).

The transform parameter file can be manually edited or created as is convenient for the user. Mul-

tiple transformations are composed by iteratively supplying another transform parameter file with the

InitialTransformParametersFileName tag. The last transformation will be the one where the initial

transform parameter file name is set to "NoInitialTransform".

An important parameter in the transform parameter files is the FinalBSplineInterpolationOrder.

Usually it is set to 3, because that produces the best quality result image after registration, see Sec 5.3.4.

However, if you use transformix to deform a segmentation of the moving image (so, a binary image), you

need to manually change the FinalBSplineInterpolationOrder to 0. This will make sure that the deformed

segmentation is still a binary label image. If third order interpolation is used, the deformed segmentation

image will contain garbage. This is related to the “overshoot-property” of higher-order B-spline interpolation.
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4.4 Some details

4.4.1 Run-time

The run-time of transformix is built up of the following parts:

1. Computing the B-spline decomposition of the input image (in case you selected the FinalBSpline-

Interpolator);

2. Computing the transformation for each voxel;

3. Interpolating the input image for each voxel.

We have never performed tests to measure the computational complexity of each step, but we think that

step 1 is the least time-consuming task. This step can obviously be avoided by using a nearest neighbour or

linear interpolator. Step 2 is dependent on the choice of the transformation, where linear transformations,

such as the rigid and affine transform, are substantially faster than nonlinear transforms, such as the B-spline

transform. Step 3 depends on the specific interpolator. In order of increasing complexity: nearest neighbour,

linear, 1st-order B-spline, 2nd-order B-spline, etc.

4.4.2 Memory consumption

For more information about memory consumption, see Section 5.5.3 and also:

http://elastix.bigr.nl/wiki/index.php/Memory_consumption_transformix
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Chapter 5

Tutorial

5.1 Selecting the registration components

When performing registration one carefully has to choose the several components, as specified in Chapter 2.

The components must be specified in the parameter file. For example:

(Transform "BSplineTransform")

(Metric "AdvancedMattesMutualInformation")

. . .

In Table 5.1 a list of the components that need to be specified is given, with some recommendations. The

“Registration” component was not mentioned in Chapter 2. The registration component serves to connect all

other components and implements the multiresolution aspect of registration. So, one may say that it actually

implements the block scheme of Figure 2.2. Also the “Resampler” component was not explicitly mentioned

in Chapter 2. It simply serves to generate the deformed moving image after registration. Currently there is

only one Resampler available in elastix: the DefaultResampler. The component is therefore not further

discussed.

Component Recommendation

Registration MultiResolutionRegistration

Metric AdvancedMattesMutualInformation

Sampler RandomCoordinate

Interpolator BSplineInterpolator

ResampleInterpolator FinalBSplineInterpolator

Resampler DefaultResampler

Transform Depends on the application

Optimizer StandardGradientDescent/

AdaptiveStochasticGradientDescent

FixedImagePyramid FixedSmoothingImagePyramid

MovingImagePyramid MovingSmoothingImagePyramid

Table 5.1: Some recommendations for the several components.

5.2 Overview of all parameters

A list of all available components of elastix can be found at:
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http://elastix.isi.uu.nl/doxygen/modules.html

A list of all parameters that can be specified for each registration component can be found at the elastix

website:

http://elastix.isi.uu.nl/doxygen/parameter.html

At that site you can find how to specify a parameter and what the default value is. We have tried to come

up with sensible defaults, although the defaults will certainly not work in all cases. A collection of successful

parameter files can be found at the wiki:

http://elastix.bigr.nl/wiki/index.php/Parameter_file_database

This may get you started with your particular application.

5.3 Important parameters

In the same order as in Section 2.3 we discuss the important parameters for each component and explain

the recommendations made in Table 5.1.

5.3.1 Registration

Just use the MultiResolutionRegistration method, since multi-resolution is a good idea. And if you still

think you don’t need all this multi-resolution, you can always set the NumberOfResolutions to 1. You don’t

have to set anything else. Section 5.3.7 discusses the number of resolutions in more detail.

5.3.2 Metric

The AdvancedMattesMutualInformation usually works well, both for mono- and multi-modal images. It

supports fast computation of the metric value and derivative in case the transform is a B-spline by exploiting

its compact support. You need to set the number of histogram bins, which is needed to compute the joint

histogram. A good value for this depends on the dynamic range of your input images, but in our experience

32 is usually ok:

(NumberOfHistogramBins 32)

5.3.3 Sampler

The RandomCoordinate sampler works well in conjunction with the StandardGradientDescent and

AdaptiveStochasticGradientDescent optimisers, which are the recommended optimisation routines. These

optimisation methods can be used with a small amount of samples, randomly selected in every iteration,

see Section 2.7, which significantly decreases registration time. Set the NumberOfSpatialSamples to 3000.

Don’t go lower than 2000. Compared to samplers that draw samples on the voxel-grid (such as the Random

sampler), the RandomCoordinate sampler avoids what is known as the grid-effect [Thévenaz and Unser,

2008].

An important option for the random samplers, discussed in Section 5.3.6 is:

(NewSamplesEveryIteration "true")

which enforces the selection of new samples in every iteration.

An interesting option for the RandomCoordinate sampler is the UseRandomSampleRegion parameter,

used in combination with the SampleRegionSize parameter. If UseRandomSampleRegion is set to "false"

(the default), the sampler draws samples from the entire image domain. When set to "true", the sampler
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randomly selects one voxel, and then selects the remaining samples in a square neighbourhood around that

voxel. The size of the neighbourhood is determined by the SampleRegionSize (in physical coordinates). An

example for 3D images:

(ImageSampler "RandomCoordinate")

(NewSamplesEveryIteration "true")

(UseRandomSampleRegion "true")

(SampleRegionSize 50.0 50.0 50.0)

(NumberOfSpatialSamples 2000)

In every iteration, a square region of 503 mm is randomly selected. In that region, 2000 samples are selected

according to a uniform distribution. Effectively, a kind of localised similarity measure is obtained, which

sometimes gives better registration results. See Klein et al. [2008] for more information on this approach.

For the sample region size a reasonable value to try is ≈ 1/3 of the image size.

5.3.4 Interpolator

During the registration, use the BSplineInterpolator with first order interpolation:

(BSplineInterpolationOrder 1)

We recommend this instead of the LinearInterpolator, since the BSplineInterpolator has a dedicated

function to compute the derivative of the moving image.

We recommend a higher quality third order B-spline interpolator for generating the resulting deformed

moving image:

(ResampleInterpolator "FinalBSplineInterpolator")

(FinalBSplineInterpolationOrder 3)

5.3.5 Transform

This choice depends on the application at hand. For images of the same patient where you expect no

nonrigid deformation, you can consider a rigid transformation, i.e. choose the EulerTransform. If you want

to compensate for differences in scale, consider the affine transformation: AffineTransform. These two

transformations require a centre of rotation, which can be set by the user. By default the geometric centre

of the fixed image is taken, which is recommended. Another parameter that needs to be set is the Scales.

The scales define for each element of the transformation parameters µ a scaling value, which is used during

optimisation. The scaling serves to bring the elements of µ in the same range (parameters corresponding to

rotation have in general a much smaller range than parameters corresponding to translation). We recommend

to let elastix compute it automatically: (AutomaticScalesEstimation "true")1. Always start with a

rigid or affine transformation before doing a nonrigid one, to get a good initial alignment.

For nonrigid registration problems elastix has the BSplineTransform. The B-spline nonrigid trans-

formation is defined by a uniform grid of control points. This grid is defined by the spacing between the

grid nodes. The spacing defines how dense the grid is, or what the locality is of the transformation you can

model. For each resolution level you can define a different grid spacing. This is what we call multi-grid. In

general, we recommend to start with a coarse B-spline grid, i.e. a more global transformation. This way

the larger structures are matched first, for the same reason as why you should start with a rigid or affine

transformation. In later resolutions you can refine the transformation in a stepwise fashion; the idea is that

you subsequently match smaller structures, up to the final precision. The final grid spacing is specified with:

1The implementation is given in elastix\src\Core\ComponentBaseClasses\elxTransformBase.hxx

27



(FinalGridSpacingInPhysicalUnits 10.0 10.0 10.0)

with as much numbers as there are dimensions in your image. The spacing is in most medical images specified

in millimetres. It is also possible to specify the grid in voxel units:

(FinalGridSpacingInVoxels 16.0 16.0 16.0)

If the final B-spline grid spacing is chosen high, then you cannot match small structures. On the other

hand, if the grid spacing is chosen very low, then small structures can be matched, but you possibly allow

the transformation to have too much freedom. This can result in irregular transformations, especially on

homogenous parts of your image, since there are no edges (or other information) at such areas that can guide

the registration. A penalty or regularisation term, see Equation (2.2), can help to avoid these problems. It

is hard to recommend a value for the final grid spacing, since it depends on the desired accuracy. But we can

try: if you are interested in somewhat larger structures, you could set it to 32 voxels, for matching smaller

structures you could go down to 16 or 8 voxels, or even up to 4. The last choice will maybe require some

regularisation term, unless maybe if you have carefully and gradually refined the grid spacing.

To specify a multi-grid schedule use the GridSpacingSchedule command:

(NumberOfResolutions 4)

(FinalGridSpacingInVoxels 8.0 8.0)

(GridSpacingSchedule 6.0 6.0 4.0 4.0 2.5 2.5 1.0 1.0)

The GridSpacingSchedule defines the multiplication factors for all resolution levels. In combination with

the final grid spacing, the grid spacing for all resolution levels is determined. In case of 2D images, the above

schedule specifies a grid spacing of 6 × 8 = 48 voxels in resolution level 0, via 32 and 20 voxels, to 8 voxels

in the final resolution level. The default value for the GridSpacingSchedule uses a powers-of-2 scheme:

(GridSpacingSchedule 8.0 8.0 4.0 4.0 2.0 2.0 1.0 1.0) (for 2D images).

As a side-note: the number of parameters that are minimised in (2.1) is determined by the size of µ, i.e.

in case of the B-spline deformable transform by the control point grid spacing. If you double the spacing, the

number of parameters are increased by a factor 8 for a 3D image. For a 2563 image and a grid spacing of 16

voxels this will result in approximately (256/16)3 ×3 ≈ 12.000 parameters; for a grid spacing of 8 voxels this

is almost 100.000 parameters. The amount of parameters can be directly related to memory consumption

and registration time, depending on the specific implementation.

In most literature, cubic (3rd-order) B-splines are used for image registration. Other spline orders are also

possible of course. You may experiment with the BSplineTransformSplineOrder option. Orders 1, 2, and

3 are supported. A lower order will reduce the computation time, but may cause less smooth deformations.

With order 1, the deformation field is not even differentiable anymore, strictly speaking.

As an alternative to the B-spline transform, elastix includes the SplineKernelTransform, which imple-

ments a thin-plate spline type of transform. See Sections 2.6 and 6.4 for more information on this transform.

Lastly, it is wise to include the following line in every parameter file:

(HowToCombineTransforms "Compose")

Up to elastix version 4.2, by default, if this line was omitted, "Add" was used for backwards compatibility.

From elastix version 4.3, the default has been changed to "Compose", which is better in most applications.

See Section 2.6, Equations (2.17) and (2.18) for explanation.

5.3.6 Optimiser

The StandardGradientDescent method, see Equations (2.20) and (2.22) offers the possibility to perform

fast registration, see Klein et al. [2007]. The key idea is that you use a random subset of voxels (samples),

newly selected in each iteration, to compute the cost function derivatives. The number of samples to use is

specified using the parameter NumberOfSpatialSamples, see Section 5.3.3. Typically, 2000-5000 is enough.

It is important to tell the optimiser to select new samples in every iteration:
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Figure 5.1: Sequence 1: a = 1000, A = 50, α = 0.602. Sequence 2: a = 400, A = 10, α = 0.602. Both

sequences start with the same step size, but sequence 2 decays much faster.

(NewSamplesEveryIteration "true")

A downside of the StandardGradientDescent method is that you need to tune the parameters of the

gain factor ak, see Section 5.3. Equation (2.21) needs a choice for the step size ak, which is in elastix

defined as in Equation (2.22). Figure 5.2 gives some examples.

The parameters α and A define the decay slope of the function. For the parameter α we recommend the

value 0.6. For A, use something in the order of 50:

(SP alpha 0.6)

(SP A 50.0)

This leaves the parameter a, called SP a in elastix, as the most important parameter to tune. And it is

an important parameter, it can mean success for a good choice and failure if not! If a is set too high, the

iterative solving algorithm (2.21) becomes unstable, and you may deform your image beyond recognition.

If a is set too low, you will never make it to the optimum, or may get stuck in a very small nearby local

optimum. Figure 5.2 illustrates this. A good choice for a is dependent on the cost function that is used for

registration: the a that will give you a good result for SSD is not the same as the one that gives a good

result for MI. Finally, a also depends on the amount of deformation that you expect between the fixed and

the moving image. So again, recommendations are hard to give. In general we advise you to think in orders

of magnitude, if a = 10 is too small, try a = 100 and not a = 11. For mutual information, normalised

correlation coefficient, and normalised mutual information, you could start around a = 1000. For the mean

squared difference metric you could try something smaller than 1. If a is chosen way too big, you may

encounter the error message “Too many samples map outside moving image buffer”. This error may have

other causes as well though. The FAQ at the elastix website gives more information on this error message.

For every resolution you could specify a different value of SP a, but it might be easier to start with the

same value for every resolution.

(SP a 1000.0 1000.0 1000.0)

or, equivalently:

(SP a 1000.0)

The last important option related to the optimiser is the maximum number of iterations:
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Figure 5.2: The effect of the choice of the step size a (SP A). This example can be downloaded from the

elastix website. (a) the fixed image, (b) the moving image. (c)-(e) show the registered images, with (c)

a = 320 is too small, (d) a = 3200 as in the downloadable example is good, (e) a = 32000 is too large.

(MaximumNumberOfIterations 500)

which is, in the case of StandardGradientDescent, not only the maximum, but also the minimum, since

there is no other stopping condition implemented for this optimiser. In general, the more iterations, the

better the registration result. But, of course, more iterations take more time. A value of 500 is a good start.

Use 2000 if computation time is not such an issue. You may try to go down to 200 iterations if you are in a

hurry. For small 2D images, and rigid registration, even less iterations may suffice. A side benefit of using

more iterations is that a wider range of SP a gives good results. Tuning SP a then becomes easier.

A relatively new development is that of an adaptive stochastic gradient descent algorithm Klein et al.

[2009], which does not require tuning a. This optimiser is covered in Chapter 6.

5.3.7 Image pyramids

The FixedImagePyramid and the MovingImagePyramid have identical options. What is said below about

the FixedImagePyramid works similarly for the MovingImagePyramid.

Use the FixedSmoothingImagePyramid, since it will not throw away valuable information, and since

you are not using the FullSampler anyway, down-sampling will not save you any time. It may consume

quite some memory though for large images and many resolution levels. Two parameters have to be set

to define the multi-resolution strategy: the number of resolutions (NumberOfResolutions) and the specific

down-sampling schedule that is used in each resolution (FixedImagePyramidSchedule). If you only set the

NumberOfResolutions, a default schedule will be used that smoothes the fixed image by a factor of 2 in

each dimension, starting from σ = 0.5 in the last resolution. That schedule is usually fine. In case you have

highly anisotropic data, you might want to blur less in the direction of the largest spacing.

In general 3 resolutions is a good starting point. If the fixed and moving image are initially far away, you
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can increase the number of resolution levels to, say, 5 or 6. This way the images are more blurred and more

attention is paid to register large, dominant structures.

The pyramid schedule defines the amount of blurring (and down-sampling in case a FixedRecursiveImagePyramid

is used), in each direction x, y, z and for each resolution level. It can be specified as follows:

(NumberOfResolutions 4)

(FixedImagePyramidSchedule 8 8 4 4 2 2 1 1)

In this example 4 resolutions for a 2D image are used. At resolution level 0 the image is blurred with σ = 8/2

voxels in each direction (σ is half the pyramid schedule value). At level 1 σ = 4/2 is used, and finally at

the last level, level 4, the original images are used for registration. Specifying the fixed and moving image

pyramids with an identical schedule can be done with one command:

(ImagePyramidSchedule 4 4 2 2 2 1 1 1 1)

for a 3D image with 3 resolution levels, where less smoothing is performed in the z-direction.

5.4 Masks

Sometimes you are specifically interested in aligning only a part of the image. A possibility to focus on this

part is to crop the image. Cropping, however, restricts the region of interest (ROI) to be a square (2D) or

cube (3D) only. If you need an irregular shaped ROI, you can use masks. A mask is a binary image, filled

with 0’s and 1’s. If you use a mask, you only perform registration on the part of the image that is within

the masks, i.e. where the mask has 1’s.

You can/should use a mask

• when your image contains an artificial edge that has no real meaning. The registration might be

tempted to align these artificial edges, thereby neglecting the meaningful edges. The conic beam edge

in ultrasound images is an example of such an artificial edge.

• when the image contains structures in the neighbourhood of your ROI that may influence the reg-

istration within your ROI. This is for example the case when matching lung data. Usually, you are

interested in the lungs, and not if the rib cage is well aligned. However, the ribs are structures that

for example in CT can have a strong influence on the similarity metric, especially if you use the SSD

metric. In that case, the rib cage may be well aligned at the cost of vessels structures near the border

of the lung with the rib cage. In this case it will help you if you use a dilated lung segmentation as a

mask.

Masks can be used both for the fixed and the moving image. A fixed image mask is sufficient to focus

the registration on a ROI, since samples are drawn from the fixed image. You only want to use a mask for

the moving image when your moving image contains nonsense grey values near the ROI.

In case you are using a mask to prevent bad karma from an artificial edge, you also need to set the

parameter:

(ErodeMask "true")

If not, then when performing multi-resolution, information from the artificial edge will flow into you ROI

due to the smoothing step. In case the edge around your ROI is meaningful, e.g. in the lung example, you

should set it to false, because this edge will help to guide the registration.

A common exception that elastix throws when drawing samples is: “Could not find enough image

samples within reasonable time. Probably the mask is too small.” The probable cause for this is that your

fixed image mask is too small. See the FAQ for more information.
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5.5 Trouble shooting

5.5.1 Common errors

Some common sources of confusion and questions have been gathered in a FAQ, which can be found at

http://elastix.isi.uu.nl/FAQ.php

5.5.2 Bad initial alignment

When the initial alignment between two images is very off, you cannot start a nonrigid registration. And

sometimes it can be a hassle to get it right. What factors can help to get it right?

• Start with a transformation with a low degree of freedom, i.e. the translation, rigid, similarity or affine

transform. Sometimes the images are really far off, and have no overlap to begin with (NB: the position

of images in physical space is determined by the origin and voxel spacing; see Section 2.2). A solution

is then to add the following line to your parameter file:

(AutomaticTransformInitialization "true")

This parameter facilitates the automatic estimation of an initial alignment for the aforementioned

transformations. Three methods to do so are supported: the default method which aligns the centres

of the fixed and moving image, a method that aligns the centres of gravity, and a method that simply

aligns the image origins. A method can be selected by adding one of the following lines to the parameter

file:

(AutomaticTransformInitializationMethod "GeometricalCenter")

(AutomaticTransformInitializationMethod "CenterOfGravity")

(AutomaticTransformInitializationMethod "Origins")

Note that “Origins” is currently only available for the affine transformation.

• You need a good multi-resolution strategy, i.e. quite a bit of resolution levels. This way a lot of

smoothing is going on, blurring away all the details and thereby focussing the registration on the

major structures.

• Use more iterations.

• Take larger steps. Set the parameter a so high that the translation component of the transformation

takes a step of several voxels in each iteration, up to 10. Maybe it will work, and in that case you

will get alignment pretty quick, but the step size a is still large, so you immediately jump away from

alignment again. If that happens, you should let the sequence ak = a/(A + k)α decay relatively fast.

This can be achieved by setting both a and A a bit lower, see Figure 5.1.

• In case you need to find a large rotation, you might want to take larger steps for the rotation, but not

for the translation. This can be achieved by modifying the scales parameter, see Section 5.3.5:

(Scales 10000.0)

You can set it lower to take larger rotation steps. If it is set to 1.0 you take as large steps for

the rotation as for the translation (but the rotation is defined in radials). If you set it really high

(> 106) you won’t rotate at all. You probably don’t need to go lower than 1000.0. Note that the

AutomaticScalesEstimation option usually works fine, so specifying Scales is not necessary.
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5.5.3 Memory consumption

The typical size of clinical images increases as a function of time. Therefore, memory efficiency will become

more of an issue. elastix consumes ≈ 100 MB of memory for small images, for larger image pairs (2563)

and some common components, consumption can be about 1 - 1.5 GB. With very large images (4003 and

above) memory consumption can rise above the 2 GB limit of most Windows systems. What to do with

large images?

• Buy yourself a brand new computer with a lot of memory. Make sure that this computer is 64 bit,

otherwise you cannot address this much memory. Also make sure that your operating system supports

64 bit.

• Images in elastix are internally by default represented as a bunch of voxels of floating type. You can

modify this to short images:

(FixedInternalImagePixelType "short")

(MovingInternalImagePixelType "short")

This way you save half the amount of memory that is used to store the fixed and moving images, and

their multi-resolution pyramids. This will come at the cost of a loss of precision, but may not be that

harmful. This option is useful both for elastix and transformix.

• Change the interpolator that is used during registration. By default a B-spline interpolator is used,

which stores a coefficient image internally in double type. You can also specify a float version:

(Interpolator "BSplineInterpolatorFloat")

which saves you another bit of memory the size of a short image. This option is useful for elastix

only. To save even more memory, use the LinearInterpolator. This may change the results a little

though, because of its different method to compute image derivatives.

• Change the interpolator that is used when resampling an image:

(ResampleInterpolator "FinalBSplineInterpolatorFloat")

This option is useful both for elastix and transformix. However, for elastix it will only save you

some memory at the very end of the registration.

• Use downsampled images during the registration. This probably will not effect the registration accuracy

too much. After registration you can apply the resulting transformation to the original full size moving

image, using transformix. See the FAQ for more information.
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Chapter 6

Advanced topics

6.1 Metrics

6.1.1 Image registration with multiple metrics and/or images

Up till now we viewed image registration as the problem of finding the spatial relation between one fixed

image and one moving image, using one similarity metric to define the fit. Sometimes, it is desirable to

combine multiple metrics, or multiple fixed and moving images, or both. All these three generalisations are

available in elastix:

multi-metric In this case the registration cost function is defined as:

C(Tµ; IF , IM ) =
1

∑N
i=1 ωi

N∑

i=1

ωiCi(Tµ; IF , IM ), (6.1)

with ωi the weights. This way the same fixed and moving image is used for every sub-metric Ci. This

way one can for example simultaneously optimise the SSD and MI during a registration.

elastix should be called like:

elastix -f fixed.ext -m moving.ext -out outDir -p parameterFile.txt

multi-image In this case the registration cost function is defined as:

C(Tµ; IF , IM ) =
1

∑N
i=1 ωi

N∑

i=1

ωiC(Tµ; Ii
F , Ii

M ). (6.2)

This way one can simultaneously register all channels of multi-spectral input data, using a single type

of cost function for all channels.

elastix should be called like:

elastix -f0 fixed0.ext -f1 fixed1.ext -f<>... -m0 moving0.ext -m1 moving1.ext

-m<>... -out outDir -p parameterFile.txt

both In this case the registration cost function is defined as:

C(Tµ; IF , IM ) =
1

∑N
i=1 ωi

N∑

i=1

ωiCi(Tµ; Ii
F , Ii

M ). (6.3)
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This is the most general way of registration supported by elastix. This will make it possible for

example to register two lung CT data sets with MI, while simultaneously registering the fissure seg-

mentations with the kappa statistic. The two may help each other in getting a better registration

compared to only using a single channel.

All three scenarios use the multi-metric registration method, which is selected in the parameter file with:

(Registration "MultiMetricMultiResolutionRegistration")

Other parts of the parameter file should look like:

(FixedImagePyramid "FixedSmoothingImagePyramid" "FixedSmoothingImagePyramid" ...)

(MovingImagePyramid "MovingSmoothingImagePyramid" "MovingSmoothingImagePyramid" ... )

(Interpolator "BSplineInterpolator" "BSplineInterpolator" ...)

(Metric "AdvancedMattesMutualInformation" "AdvancedMeanSquareDifference" ...)

(ImageSampler "RandomCoordinate" "RandomCoordinate" ...)

(Metric0Weight 0.125)

(Metric1Weight 0.125)

(Metric2Weight 0.125)

etc

Another way of registering multi-spectral data is to use the α-mutual information measure, described

below.

6.1.2 α-mutual information

The α-mutual information metric computes true multi-channel α-mutual information. It does not use high-
dimensional joint histograms, but instead relies on k-nearest neighbour graphs to estimate α-MI. Details can
be found in Staring et al. [2009]. It is specified in the parameter file with:

(Registration "MultiResolutionRegistrationWithFeatures")

(FixedImagePyramid "FixedSmoothingImagePyramid" "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid" "MovingSmoothingImagePyramid")

(Interpolator "BSplineInterpolator" "BSplineInterpolator")

(Metric "KNNGraphAlphaMutualInformation")

(ImageSampler "MultiInputRandomCoordinate")

// KNN specific

(Alpha 0.99)

(AvoidDivisionBy 0.0000000001)

(TreeType "KDTree")

(BucketSize 50)

(SplittingRule "ANN_KD_STD")

(ShrinkingRule "ANN_BD_SIMPLE")

(TreeSearchType "Standard")

(KNearestNeighbours 20)

(ErrorBound 10.0)

A complete list of the available parameters can be found in the doxygen documentation →

elx::KNNGraphAlphaMutualInformationMetric.

6.1.3 Penalty terms

This paragraph requires extension and modification.
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In order to regularise the transformation Tµ often a penalty term P(µ) is added to the cost function, so

it becomes:

C = γ1S + γ2P, (6.4)

where γ1, γ2 user-defined constants that weigh similarity against regularity.

Penalty term are often based on the first or second order spatial derivatives of the transformation. An

example is the bending energy of the transformation, which is arguably the most common penalty term, see

Section 6.1.4.

The derivative of the similarity measure usually involves computation of the spatial derivative of the

moving image: ∂IM

∂x
, and the derivative of the transformation to its parameters: ∂T

∂µ
. In the ITK the

last derivative is implemented using transform->GetJacobian(), i.e. the derivative to the transformation

parameters µ is referred to as ‘Jacobian’.

Penalty terms usually consist of the first and second order spatial derivatives of the transformation,

i.e. ∂T
∂x

and ∂2T
∂x∂xT . We will refer to these derivatives as the ‘SpatialJacobian’ and the ‘SpatialHessian’

to clearly distinguish between these derivatives and the ‘Jacobian’. In order to apply the gradient descent

optimisation routine (2.20), (2.21), we additionally need the derivatives ∂
∂µ

∂T
∂x

and ∂
∂µ

∂2T
∂x∂xT . These we call

the ‘JacobianOfSpatialJacobian’ and ‘JacobianOfSpatialHessian’, respectively.

The transform class as defined in the ITK does not support the computation of spatial derivatives ∂T /∂x

and ∂2T /∂x2, and their derivatives to µ. Initially, we created non-generic classes that combine mutual infor-

mation and the mentioned penalty terms specifically (the MattesMutualInformationWithRigidityPenalty

component in elastix version 4.3 and earlier). In 2010, however, we created a more advanced version of

the ITK transform that does implement these spatial derivatives. Additionally, we created a bending energy

regularisation class that takes advantage of these functions, see Section 6.1.4. We also reimplemented the

rigidity penalty term, see Section 6.1.5; it currently however does not yet use these spatial derivatives. More

detailed information can be found in Staring and Klein [2010a].

This all means that it is possible in elastix to combine any similarity metric with any of the available

penalty terms (currently the bending energy and the rigidity penalty term).

6.1.4 Bending energy penalty

The bending energy penalty term is defined in 2D as:

PBE(µ) =
1

P

∑

x̃i

∥∥∥∥
∂2T

∂x∂xT
(x̃i)

∥∥∥∥
2

F

(6.5)

=
1

P

∑

x̃i

2∑

j=1

(
∂2Tj

∂x2
1

(x̃i)

)2

+ 2

(
∂2Tj

∂x1∂x2
(x̃i)

)2

+

(
∂2Tj

∂x2
2

(x̃i)

)2

, (6.6)

where P is the number of points x̃i, and the tilde denotes the difference between a variable and a given

point over which a term is evaluated. As you can see it penalises sharp deviations of the transformation

(e.g. no high compression followed by a nearby high expansion). You can use it to regularise your nonrigid

transformation if you experience problems such as foldings. In our current implementation the computation

time of this term is relatively large, though.
It can be selected in elastix using

(Metric "AnySimilarityMetric" "TransformBendingEnergyPenalty")

(Metric0Weight 1.0) (Metric1Weight <weight>)

and has no further parameters.
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6.1.5 Rigidity penalty

Some more advanced metrics, not found in the ITK, are available in elastix: The rigidity penalty term
Prigid(Tµ; IM ) described in Staring et al. [2007a]. It is specified in the parameter file with:

(Metric "AnySimilarityMetric" "TransformRigidityPenalty")

// normal similarity metric parameters

...

// Rigidity penalty parameters:

(RigidityPenaltyWeight 0.1)

(LinearityConditionWeight 10.0)

(OrthonormalityConditionWeight 1.0)

(PropernessConditionWeight 100.0)

(MovingRigidityImageName "movingRigidityImage.mhd")

A complete list of the available parameters can be found in the doxygen documentation →

elx::TransformRigidityPenalty. See also Section 6.1.3.

6.1.6 DisplacementMagnitudePenalty: inverting transformations

The DisplacementMagnitudePenalty is a cost function that penalises ||Tµ(x) − x||2. You can use this
to invert transforms, by setting the transform to be inverted as an initial transform (using -t0), setting
(HowToCombineTransforms "Compose"), and running elastix with this metric, using the original fixed
image set both as fixed (-f) and moving (-m) image. After that you can manually set the initial transform
in the last parameter file to "NoInitialTransform", and voila, you have the inverse transform! Strictly
speaking, you should then also change the Size/Spacing/Origin/Index/Direction settings to match that of
the moving image. Select it with:

(Metric "DisplacementMagnitudePenalty")

Note that inverting a transformation becomes conceptually very similar to performing an image registration

in this way. Consequently, the same choices are relevant: optimisation algorithm, multiresolution etc...

Note that this procedure was described and evaluated in Metz et al. [in press].

6.1.7 Corresponding points: help the registration

Most of the similarity measures in elastix are based on corresponding characteristics of the fixed and

moving image. It is possible, however, to register based on point correspondence. Therefore, in elastix

4.4 we introduced a metric that minimises the distance of two point sets with known correspondence. It is

defined as:

SCP =
1

P

∑

xF i

‖xMi − Tµ(xFi)‖ (6.7)

where P is the number of points xi, and xFi,xMi corresponding points from the fixed and moving image

point sets, respectively. The metric can be used to help in a difficult image registration task that fails if

performed fully automatically. A user can manually click corresponding points (or maybe automatically

extract), and setup elastix to not only minimise based on intensity, but also taking into account that some

positions are known to correspond. The derivative of SCP reads:

∂

∂µ
SCP = −

1

P

∑

xF i

1

‖xMi − Tµ(xFi)‖
(xMi − Tµ(xFi))

∂T

∂µ
(xFi). (6.8)

In elastix this metric can be selected using:
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(Metric "AnySimilarityMetric" "CorrespondingPointsEuclideanDistanceMetric")

(Metric0Weight 1.0)

(Metric1Weight <weight>)

Note that this metric must be specified as the last metric, due to some technical constraints. The fixed and

moving point set can be specified on the command line:

elastix ... -fp fixedPointSet.txt -mp movingPointSet.txt

The point set files have to be defined in a specific format, identical to supplying points to transformix, see

Section 4.2.

6.1.8 VarianceOverLastDimensionMetric: aligning time series

This metric is explained in Metz et al. [in press]. Example parameter files can be found on the wiki parameter

file database, entry par0012.

This metric should be used to estimate the motion in dynamic imaging data (time series). The variance

of intensities over time is measured. Two- to four-dimensional imaging data is supported.

6.2 Image samplers

RandomSparseMask This variant of the random sampler is useful if the fixed image mask is sparse (i.e.

consists of many zeros).

6.3 Interpolators

ReducedDimensionBSplineInterpolator This is a variant of the normal B-spline interpolator, which

uses a 0th order spline in the last dimension. This saves time when aligning time-series, when you do

not have to interpolate in the last (time) dimension anyway. Its usage is illustrated in entry par0012

of the parameter file database.

6.4 Transforms

DeformationFieldTransform This transform serves as a wrapper around existing deformation field vector

images. It computes the transformation by interpolating the deformation field image. The relevant

tags in the transform parameter file are as follows:

(Transform "DeformationFieldTransform")

(DeformationFieldFileName "deformationField.mhd")

(DeformationFieldInterpolationOrder 1)

(NumberOfParameters 0)

The deformation field image’s pixel type should be a vector of float elements. It could be a deformation

field that is the result of transformix -def all for example! Since this transform does not have any

parameters (the µ has zero length), it makes no sense to use it for registration. It can just be used as

an initial transformation (supplied by the option -t0) or as input for transformix.

SplineKernelTransform As an alternative to the B-spline transform, elastix includes a SplineKernelTransform,

which implements a thin-plate spline type of transform; see also Section 2.6. This transformation re-

quires a list of fixed image landmarks (control points) to be specified with the command line option
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“-ipp ipp.txt”, by means of an input points file which has the same format as the -def file used

by transformix (see Section 4.2). See the doxygen documentation on the website for a list of its

parameters.

The moving image landmarks are optimized during the registration, and can be found in the resulting

TransformParameters.txt file, in the parameter “TransformParameters”. See Section 2.6 for the

ordering of the parameters.

WeightedCombinationTransform This is a transformation that is modelled as a weighted combination

of user-specified transformations: Tµ(x) =
∑

i wiTi(x). The weights wi form the parameter vector

µ. The sub-transforms Ti(x) may for example follow from a statistical deformation model, obtained

by principal component analysis. See the doxygen documentation on the website for a list of its

parameters.

BSplineTransformWithDiffusion This transform implements the work described in Staring et al. [2007b].

BSplineStackTransform This transformation model defines a stack of independent B-spline transforma-

tions. Its usage is illustrated in Metz et al. [in press]. Example parameter files can be found on the

wiki parameter file database, entry par0012.

6.5 Optimisation methods

AdaptiveStochasticGradientDescent This optimizer is very similar to the StandardGradientDescent,

but implements an adaptive step size mechanism and estimates a proper initial value for SP a. See

Klein et al. [2009] for more details. In practice this optimizer works in many applications with its

default settings. Only the number of iterations must be specified by the user:

(Optimizer "AdaptiveStochasticGradientDescent")

(MaximumNumberOfIterations 500)

(SigmoidInitialTime 4.0)

(MaximumStepLength 1.0)

The last two options are not mandatory. SigmoidInitialTime corresponds to t0 in the article; its

default value is 0. The MaximumStepLength corresponds to δ in the article; its default value equals the

average voxel spacing of fixed and moving image.

Conjugate gradient —ConjugateGradientFRPR

CMAEvolutionStrategy

FiniteDifferenceGradientDescent

Full search

Quasi Newton

RegularStepGradientDescent —RSGDEachParameterApart

SimultaneousPerturbation
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Chapter 7

Developers guide

7.1 Relation to ITK

A large part of the elastix code is based on the ITK Ibáñez et al. [2005]. The use of the ITK implies that

the low-level functionality (image classes, memory allocation etc.) is thoroughly tested. Naturally, all image

formats supported by the ITK are supported by elastix as well. The C++ source code can be compiled

on multiple operating systems (Windows XP, Linux, Mac OS X), using various compilers (MS Visual Studio

up to version 2010, GCC up to version 4.4.3), and supports both 32 and 64 bit systems.

In addition to the existing ITK image registration classes, elastix implements new functionality. The

most important enhancements are listed in Table 7.1.

• A modular framework for sampling strategies. See for more details Staring and

Klein [2010b].

• Several new optimisers: Kiefer-Wolfowitz, Robbins-Monro, adaptive stochastic

gradient descent, evolutionary strategy. Complete rework of existing ITK op-

timisers, adding more user control and better error handling: quasi-Newton,

nonlinear conjugate gradient.

• Several new or more flexible cost functions: (normalised) mutual information,

implemented with Parzen windowing similar to Thévenaz and Unser [2000], mul-

tifeature α-mutual information, bending energy penalty term, rigidity penalty

term.

• The ability to concatenate any number of geometric transformations.

• The transformations support computation of not only ∂T /∂µ, but also of spatial

derivatives ∂T /∂x and ∂2T /∂x2, and their derivatives to µ, frequently required

for the computation of regularisation terms. Additionally, the compact support of

certain transformations is integrated more generally. See for more details Staring

and Klein [2010a].

• Linear combinations of cost functions, instead of just a single cost function.

Table 7.1: The most important enhancements and additions in elastix, compared to the ITK.

40



7.2 Overview of the elastix code

The elastix source code consists roughly of two layers, both written in C++: A) ITK-style classes that

implement image registration functionality, and B) elastix wrappers that take care of reading and setting

parameters, instantiating and connecting components, saving (intermediate) results, and similar ‘adminis-

trative’ tasks. The modular design enables adding new components, without changing the elastix core.

Adding a new component starts by creating the layer A class, which can be compiled and tested independent

of layer B. Subsequently, a small layer B wrapper needs to be written, which connects the layer A class to

the other parts of elastix.

The image samplers, for example, are implemented as ITK classes that all inherit from a base class

itk::ImageSamplerBase. These can be found in src/Common/ImageSamplers. This is “layer A” in elastix.

For each sampler (random, grid, full... ) a wrapper is written, located in src/Components/ImageSamplers,

which takes care of configuring the sampler before each new resolution of the registration process. This is

“layer B” of elastix.

7.2.1 Directory structure

The basic directory structure is as follows:

• dox

• src/Common: ITK classes, Layer A stuff. This directory also contains some external libraries, unrelated

to ITK, like xout (which is written by us) and the ANNlib.

• src/Core: this is the main elastix kernel, responsible for the execution flow, connecting the classes,

reading parameters etc.

• src/Components: this directory contains the components and their elastix wrappers (layer B). Very

component-specific layer A code can also be found here.

In elastix 4.4 and later versions, it is also possible to add your own Component directories. These can

be located anywhere outside the elastix source tree. See Section 7.4 for more details about this.

7.3 Including elastix code in your own program

You may find some elastix classes useful to integrate in your own project. For example, if you are developing

a new elastix component and first would like to test it outside elastix (see Section 7.4. In such a case, you

could of course copy the required elastix files to your own project, or set the include-paths manually, but

this would not be very convenient.

To make it easier, a UseElastix.cmake file is generated in the elastix binary directory. You can

include this in the CMakeLists.txt file of your own project, and CMake will make sure that all necessary

include directories are set. Also, you can link to the elastix libraries, such as elxCommon, to avoid

recompiling code.

An example of this can be found in the directory dox/externalproject of the elastix source distribution.

7.4 Creating new components

If you want to create your own component, it is natural to start writing the layer A class, without bothering

about elastix. The layer A filter should implement all basic functionality and you can test in a separate

ITK program if it does what it is supposed to do. Once you got this ITK class to work, it is trivial to write

the layer B wrapper in elastix (start by copy-pasting from existing components).
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With CMake, you can tell elastix in which directories the source code of your new components is

located, using the ELASTIX USER COMPONENT DIRS option. elastix will search all subdirectories of these

directories for CMakeLists.txt files that contain the command ADD ELXCOMPONENT( <name> ... ). The

CMakeLists.txt file that accompanies an elastix component looks typically like this:

ADD_ELXCOMPONENT( AdvancedMeanSquaresMetric

elxAdvancedMeanSquaresMetric.h

elxAdvancedMeanSquaresMetric.hxx

elxAdvancedMeanSquaresMetric.cxx

itkAdvancedMeanSquaresImageToImageMetric.h

itkAdvancedMeanSquaresImageToImageMetric.hxx )

The ADD ELXCOMPONENT command is a macro defined in src/Components/CMakeLists.txt. The first argu-

ment is the name of the layer B wrapper class, which is declared in “elxAdvancedMeanSquaresMetric.h”.

After that, you can specify the source files on which the component relies. In the example above, the files

that start with “itk” form the layer A code. Files that start with “elx” are the layer B code. The file

“elxAdvancedMeanSquaresMetric.cxx” is particularly simple. It just consists of two lines:

#include "elxAdvancedMeanSquaresMetric.h"

elxInstallMacro( AdvancedMeanSquaresMetric );

The elxInstallMacro is defined in src/Core/Install/elxMacro.h.

The files elxAdvancedMeanSquaresMetric.h/hxx together define the layer B wrapper class. That class

inherits from the corresponding layer A class, but also from an elx::BaseComponent. This gives us the

opportunity to add a common interface to all elastix components, regardless of the ITK classes from which

they inherit. Examples of this interface are the following methods:

void BeforeAll(void)

void BeforeRegistration(void)

void BeforeEachResolution(void)

void AfterEachResolution(void)

void AfterEachIteration(void)

void AfterRegistration(void)

These methods are automatically invoked at the moments indicated by the name of the function. This gives

you a chance to read/set some parameters, print some output, save some results etc.

7.5 Coding style

In order to improve code readability and consistency, which has a positive influence on maintainability we

have adopted a coding style. he pete

White spacing Good spacing improves code readability. Therefore,

• Don’t use tabs. Tabs depend on tab size, which will make the code appearance dependent on the

viewer. We use 2 spaces per tab. In Visual Studio this can be set as a preference: go to tools

→ options → text editor → All languages → Tabs, then tab size = indent size = 2 and mark

“insert spaces”. In vim you can adapt your .vimrc to include the lines set ts=2; set sw=2;

set expandtab.

• No spaces at the end of a line, like in ITK. It’s just ugly. To make them (very) noticeable add

the following in your .vimrc:
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:highlight ExtraWhitespace ctermbg=red guibg=red

:match ExtraWhitespace /\s\+$/

• Use spaces in functions, for loops, indices, etc. So,

FunctionName(.void.);

for.(.i.=.0;.i.<.10;.i++.)

vector[.i.].=.3;

Indentation l

• Not too much, not too long lines

namespace itk

{

^

^

/**

.* ********************* Function ******************************

.*/

^

template <class TTemplate1, class TTemplate2>

void

ClassName<TTemplate1, TTemplate2>

::Function(.void.)

{

..//Function body

..this->OtherMemberFunction(.arguments.);

..for.(.i.=.0;.i.<.10;.i++.)

..{

....x.+=.i.*.i;

..}

^

} // end Function()

^

}.//.end.namespace.itk

• A class looks like

namespace itk

{

^

/**.\class.ClassName

.*.\brief.Brief.description

.*

.*.Detailed.description

.*

.*.\ingroup.Group

.*/

^

template < templateArguments >

class.ClassName:

public.SuperclassName
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{

public:

^

../**.Standard.class.typedefs..*/

..typedef.ClassName..................Self;

..typedef.SuperclassName.............Superclass;

Variable and function naming It’s nice if from the name of a variable you know that it’s local or a class

member. Therefore,

• Member variables are prepended with m , followed by a capital. In the implementation refer to

them using this->. So, this->m_MemberVariable is correct.

• Local variables should start with a lower case character.

• Functions should start with a capital.

• Member functions should also be called using this->

Better code Some simple things to look at:

• Use const wherever you can

• use vnl math functions instead of their std counterparts

• For floats don’t use 0, but 0.0 to avoid possible bugs.

• Use the virtual keyword when overriding a virtual function in a derived class. This is not strictly

needed in C++, but when you use it, it is immediately clear that a function overridden or meant

to be overridden.

• Always use opening and closing brackets. Although it is not always needed for C++, do

if.(.condition.)

{

..valid = true;

}

instead of

if.(.condition.)

..valid = true;

Also for for-loops.

Commenting Code is mean to be read by others, or you in years time. So,

• Comment a lot

• End functions with } // end FunctionName()
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Appendix A

Example parameter file

//ImageTypes

(FixedInternalImagePixelType "float")

(FixedImageDimension 2)

(MovingInternalImagePixelType "float")

(MovingImageDimension 2)

//Components

(Registration "MultiResolutionRegistration")

(FixedImagePyramid "FixedRecursiveImagePyramid")

(MovingImagePyramid "MovingRecursiveImagePyramid")

(Interpolator "BSplineInterpolator")

(Metric "AdvancedMattesMutualInformation")

(Optimizer "StandardGradientDescent")

(ResampleInterpolator "FinalBSplineInterpolator")

(Resampler "DefaultResampler")

(Transform "EulerTransform")

// ********** Pyramid

// Total number of resolutions

(NumberOfResolutions 3)

// ********** Transform

//(CenterOfRotation 128 128) center by default

(AutomaticTransformInitialization "true")

(AutomaticScalesEstimation "true")

(HowToCombineTransforms "Compose")

// ********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 300 300 600)

//SP: Param_a in each resolution level. a_k = a/(A+k+1)^alpha

(SP_a 0.001)
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//SP: Param_alpha in each resolution level. a_k = a/(A+k+1)^alpha

(SP_alpha 0.602)

//SP: Param_A in each resolution level. a_k = a/(A+k+1)^alpha

(SP_A 50.0)

// ********** Metric

//Number of grey level bins in each resolution level:

(NumberOfHistogramBins 32)

(FixedKernelBSplineOrder 1)

(MovingKernelBSplineOrder 3)

// ********** Several

(WriteTransformParametersEachIteration "false")

(WriteTransformParametersEachResolution "false")

(ShowExactMetricValue "false")

(ErodeMask "true")

// ********** ImageSampler

// Number of spatial samples used to compute the

// mutual information in each resolution level:

(ImageSampler "RandomCoordinate")

(NumberOfSpatialSamples 2048)

(NewSamplesEveryIteration "true")

// ********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)
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Appendix B

Example transform parameter file

(Transform "EulerTransform")

(NumberOfParameters 3)

(TransformParameters -0.000000 -4.564513 -2.091174)

(InitialTransformParametersFileName "NoInitialTransform")

(HowToCombineTransforms "Compose")

// Image specific

(FixedImageDimension 2)

(MovingImageDimension 2)

(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(Size 256 256)

(Index 0 0)

(Spacing 1.0000000000 1.0000000000)

(Origin 0.0000000000 0.0000000000)

// EulerTransform specific

(CenterOfRotationPoint 128.0000000000 128.0000000000)

// ResampleInterpolator specific

(ResampleInterpolator "FinalBSplineInterpolator")

(FinalBSplineInterpolationOrder 3)

// Resampler specific

(Resampler "DefaultResampler")

(DefaultPixelValue 0.000000)

(ResultImageFormat "mhd")

(ResultImagePixelType "short")
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Appendix C

Software License

Overview:

Elastix was developed by Stefan Klein and Marius Staring under

supervision of Josien P.W. Pluim, initially under contract to the

Image Sciences Institute, University Medical Center Utrecht, The

Netherlands.

Elastix is distributed under the new and simplified BSD license

approved by the Open Source Initiative (OSI)

[http://www.opensource.org/licenses/bsd-license.php].

The software is partially derived from the Insight Segmentation and

Registration Toolkit (ITK), which is also distributed under the new

and simplified BSD licence. The ITK is required by Elastix for

compilation of the source code.

The copyright of the files in the Common/KNN/ann_1.1 subdirectory

is held by a third party, the University of Maryland. The ANN

package is distributed under the GNU Lesser Public Licence. Please

read the content of the subdirectory for specific details on this

third-party license.

Elastix Copyright Notice:

Copyright (c) 2004-2010 University Medical Center Utrecht

All rights reserved.

License:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.
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* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

* Neither the name of the University Medical Center Utrecht nor the names of

its contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.
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