
SECOND EDITION

Asterisk™: The Future of Telephony

Jim Van Meggelen, Leif Madsen, and Jared Smith

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Asterisk™: The Future of Telephony, Second Edition
by Jim Van Meggelen, Leif Madsen, and Jared Smith

Copyright © 2007, 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Copy Editor: Sanders Kleinfeld
Production Editor: Laurel R.T. Ruma
Proofreader: Tolman Creek Design

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:
June 2005: First Edition.
August 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Asterisk™: The Future of Telephony, the image of starfish, and related trade dress
are trademarks of O’Reilly Media, Inc. Asterisk™ is a trademark of Digium, Inc.
Asterisk: The Future of Telephony is published under the Creative Commons “Commons Deed” license
(http://creativecommons.org/licenses/by-nc-nd/2.5/ca/).

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51048-9
ISBN-13: 978-0-596-51048-0

[M]

http://safari.oreilly.com
http://creativecommons.org/licenses/by-nc-nd/2.5/ca/

This book is dedicated to Rich Adamson
(1947–2006).

Thanks for showing us the meaning of
community.

Table of Contents

Foreword . xi

Preface . xv

1. A Telephony Revolution . 1
VoIP: Bridging the Gap Between Traditional and Network Telephony 2
Massive Change Requires Flexible Technology 3
Asterisk: The Hacker’s PBX 5
Asterisk: The Professional’s PBX 5
The Asterisk Community 6
The Business Case 8
This Book 9

2. Preparing a System for Asterisk . 11
Server Hardware Selection 13
Environment 21
Telephony Hardware 25
Types of Phones 29
Linux Considerations 34
Conclusion 34

3. Installing Asterisk . 37
What Packages Do I Need? 38
Obtaining the Source Code 40
Menuselect 42
Compiling Zaptel 43
Compiling libpri 47
Compiling Asterisk 48
Installing Additional Prompts 50
Common Compiling Issues 51
Loading Asterisk and Zaptel Quickly 54
Loading Zaptel Modules Without Scripts 55

vii

Loading libpri Without Script 57
Starting Asterisk Without Scripts 57
Directories Used by Asterisk 59
AsteriskNOW™ 62
Conclusion 67

4. Initial Configuration of Asterisk . 69
What Do I Really Need? 70
Working with Interface Configuration Files 71
Setting Up the Dialplan for Some Test Calls 73
FXO and FXS Channels 73
Configuring an FXO Channel for a PSTN Connection 75
Configuring an FXS Channel for an Analog Telephone 79
Configuring SIP Telephones 81
Connecting to a SIP Service Provider 97
Connecting Two Asterisk Boxes Together via SIP 101
Configuring an IAX Softphone 106
Connecting to an IAX Service Provider 110
Connecting Two Asterisk Boxes Together via IAX 111
Using Templates in Your Configuration Files 115
Debugging 116
Conclusion 117

5. Dialplan Basics . 119
Dialplan Syntax 119
A Simple Dialplan 124
Building an Interactive Dialplan 127
Conclusion 144

6. More Dialplan Concepts . 145
Expressions and Variable Manipulation 145
Dialplan Functions 148
Conditional Branching 149
Voicemail 153
Macros 157
Using the Asterisk Database (AstDB) 160
Handy Asterisk Features 163
Conclusion 165

7. Understanding Telephony . 167
Analog Telephony 167
Digital Telephony 170
The Digital Circuit-Switched Telephone Network 180

viii | Table of Contents

Packet-Switched Networks 184
Conclusion 184

8. Protocols for VoIP . 185
The Need for VoIP Protocols 186
VoIP Protocols 187
Codecs 193
Quality of Service 197
Echo 200
Asterisk and VoIP 202
VoIP Security 204
Conclusion 206

9. The Asterisk Gateway Interface (AGI) . 207
Fundamentals of AGI Communication 207
Writing AGI Scripts in Perl 210
Creating AGI Scripts in PHP 214
Writing AGI Scripts in Python 219
Debugging in AGI 223
Conclusion 225

10. Asterisk Manager Interface (AMI) and Adhearsion 227
The Manager Interface 227
The Flash Operator Panel 231
Asterisk Development with Adhearsion 231

11. The Asterisk GUI Framework . 245
Why a GUI for Asterisk? 245
What Is the GUI? 246
Architecture of the Asterisk GUI 248
Installing the Asterisk GUI 249
Developing for the Asterisk GUI 251

12. Relational Database Integration . 263
Introduction 263
Installing the Database 263
Installing and Configuring ODBC 265
Using Realtime 268
Storing Call Detail Records 272
Getting Funky with func_odbc: Hot-Desking 274
ODBC Voicemail 286
Conclusion 291

Table of Contents | ix

13. Managing Your Asterisk System . 293
Call Detail Recording 293
Managing Logs 295
Running Asterisk As a Non-root User 295
Customizing System Prompts 298
Music on Hold 299
Conclusion 302

14. Potpourri . 303
Festival 303
Call Files 306
DUNDi 307
Alternative Voicemail Storage Methods 312
Asterisk and Jabber (XMPP) 315
Conclusion 316

15. Asterisk: The Future of Telephony . 317
The Problems with Traditional Telephony 317
Paradigm Shift 320
The Promise of Open Source Telephony 320
The Future of Asterisk 327

A. VoIP Channels . 337

B. Application Reference . 367

C. AGI Reference . 449

D. Configuration Files . 461

E. Asterisk Dialplan Functions . 493

F. Asterisk Manager Interface Actions . 515

G. An Example of func_odbc . 551

Index . 557

x | Table of Contents

Foreword

Once upon a time, there was a boy

...with a computer

...and a phone.

This simple beginning begat much trouble!

It wasn’t that long ago that telecommunications, both voice and data, as well as soft-
ware, were all proprietary products and services, controlled by one select club of
companies that created the technologies, and another select club of companies who
used the products to provide services. By the late 1990s, data telecommunications had
been opened by the expansion of the Internet. Prices plummeted. New and innovative
technologies, services, and companies emerged. Meanwhile, the work of free software
pioneers like Richard Stallman, Linus Torvalds, and countless others was culminating
in the creation of a truly open software platform called Linux (or GNU/Linux). How-
ever, voice communications, ubiquitous as they were, remained proprietary. Why?
Perhaps it was because voice on the old public telephone network lacked the glamor
and promise of the shiny new World Wide Web. Or, perhaps it was because a telephone
just wasn’t as effective at supplying adult entertainment. Whatever the reason, one
thing was clear. Open source voice communications was about as widespread as open
source copy protection software.

Necessity (and in some cases simply being cheap) is truly the mother of invention. In
1999, having started Linux Support Services to offer free and commercial technical
support for Linux, I found myself in need (or at least in perceived need) of a phone
system to assist me in providing 24-hour technical support. The idea was that people
would be able to call in, enter their customer identity, and leave a message. The system
would in turn page a technician to respond to the customer’s request in short order.
Since I had started the company with about $4,000 of capital, I was in no position to
be able to afford a phone system of the sort that I needed to implement this scenario.
Having already been a Linux user since 1994, and having already gotten my feet wet in
open source software development by starting l2tpd, Gaim, and cheops, and in the
complete absence of anyone having explained the complexity of such a task, I decided
that I would simply make my own phone system using hardware borrowed from

xi

Adtran, where I had worked as a co-op student. Once I got a call into a PC, I fantasized,
I could do anything with it. In fact, it is from this conjecture that the official Asterisk
motto (which any sizable, effective project must have) is derived:

It’s only software!

For better or worse, I rarely think small. Right from the start, it was my intent that
Asterisk would do everything related to telephony. The name “Asterisk” was chosen
because it was both a key on a standard telephone and also the wildcard symbol in
Linux (e.g., rm -rf *).

So, in 1999, I had a free telephony platform I’d put out on the Web and I went about
my business trying to eke out a living at providing Linux technical support. However,
by 2001, as the economy was tanking, it became apparent that Linux Support Services
might do better by pursuing Asterisk than general-purpose Linux technical support.
That year, we would make contact with Jim “Dude” Dixon of the Zapata Telephony
project. Dude’s exciting work was a fantastic companion to Asterisk and provided a
business model for us to start pursuing Asterisk with more focus. After creating our
first PCI telephony interface card in conjunction with Dude, it became clear that “Linux
Support Services” was not the best name for a telephony company, and so we changed
the name to “Digium,” which is a whole other story that cannot be effectively conveyed
in writing. Enter the expansion of Voice over IP (VoIP) with its disruptive transition of
voice from the old, circuit-switched networks to new IP-based networks, and things
really started to take hold.

Now, as we’ve already covered, clearly most people don’t get very excited about tele-
phones. Certainly, few people could share my excitement the moment I heard a dial
tone coming from a phone connected to my PC. However, those who do get excited
about telephones get really excited about telephones. And facilitated by the Internet,
this small group of people were now able to unite and apply our bizarre passions to a
common, practical project for the betterment of many.

To say that telecom was ripe for an open source solution would be an immeasurable
understatement. Telecom is an enormous market due to the ubiquity of telephones in
work and personal life. The direct market for telecom products has a highly technical
audience that is willing and able to contribute. People demand their telecom solutions
be infinitely customizable. Proprietary telecom is very expensive. Creating Asterisk was
simply the spark in this fuel-rich backdrop.

Asterisk sits at the apex of a variety of transitions (proprietary → open source; circuit
switched → VoIP; voice only → voice, video, and data; digital signal processing → host
media processing; centralized directory → peer to peer) while easing those transitions
by providing bridges back to the older ways of doing things. Asterisk can talk to any-
thing from a 1960s-era pulse-dial phone to the latest wireless VoIP devices, and provide
features from simple tandem switching all the way to Bluetooth presence and DUNDi.

Most important of all, though, Asterisk demonstrates how a community of motivated
people and companies can work together to create a project with a scope so significant

xii | Foreword

that no one person or company could have possibly created it on its own. In making
Asterisk possible, I particularly would like to thank Linus Torvalds, Richard Stallman,
the entire Asterisk community, and whoever invented Red Bull.

So where is Asterisk going from here? Think about the history of the PC. When it was
first introduced in 1980, it had fairly limited capabilities. Maybe you could do a spread-
sheet, maybe do some word processing, but in the end, not much. Over time, however,
its open architecture led to price reductions and new products allowing it to slowly
expand its applications, eventually displacing the mini computer, then the mainframe.
Now, even Cray supercomputers are built using Linux-based x86 architectures. I an-
ticipate that Asterisk’s future will look very similar. Today, there is a large subset of
telephony that is served by Asterisk. Tomorrow, who knows what the limit might be?

So, what are you waiting for? Read, learn, and participate in the future of open tele-
communications by joining the Asterisk revolution!

—Mark Spencer

Foreword | xiii

Preface

This is a book for anyone who is new to Asterisk™.

Asterisk is an open source, converged telephony platform, which is designed primarily
to run on Linux. Asterisk combines more than 100 years of telephony knowledge into
a robust suite of tightly integrated telecommunications applications. The power of As-
terisk lies in its customizable nature, complemented by unmatched standards compli-
ance. No other PBX can be deployed in so many creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music
on hold, and call parking are all standard features built right into the software. More-
over, Asterisk can integrate with other business technologies in ways that closed,
proprietary PBXes can scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why docu-
mentation is so important to its growth. Documentation lowers the barrier to entry and
helps people contemplate the possibilities.

Produced with the generous support of O’Reilly Media, Asterisk:
The Future of Telephony was inspired by the work started by the Asterisk Documen-
tation Project. We have come a long way, and this book is the realization of a desire to
deliver documentation that introduces the most fundamental elements of Asterisk—
the things someone new to Asterisk needs to know. It is the first volume in what we
are certain will become a huge library of knowledge relating to Asterisk.

This book was written for, and by, the Asterisk community.

Audience
This book is for those new to Asterisk, but we assume that you’re familiar with basic
Linux administration, networking, and other IT disciplines. If not, we encourage you
to explore the vast and wonderful library of books that O’Reilly publishes on these
subjects. We also assume you’re fairly new to telecommunications, both traditional
switched telephony and the new world of Voice over IP.

xv

Organization
The book is organized into these chapters:

Chapter 1, A Telephony Revolution
This is where we chop up the kindling and light the fire. Asterisk is going to change
the world of telecom, and this is where we discuss our reasons for that belief.

Chapter 2, Preparing a System for Asterisk
Covers some of the engineering considerations you should have in mind when
designing a telecommunications system. Much of this material can be skipped if
you want to get right to installing, but these are important concepts to understand,
should you ever plan on putting an Asterisk system into production.

Chapter 3, Installing Asterisk
Covers the obtaining, compiling, and installation of Asterisk.

Chapter 4, Initial Configuration of Asterisk
Describes the initial configuration of Asterisk. Here we will cover the important
configuration files that must exist to define the channels and features available to
your system.

Chapter 5, Dialplan Basics
Introduces the heart of Asterisk, the dialplan.

Chapter 6, More Dialplan Concepts
Goes over some more advanced dialplan concepts.

Chapter 7, Understanding Telephony
Taking a break from Asterisk, this chapter discusses some of the more important
technologies in use in the Public Telephone Network.

Chapter 8, Protocols for VoIP
Following the discussion of legacy telephony, this chapter discusses Voice over
Internet Protocol.

Chapter 9, The Asterisk Gateway Interface (AGI)
Introduces one of the more amazing components, the Asterisk Gateway Interface.
Using Perl, PHP, and Python, we demonstrate how external programs can be used
to add nearly limitless functionality to your PBX.

Chapter 10, Asterisk Manager Interface (AMI) and Adhearsion
Describes how external applications can connect to Asterisk to manipulate or
monitor various aspects of the system. Also included in this chapter is a gentle
introduction to the Adhearsion framework.

Chapter 11, The Asterisk GUI Framework
The Asterisk GUI Framework, new in Asterisk 1.4, is a framework system that
allows web developers to create graphical interfaces with minimal interference to
the standard configuration files.

xvi | Preface

Chapter 12, Relational Database Integration
Walks you through setting up Asterisk to work with ODBC databases.

Chapter 13, Managing Your Asterisk System
Discusses issues regarding how to best manage your Asterisk phone system, in-
cluding CDR, logs, and prompts.

Chapter 14, Potpourri
Briefly covers what is, in fact, a rich and varied cornucopia of incredible features
and functions—all part of the Asterisk phenomenon.

Chapter 15, Asterisk: The Future of Telephony
Predicts a future where open source telephony completely transforms an industry
desperately in need of a revolution.

Appendix A, VoIP Channels

Appendix B, Application Reference

Appendix C, AGI Reference

Appendix D, Configuration Files

Appendix E, Asterisk Dialplan Functions

Appendix F, Asterisk Manager Interface Actions

Appendix G, An Example of func_odbc

Software
This book is focused on documenting Asterisk Version 1.4; however, many of the con-
ventions and information in this book are version-agnostic. Linux is the operating
system we have run and tested Asterisk on, with a leaning toward Red Hat syntax. We
decided that while Red Hat–based distributions may not be the preferred choice of
everyone, their layout and utilities are nevertheless familiar to many experienced Linux
administrators.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, parameters, and arguments that must be substituted
into commands.

Preface | xvii

Constant width bold
Shows commands or other text that should be typed literally by the user. Also used
for emphasis in code.

Constant width italic
Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]
Indicates optional keywords and arguments.

{ choice-1 | choice-2 }
Signifies either choice-1 or choice-2.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Asterisk: The Future of Telephony, Second
Edition, by Jim Van Meggelen, Leif Madsen, and Jared Smith. Copyright 2007 O’Reilly
Media, Inc., 978-0-596-51048-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

xviii | Preface

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596510480

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Re-
illy Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Firstly, we have to thank our fantastic editor Michael Loukides, who offered invaluable
feedback and found incredibly tactful ways to tell us to rewrite a section (or chapter)
when it was needed, and have us think it was our idea. Mike built us up when we were
down, and brought us back to earth when we got uppity. You are a master, Mike, and
seeing how many books have received your editorial oversight contributes to an un-
derstanding of why O’Reilly Media is the success that it is.

Thanks also to Sanders Kleinfeld, our copy editor, Laurel Ruma, our production editor,
and the rest of the unsung heroes in O’Reilly’s production department. These are the
folks that take our book and make it an O’Reilly book.

Everyone in the Asterisk community needs to thank Jim Dixon for creating the first
open source telephony hardware interfaces, starting the revolution, and giving his cre-
ations to the community at large.

Thanks to Tim O’Reilly, for giving us a chance to write this book.

Preface | xix

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596510480
http://www.oreilly.com

To our most generous and merciless review team:

• Rich Adamson, President of Network Partners Inc., for your encyclopedic knowl-
edge of the PSTN, and your tireless willingness to share your experience. Your
generosity, even in the face of daunting challenge, is inspiring to us all.*

• Tilghman Lesher, for an incredibly thorough review of our book, contributing
some much needed time toward Appendixes B and F, in addition to some amazing
new Asterisk applications and functions.

• Andrew Kohlsmith, for helping to write the IMAP voicemail storage section in
Chapter 14.

• David Troy, for providing a technical review, for AstManProxy, and for porting
Asterisk to the Roomba (first PBX to run on a vacuum cleaner!).

• Matthew Gast, fellow O’Reilly author, for reading our book from cover to cover,
and then giving us a comprehensive review, and also for T1, The Definitive Guide.

• Dr. Edward Guy III, for your comprehensive and razor-sharp evaluation of each
and every chapter of the first edition, and for your championing of Asterisk.

• Kristian Kielhofner, President, KrisCompanies, and creator of AstLinux, for the
most excellent AstLinux distribution.

• Russell Bryant, for your rapid and helpful responses to our questions.

• Joshua Colp, for helping us with performance tweaking, and still more questions.

• Kevin Fleming, for raising the bar, and for being a class act, respected (dare we say
loved) by all.

• Brian Capouch, for talking about what is possible, and then going out there and
doing it.

• Stephen Uhler, for championing the port of Zaptel to Solaris, and for giving us
some golden examples.

• Jason Parker, for not being a newb.

• Ekke Loo, for beating up the database chapter.

• Ian Darwin, for tweaking some of the verbiage for us, and for the cherry-red rotary
dial phone (that works with Asterisk!).

• Joel Sisko, CEO, iConverged, for your comprehensive telecom and wiring
knowledge.

Finally, and most importantly, thanks go to Mark Spencer for Gaim (recently renamed
Pidgin, www.pidgin.im), Asterisk, and DUNDi, and for contributing his creations to
the open source community.

* In December of 2006, Rich passed away, as his two-year battle with cancer came to an unfortunate end. Rich
was posting on the Asterisk Users mailing list as late as November of that year. He was giving to the community
right up until the end, which is why we dedicated this book to him.

xx | Preface

Jim Van Meggelen
For me, it all started in the spring of 2004, sitting at my desk in the technical support
department of the telecom company I’d worked at for nearly 15 years. With no chal-
lenges to properly exercise the skills I had developed, I spent my time trying to figure
out what the rest of my career was going to look like. The telecommunications industry
had fallen from the pedestal of being a darling of investors to being a joke known to
even the most uninformed. I was supposed to feel fortunate to be one of the few who
still had work, but what thankless, purposeless work it was. We knew why our industry
had collapsed: the products we sold could not hope to deliver the solutions our cus-
tomers required—even though the industry promised that they could. They lacked
flexibility, and were priced totally out of step with the functionality they were delivering
(or, more to the point, were failing to deliver). Nowhere in the industry were there any
signs this was going to change any time soon.

I had been dreaming of an open source PBX for many long years, but I really didn’t
know how such a thing could ever come to be—I’d given up on the idea several years
before. I knew that to be successful, an open source PBX would need to effectively
bridge the worlds of legacy and network-based telecom. I always failed to find anything
that seemed ready.

Then, one fine day in spring, I half-heartedly seeded a Google search with the phrase
“open source telephony,” and discovered a bright new future for telecom: Asterisk, the
open source Linux PBX.†

There it was: the very thing I’d been dreaming of for so many years. I had no idea how
I was going to contribute, but I knew this: open source telephony was going to cause
a necessary and beneficial revolution in the telecom industry, and one way or another,
I was going to be a part of it.

For me, more of a systems integrator than developer, I needed a way to contribute to
the community. There didn’t seem to be a shortage of developers, but there sure was
a shortage of documentation. This sounded like something I could do. I knew how to
write, I knew PBXes, and I desperately needed to talk about this phenomenon that
suddenly made telecom fun again.

If I contribute only one thing to this book, I hope you will catch some of my enthusiasm
for the subject of open source telephony. This is an incredible gift we have been given,
but also an incredible responsibility. What a wonderful challenge. What a cosmic op-
portunity. What delicious fun!

† To get a sense of how big the Asterisk phenomenon is, type “PBX” into Google. As you look at the results,
bear in mind that the traditional PBX industry represents billions of dollars. The big players are companies
such as Avaya, Nortel, Siemens, Mitel, Cisco, NEC, and many, many more. It is somewhat telling that they
don’t seem to be concerned about how they rank in a Google search. As a cultural barometer, we’re pretty
sure this matters.

Preface | xxi

First of all, I need to thank Leif and Jared for inviting me to join the Asterisk Docu-
mentation Project. I have immensely enjoyed working with both of you, and I am
constantly amazed at how well our personalities and skills complement each other. A
truly balanced team, are we. Also, thanks goes to Figment for all the typing.

To my wife Killi, and my children Kaara, Joonas, and Joosep (who always remember
to visit me when I disappear into my underground lair for too long): you are a source
of inspiration to me. Your love is the fuel that feeds my fire, and I thank you.

Obviously, I need to thank my parents, Jack and Martiny, for always believing in me,
no matter how many rules I broke. In a few years, I’ll have my own teenagers, and it’ll
be your turn to laugh!

To Mark Spencer: thanks for all of the things that everybody else thanks you for, but
also, personally, thanks for giving generously of your time to the Asterisk community.
The Toronto Asterisk Users’ Group (http://www.taug.ca) made a quantum leap forward
as a result of your taking the time to speak to us, and that event will forever form a part
of our history. Oh yeah, and thanks for the beers, too. :-)

Finally, thanks to the Asterisk Community. This book is our gift to you. We hope you
enjoy reading it as much as we’ve enjoyed writing it.

Leif Madsen
The road to this book is a long one—nearly three years in the making. Back when I
started using Asterisk, possibly much like you, I didn’t know anything about Asterisk,
very little about traditional telephony, and even less about Voice over IP. I delved right
into this new and very exciting world and took in all I could. For two months during a
co-op term, for which I couldn’t immediately find work, I absorbed as much as I could,
asking questions, trying things and seeing what the system could do. Unfortunately
very little to no documentation existed for Asterisk, aside from some dialplan examples
I was able to find by John Todd, and having questions answered by Brian K. West on
IRC. Of course, this method wasn’t going to scale.

Not being much of a coder, I wanted to contribute something back to the community,
and what do coders hate doing more than anything? Documentation! So I started The
Asterisk Documentation Assignment (TADA), a basic outline with some information
for the beginnings of a book.

Shortly after releasing it on my web site, an intelligent fellow by the name of Jared Smith
introduced himself. He had similar aspirations for creating a “dead-tree” format book
for the community, and we humbly started the Asterisk Documentation Project. Jared
set up a simple web site at http://www.asteriskdocs.org, a CVS server, and the very first
DocBook-formatted version of a book for Asterisk. From there we started filling in
information, and soon had information submitted by a number of members of the
community.

xxii | Preface

http://www.taug.ca
http://www.asteriskdocs.org

In June of 2004, an animated chap by the name of Jim Van Meggelen started showing
up on the mailing lists, and contributing lots of information and documentation—this
was definitely a guy we wanted on our team! Jim had the vision and the drive to really
get Jared’s and my butts in gear and to work on something grander. Jim brought us
years of experience and a writing flair that we could have hardly imagined.

With the core documentation team established, we embarked on a plan for the creation
of volumes of Asterisk knowledge, eventually to lead to a complete library and a wealth
of information. This book is essentially the beginning of that dream.

Firstly and mostly, I have to thank my parents, Rick and Carol, for always supporting
my efforts, allowing me to realize my dreams, and always putting my needs ahead of
theirs. Without their vision, understanding, and insight into the future, it would have
been impossible to have accomplished what I have. I love you both very much!

I’d like to thank Felix Carapaica and Bill Farkas of the Sheridan Institute of Technology
for their dedication to the advancement of knowledge. Their teaching has complemen-
ted my prior learning, and has allowed me to expand my understanding of routing and
telecommunications exponentially.

There are far too many people to thank individually, but of particular importance, the
following people were, and are, the most influential to my understanding of Asterisk:
Joshua Colp, Tilghman Lesher, Russell Bryant, Steve Murphy, Olle Johansson, Steven
Sokol, Brian K. West, John Todd, and William Suffill, for my very first VoIP phone
(which I use to this day!). And for those who I said I’d mention in the book…thanks!

And of course, I must thank Jared Smith and Jim Van Meggelen for having the vision
and understanding of how important documentation really is—all of this would have
been impossible without you.

Jared Smith
I first started working with Asterisk in the spring of 2002. I had recently started a new
job with a market research company, and ended up taking a long road trip to a remote
call center with the CIO. On the long drive home we talked about innovation in tel-
ephony, and he mentioned a little open source telephony project he had heard of called
Asterisk. Over the next few months, I was able to talk the company into buying a
developer’s kit from Digium and started playing with Asterisk on company time.

During the next few months, I became more and more involved with the Asterisk com-
munity. I read the mailing lists. I scoured the archives. I hung out in the IRC channel,
just hoping to find nuggets of Asterisk knowledge. As time went on, I was finally able
to figure out enough to get Asterisk up and running.

That’s when the real fun began.

With the help of the CIO and the approval of the CEO, we moved forward with plans
to move our entire telecom infrastructure to Asterisk, including our corporate office

Preface | xxiii

and all of our remote call centers. Along the way, we ran into a lot of uncharted territory,
and I began thinking about creating a good repository of Asterisk knowledge. Over the
course of the project, we were able to do some really innovative things, such as invent
IAX trunking!

When all was said and done, we ended up with around forty Asterisk servers spread
across many different geographical locations, all communicating with each other to
provide a cohesive enterprise-class VoIP phone system. This system currently handles
approximately 1 million minutes of calls per month, serves several hundred employees,
connects to 27 voice T1s, and saves the company around $20,000 (USD) per month
on their telecom costs. In short, our Asterisk project was a resounding success!

While in the middle of implementing this project, I met Leif in one of the Asterisk IRC
channels. We talked about ways we could help out new Asterisk users and lower the
barrier to entry, and we decided to push ahead with plans to more fully document
Asterisk. I really wanted some good documentation in “dead-tree” format —basically
a book that a new user could pick up and learn the basics of Asterisk. About that same
time, the number of new users on the Asterisk mailing lists and in the IRC channels
grew tremendously, and we felt that writing an Asterisk book would greatly improve
the signal-to-noise ratio. The Asterisk Documentation Project was born! The rest, they
say, is history.

Since then, we’ve been writing Asterisk documentation. I never thought it would be
this arduous, yet rewarding. (I joked with Leif and Jim that it might be easier and less
controversial to write an in-depth tome called Religion, Gun Control, and Sushi than
cover everything that Asterisk has to offer in sufficient detail!) What you see here is a
direct result of a lot of late nights and long weekends spent helping the Asterisk com-
munity—after all, it’s the least we could do, considering what Asterisk has given to us.
We hope it will inspire other members of the Asterisk community to help document
changes and new features for the benefit of all involved.

Now to thank some people:

First of all, I’d like to thank my beautiful wife. She’s put up with a lot of lonely nights
while I’ve been slaving away at the keyboard, and I’d like her to know how much I
appreciate her and her endless support. I’d also like to thank my kids for doing their
best to remind me of the important things in life. I love you!

To my parents: thanks for everything you’ve done to help me stretch and grow and
learn over the years. You’re the best parents a person could ask for.

To Dave Carr and Michael Lundberg: thanks for letting me learn Asterisk on company
time. Working with both of you was truly a pleasure. May God smile upon you and
grant you success and joy in all you do.

To Leif and Jim: thanks for putting up with my stupid jokes, my insistence that we do
things “the right way,” and my crazy schedule. Thanks for pushing me along, and

xxiv | Preface

making me a better writer. I’ve really enjoyed working with you two, and hope to
collaborate with you on future projects!

To Mark Spencer: thank you for your continued support and dedication and friendship.
You’ve been an invaluable resource to our effort, and I truly believe that you’ve started
a revolution in the world of telephony. You’re always welcome in my home and at my
dinner table!

To the other great people at Digium: thank you for your help and support. We’re
especially thankful for your willingness to give us more insight into the Asterisk code,
and for donating hardware so that we can better document the Asterisk Developer’s Kit.

To Steven Sokol, Steven Critchfield, Olle E. Johansson, and all the others who have
contributed to the Asterisk Documentation Project and to this book: thank you! We
couldn’t have done it without your help and suggestions.

Preface | xxv

CHAPTER 1

A Telephony Revolution

It does not require a majority to prevail, but rather an
irate, tireless minority keen to set brush fires

in people’s minds.

—Samuel Adams

An incredible revolution is under way. It has been a long time in coming, but now that
it has started, there will be no stopping it. It is taking place in an area of technology
that has lapsed embarrassingly far behind every other industry that calls itself high-
tech. The industry is telecommunications, and the revolution is being fueled by an open
source Private Branch eXchange (PBX) called Asterisk™.

Telecommunications is arguably the last major electronics industry that has remained
untouched by the open source revolution.* Major telecommunications manufacturers
still build ridiculously expensive, incompatible systems, running complicated, ancient
code on impressively engineered yet obsolete hardware.

As an example, Nortel’s Business Communications Manager kludges together a 15
year-old Key Telephone Switch and a 1.2 GHz Celeron PC.† All this can be yours for
between $5,000 and $15,000, not including telephones. If you want it to actually do
anything interesting, you’ll have to pay extra licensing fees for closed, limited-
functionality, shrink-wrapped applications. Customization? Forget it—it’s not in the
plan. Future technology and standards compliance? Give them a year or two—they’re
working on it.

All of the major telecommunications manufacturers offer similar-minded products.
They don’t want you to have flexibility or choice; they want you to be locked in to their
product cycles.

* Until now.

† To its credit, Nortel finally got rid of Windows NT 4.0 and installed Linux. Technically a good idea, but
rather odd, given that Nortel and Microsoft recently announced a partnership to develop enterprise telecom
applications together.

1

Asterisk changes all of that. With Asterisk, no one is telling you how your phone system
should work, or what technology you are limited to. If you want it, you can have it.
Asterisk lovingly embraces the concept of standards compliance, while also enjoying
the freedom to develop its own innovations. What you choose to implement is up to
you—Asterisk imposes no limits.

Naturally, this incredible flexibility comes with a price: Asterisk is not a simple system
to configure. This is not because it’s illogical, confusing, or cryptic; to the contrary, it
is very sensible and practical. People’s eyes light up when they first see an Asterisk
dialplan and begin to contemplate the possibilities. But when there are literally thou-
sands of ways to achieve a result, the process naturally requires extra effort. Perhaps it
can be compared to building a house: the components are relatively easy to understand,
but a person contemplating such a task must either a) enlist competent help or b)
develop the required skills through instruction, practice, and a good book on the
subject.

VoIP: Bridging the Gap Between Traditional and Network
Telephony
While Voice over IP (VoIP) is often thought of as little more than a method of obtaining
free long-distance calling, the real value (and—let’s be honest—challenge as well) of
VoIP is that it allows voice to become nothing more than another application in the
data network.

It sometimes seems that we’ve forgotten that the purpose of the telephone is to allow
people to communicate. It is a simple goal, really, and it should be possible for us to
make it happen in far more flexible and creative ways than are currently available to
us. Since the industry has demonstrated an unwillingness to pursue this goal, a large
community of passionate people have taken on the task.

The challenge comes from the fact that an industry that has changed very little in the
last century shows little interest in starting now.

The Zapata Telephony Project
The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunications
consulting engineer who was inspired by the incredible advances in CPU speeds that
the computer industry has now come to take for granted. Dixon’s belief was that far
more economical telephony systems could be created if a card existed that had nothing
more on it than the basic electronic components required to interface with a telephone
circuit. Rather than having expensive components on the card, Digital Signal Processing
(DSP)‡ would be handled in the CPU by software. While this would impose a tremen-
dous load on the CPU, Dixon was certain that the low cost of CPUs relative to their
performance made them far more attractive than expensive DSPs, and, more impor-

2 | Chapter 1: A Telephony Revolution

tantly, that this price/performance ratio would continue to improve as CPUs continued
to increase in power.

Like so many visionaries, Dixon believed that many others would see this opportunity,
and that he merely had to wait for someone else to create what to him was an obvious
improvement. After a few years, he noticed that not only had no one created these cards,
but it seemed unlikely that anyone was ever going to. At that point it was clear that if
he wanted a revolution, he was going to have to start it himself. And so the Zapata
Telephony Project was born:

Since this concept was so revolutionary, and was certain to make a lot of waves in the
industry, I decided on the Mexican revolutionary motif, and named the technology and
organization after the famous Mexican revolutionary Emiliano Zapata. I decided to call
the card the “tormenta” which, in Spanish, means “storm,” but contextually is usually
used to imply a big storm, like a hurricane or such.§

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a debt
of thanks, partly for thinking this up and partly for seeing it through, but mostly for
giving the results of his efforts to the open source community. As a result of Jim’s
contribution, Asterisk’s Public Switched Telephone Network (PSTN) engine came to
be.

Massive Change Requires Flexible Technology
The most successful key telephone system in the world has a design limitation that has
survived 15 years of users begging for what appears to be a simple change: when you
determine the number of times your phone will ring before it forwards to voicemail,
you can choose from 2, 3, 4, 6, or 10 ring cycles. Have you any idea how many times
people ask for five rings? Plead as the customers might, the manufacturers of this system
cannot get their head around the idea that this is a problem. That’s the way it works,
they say, and users need to get over it.

Another example from the same system is that the name you program on your set can
only be seven characters in length.‖ Back in the late 1980s, when this particular system
was designed, RAM was very expensive, and storing those seven characters for dozens
of sets represented a huge hardware expense. So what’s the excuse today? None. Are
there any plans to change it? Hardly—the issue is not even officially acknowledged as
a problem.

‡ The term DSP also means Digital Signal Processor, which is a device (usually a chip) that is capable of
interpreting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for
encoding, decoding, and transcoding audio information. This can require a lot of computational effort.

§ Jim Dixon, “The History of Zapata Telephony and How It Relates to the Asterisk PBX” (http://www.asteriskdocs.org/
modules/tinycontent/index.php?id=10).

‖ If your name is Elizabeth, for example, you will have to figure something else out like elizbth, or elizabe, or
perhaps lizabth. OK, so liz might serve as well, but you get the point.

Massive Change Requires Flexible Technology | 3

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10
http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10

Those are just two examples; the industry is rife with them.

Now, it’s all very well and good to pick on one system, but the reality is that every PBX
in existence suffers shortcomings. No matter how fully featured it is, something will
always be left out, because even the most feature-rich PBX will always fail to anticipate
the creativity of the customer. A small group of users will desire an odd little feature
that the design team either did not think of or could not justify the cost of building,
and, since the system is closed, the users will not be able to build it themselves.

If the Internet had been thusly hampered by regulation and commercial interests, it is
doubtful that it would have developed the wide acceptance it currently enjoys. The
openness of the Internet meant that anyone could afford to get involved. So, everyone
did. The tens of thousands of minds that collaborated on the creation of the Internet
delivered something that no corporation ever could have.

As with many other open source projects, such as Linux and the Internet, the devel-
opment of Asterisk was fueled by the dreams of folks who knew that there had to be
something more than what the industry was producing. The strength of the community
is that it is composed not of employees assigned to specific tasks, but rather of folks
from all sorts of industries, with all sorts of experiences, and all sorts of ideas about
what flexibility means, and what openness means. These people knew that if one could
take the best parts of various PBXes and separate them into interconnecting compo-
nents—akin to a boxful of LEGO bricks—one could begin to conceive of things that
would not survive a traditional corporate risk-analysis process. While no one can se-
riously claim to have a complete picture of what this thing should look like, there is no
shortage of opinions and ideas.#

Many people new to Asterisk see it as unfinished. Perhaps these people can be likened
to visitors to an art studio, looking to obtain a signed, numbered print. They often leave
disappointed, because they discover that Asterisk is the blank canvas, the tubes of paint,
the unused brushes waiting.*

Even at this early stage in its success, Asterisk is nurtured by a greater number of artists
than any other PBX. Most manufacturers dedicate no more than a few developers to
any one product; Asterisk has scores. Most proprietary PBXes have a worldwide sup-
port team comprised of a few dozen real experts; Asterisk has hundreds.

The depth and breadth of the expertise that surrounds this product is unmatched in
the telecom industry. Asterisk enjoys the loving attention of old Telco guys who

From the release of Asterisk 1.2 to Asterisk 1.4, there have been over 4,000 updates to the code in the SVN
repository.

* It should be noted that these folks need not leave disappointed. Several projects have arisen to lower the
barriers to entry for Asterisk. By far the most popular and well known is trixbox (http://www.trixbox.org). If
you have an old PC lying around (or a copy of VMware), trixbox will build a GUI-based PBX for you simply
by answering a few questions during the automated install process. This does not make it easier to learn
Asterisk, because you are no longer involved in the platform or dialplan configuration, but it will deliver a
working PBX to you much faster than the more hands-on approach we employ in this book.

4 | Chapter 1: A Telephony Revolution

http://www.trixbox.org

remember when rotary dial mattered, enterprise telecom people who recall when voi-
cemail was the hottest new technology, and data communications geeks and coders
who helped build the Internet. These people all share a common belief—that the tel-
ecommunications industry needs a proper revolution.†

Asterisk is the catalyst.

Asterisk: The Hacker’s PBX
Telecommunications companies who choose to ignore Asterisk do so at their peril. The
flexibility it delivers creates possibilities that the best proprietary systems can scarcely
dream of. This is because Asterisk is the ultimate hacker’s PBX.

If someone asks you not to use the term hacker, refuse. This term does not belong to
the mass media. They stole it and corrupted it to mean “malicious cracker.” It’s time
we took it back. Hackers built the networking engine that is the Internet. Hackers built
the Apple Macintosh and the Unix operating system. Hackers are also building your
next telecom system. Do not fear; these are the good guys, and they’ll be able to build
a system that’s far more secure than anything that exists today. Rather than being
constricted by the dubious and easily cracked security of closed systems, the hackers
will be able to quickly respond to changing trends in security and fine-tune the tele-
phone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure
platform than any proprietary system, not in spite of its hacker roots, but rather because
of them.

Asterisk: The Professional’s PBX
Never in the history of telecommunications has a system so suited to the needs of
business been available, at any price. Asterisk is an enabling technology and, as with
Linux, it will become increasingly rare to find an enterprise that is not running some
version of Asterisk, in some capacity, somewhere in the network, solving a problem as
only Asterisk can.

This acceptance is likely to happen much faster than it did with Linux, though, for
several reasons:

• Linux has already blazed the trail that led to open source acceptance. Asterisk is
following that lead.

• The telecom industry is crippled, with no leadership being provided by the giant
industry players. Asterisk has a compelling, realistic, and exciting vision.

† The telecom industry has been predicting a revolution since before the crash; time will tell how well they
respond to the open source revolution.

Asterisk: The Hacker’s PBX | 5

• End users are fed up with incompatible, limited functionality, and horrible support.
Asterisk solves the first two problems; entepreneurs and the community are ad-
dressing the latter.

The Asterisk Community
One of the compelling strengths of Asterisk is the passionate community that developed
and supports it. This community, led by Mark Spencer of Digium, is keenly aware of
the cultural significance of Asterisk, and is giddy about the future.

One of the more powerful side effects caused by the energy of the Asterisk community
is the cooperation it has spawned among the telecommunications professionals, net-
working professionals, and information technology professionals who share a love for
this phenomenon. While these professions have traditionally been at odds with each
other, in the Asterisk community they delight in each others’ skills. The significance of
this cooperation cannot be underestimated.

Still, if the dream of Asterisk is to be realized, the community must grow—yet one of
the key challenges that the community currently faces is a rapid influx of new users.
The members of the existing community, having birthed this thing called Asterisk, are
generally welcoming of new users, but they’ve grown impatient with being asked the
kinds of questions whose answers can often be obtained independently, if one is willing
to put forth the time needed to research and experiment.

Obviously, new users do not fit any particular kind of mold. While some will happily
spend hours experimenting and reading various blogs describing the trials and tribu-
lations of others, many people who have become enthusiastic about this technology
are completely uninterested in such pursuits. They want a simple, straightforward, step-
by-step guide that’ll get them up and running, followed by some sensible examples
describing the best methods of implementing common functionality (such as voicemail,
auto attendants, and the like).

To the members of the expert community, who (correctly) perceive that Asterisk is like
a web development language, this approach doesn’t make any sense. To them, it’s clear
that you have to immerse yourself in Asterisk to appreciate its subtleties. Would one
ask for a step-by-step guide to programming and expect to learn from it all that a lan-
guage has to offer?

Clearly, there’s no one approach that’s right for everyone. Asterisk is a different animal
altogether, and it requires a totally different mind-set. As you explore the community,
though, be aware that there are people with many different skill sets and attitudes here.
Some of these folks do not display much patience with new users, but that’s often due
to their passion for the subject, not because they don’t welcome your participation.

6 | Chapter 1: A Telephony Revolution

The Asterisk Mailing Lists
As with any community, there are places where members of the Asterisk community
meet to discuss matters of mutual interest. Of the mailing lists you will find at http://
lists.digium.com, these four are currently the most important:

Asterisk-Biz
Anything commercial with respect to Asterisk belongs in this list. If you’re selling
something Asterisk-related, sell it here. If you want to buy an Asterisk service or
product, post here.

Asterisk-Dev
The Asterisk developers hang out here. The purpose of this list is the discussion of
the development of the software that is Asterisk, and its participants vigorously
defend that purpose. Expect a lot of heat if you post anything to this list not relating
to programming or development of the Asterisk code base specifically. General
coding questions (such as interfacing with AGI or AMI), should be directed to the
Asterisk-Users list.

The Asterisk-Dev list is not second-level support! If you scroll
through the mailing list archives, you’ll see this is a strict rule. The
Asterisk-Dev mailing list is about discussion of core Asterisk de-
velopment, and questions about interfacing your external pro-
grams via AGI or AMI should be posted on the Asterisk-Users list.

Asterisk-Users
This is where most Asterisk users hang out. This list generates several hundred
messages per day and has over ten thousand subscribers. While you can go here
for help, you are expected to have done some reading on your own before you post
a query.

Asterisk-BSD
This is where users who are implementing Asterisk on FreeBSD (and other BSD
dialects) hang out.

The Asterisk Wiki
The Asterisk Wiki (which exists in large part due to the tireless efforts of James Thomp-
son—thanks James!) is a source of much enlightenment and confusion. A community-
maintained repository of VoIP knowledge (http://www.voip-info.org) contains a truly
inspiring cornucopia of fascinating, informative, and frequently contradictory infor-
mation about many subjects, just one of which is Asterisk.

Since Asterisk documentation forms by far the bulk of the information on this web
site,‡ and it probably contains more Asterisk knowledge than all other sources put
together (with the exception of the mailing-list archives), it is commonly referred to as
the place to go for Asterisk knowledge.

The Asterisk Community | 7

http://lists.digium.com
http://lists.digium.com
http://www.voip-info.org

The IRC Channels
The Asterisk community maintains Internet Relay Chat (IRC) channels on
irc.freenode.net. The two most active channels are #asterisk and #asterisk-dev.§ To cut
down on spam-bot intrusions, both of these channels now require registration to join.‖

Asterisk User Groups
In many cites around the world, lonely Asterisk users began to realize that there were
other like-minded people in their towns. Asterisk User Groups (AUGs) began to spring
up all over the place. While these groups don’t have any official affiliation with each
other, they generally link to each others’ web sites and welcome members from any-
where. Type “Asterisk User Group” into Google to track down one in your area.

The Asterisk Documentation Project
The Asterisk Documentation Project was started by Leif Madsen and Jared Smith, but
several people in the community have contributed.

The goal of the documentation project is to provide a structured repository of written
work on Asterisk. In contrast with the flexible and ad hoc nature of the Wiki, the Docs
project is passionate about building a more focused approach to various
Asterisk-related subjects.

As part of the efforts of the Asterisk Docs project to make documentation available
online, this book is available at the http://www.asteriskdocs.org web site, under a Cre-
ative Commons license.

The Business Case
It is very rare to find businesses these days that do not have to reinvent themselves every
few years. It is equally rare to find a business that can afford to replace its communi-
cations infrastructure each time it goes in a new direction. Today’s businesses need
extreme flexibility in all of their technology, including telecom.

In his book Crossing the Chasm (HarperBusiness), Geoffrey Moore opines, “The idea
that the value of the system will be discovered rather than known at the time of instal-
lation implies, in turn, that product flexibility and adaptability, as well as ongoing
account service, should be critical components of any buyer’s evaluation checklist.”

‡ More than 30 percent, at last count.

§ The #asterisk-dev channel is for the discussion of changes to the underlying code base of Asterisk and is also
not second-tier support. Discussions related to programming external applications that interface with
Asterisk via AGI or AMI are meant to be in #asterisk.

‖ /msg nickserv help when you connect to the service via your favorite IRC client.

8 | Chapter 1: A Telephony Revolution

http://www.asteriskdocs.org

What this means, in part, is that the true value of a technology is often not known until
it has been deployed.

How compelling, then, to have a system that holds at its very heart the concept of
openness and the value of continuous innovation.

This Book
So where to begin? Well, when it comes to Asterisk, there is far more to talk about than
we can fit into one book. For now, we’re not going to take you down all the roads that
the über-geeks follow—we’re just going to give you the basics.

In Chapter 2, we cover some of the engineering considerations you should keep in mind
when designing a telecommunications system. You can skip much of this material if
you want to get right to installing, but these are important concepts to understand,
should you ever plan on putting an Asterisk system into production.

Chapter 3 covers obtaining, compiling, and installing Asterisk, and Chapter 4 deals
with the initial configuration of Asterisk. Here we cover the important configuration
files that must exist to define the channels and features available to your system. This
will prepare you for Chapter 5, where we introduce the heart of Asterisk—the dialplan.
Chapter 6 will introduce some more advanced dialplan concepts.

We will take a break from Asterisk in Chapter 7 and discuss some of the more important
technologies in use in the PSTN. Naturally, following the discussion of legacy
telephony, Chapter 8 discusses Voice over IP.

Chapter 9 introduces one of the more amazing components, the Asterisk Gateway
Interface (AGI). Using Perl, PHP, and Python, we demonstrate how external programs
can be used to add nearly limitless functionality to your PBX. In Chapter 14, we briefly
cover what is, in fact, a rich and varied cornucopia of incredible features and functions,
all of which are part of the Asterisk phenomenon. To conclude, Chapter 15 looks for-
ward, predicting a future where open source telephony completely transforms an
industry desperately in need of a revolution. You’ll also find a wealth of reference in-
formation in the book’s five appendixes.

This book can only lay down the basics, but from this foundation you will be able to
come to an understanding of the concept of Asterisk—and from that, who knows what
you will build?

This Book | 9

CHAPTER 2

Preparing a System for Asterisk

Very early on, I knew that someday in some “perfect”
future out there over the horizon, it would be common-
place for computers to handle all of the necessary pro-
cessing functionality internally, making the necessary
external hardware to connect up to telecom interfaces

very inexpensive and, in some cases, trivial.

—Jim Dixon, “The History of Zapata Telephony and
How It Relates to the Asterisk PBX”

By this point, you must be anxious to get your Asterisk system up and running. If you
are building a hobby system, you can probably jump right to the next chapter and begin
the installation. For a mission-critical deployment, however, some thought must be
given to the environment in which the Asterisk system will run. Make no mistake:
Asterisk, being a very flexible piece of software, will happily and successfully install on
nearly any Linux platform you can conceive of, and several non-Linux platforms as
well.* However, to arm you with an understanding of the type of operating environment
Asterisk will really thrive in, this chapter will discuss issues you need to be aware of in
order to deliver a reliable, well-designed system.

In terms of its resource requirements, Asterisk’s needs are similar to those of an em-
bedded, real-time application. This is due in large part to its need to have priority access
to the processor and system buses. It is, therefore, imperative that any functions on the
system not directly related to the call-processing tasks of Asterisk be run at a low pri-
ority, if at all. On smaller systems and hobby systems, this might not be as much of an
issue. However, on high-capacity systems, performance shortcomings will manifest as
audio quality problems for users, often experienced as echo, static, and the like. The
symptoms will resemble those experienced on a cell phone when going out of range,

* People have successfully compiled and run Asterisk on WRAP boards, Linksys WRT54G routers, Soekris
systems, Pentium 100s, PDAs, Apple Macs, Sun SPARCs, laptops, and more. Of course, whether you would
want to put such a system into production is another matter entirely. (Actually, the AstLinux distribution,
by Kristian Kielhofner, runs very well indeed on the Soekris 4801 board. Once you’ve grasped the basics of
Asterisk, this is something worth looking into further. Check out http://www.astlinux.org.)

11

http://www.astlinux.org

although the underlying causes will be different. As loads increase, the system will have
increasing difficulty maintaining connections. For a PBX, such a situation is nothing
short of disastrous, so careful attention to performance requirements is a critical con-
sideration during the platform selection process.

Table 2-1 lists some very basic guidelines that you’ll want to keep in mind when plan-
ning your system. The next section takes a close look at the various design and
implementation issues that will affect its performance.

The size of an Asterisk system is actually not dictated by the number of
users or sets, but rather by the number of simultaneous calls it will be
expected to support. These numbers are very conservative, so feel free
to experiment and see what works for you.

Table 2-1. System requirement guidelines

Purpose Number of channels Minimum recommended

Hobby system No more than 5 400 MHz x86, 256 MB RAM

SOHO system (small office/home office—
less than three lines and five sets)

5 to 10 1 GHz x86, 512 MB RAM

Small business system Up to 25 3 GHz x86, 1 GB RAM

Medium to large system More than 25 Dual CPUs, possibly also multiple servers in a distrib-
uted architecture

With large Asterisk installations, it is common to deploy functionality across several
servers. One or more central units will be dedicated to call processing; these will be
complemented by one or more ancillary servers handling peripherals (such as a data-
base system, a voicemail system, a conferencing system, a management system, a web
interface, a firewall, and so on). As is true in most Linux environments, Asterisk is well
suited to growing with your needs: a small system that used to be able to handle all
your call-processing and peripheral tasks can be distributed among several servers when
increased demands exceed its abilities. Flexibility is a key reason why Asterisk is ex-
tremely cost-effective for rapidly growing businesses; there is no effective maximum or
minimum size to consider when budgeting the initial purchase. While some scalability
is possible with most telephone systems, we have yet to hear of one that can scale as
flexibly as Asterisk. Having said that, distributed Asterisk systems are not simple to
design—this is not a task for someone new to Asterisk.

12 | Chapter 2: Preparing a System for Asterisk

If you are sure that you need to set up a distributed Asterisk system, you
will want to study the DUNDi protocol, Asterisk Realtime Architecture
(ARA), func_odbc, and the various other database tools at your dispos-
al. This will help you to abstract the data your system requires from the
dialplan logic your Asterisk systems will utilize, allowing a generic set
of dialplan logic that can be used across multiple boxes, thereby allow-
ing you to scale more simply by adding additional boxes to the system.
However, this is far beyond the scope of this book and will be left as an
exercise for the reader. If you want a teaser of some tools you can use
for scaling, see Chapter 12.

A Set of Load Test Results
Joshua Colp was able to produce the results in Table 2-2 on an AMD Athlon64 X2 4200
+ with 1 GB RAM and 80 GB SATA hard drive, testing with the default scenario in
the SIPp application: a simple call setup, Playback() an audio file, and Wait() a short
time. Notice the massive savings in CPU utilization while reading data from the RAM
disk versus the hard drive. This could be interpreted as the CPU waiting for data to
process before delivering it to the requesting channel. However, this is just a simple
test and in no way reflects the amount of calls your system will be able to handle. You
are encouraged to load test your own system to determine the number of simultaneous
calls that can be handled utilizing your dialplan and combination of applications.

Table 2-2. Sample test results for SIPp default scenario using simple Wait() and Playback()
application; SIPp echoed media back to Asterisk

Simultaneous calls 330 330 550

CPU utilization 149% 14.8% 57.6%

Load average 49 25 60

Storage Hard drive RAM disk RAM disk

Server Hardware Selection
The selection of a server is both simple and complicated: simple because, really, any
x86-based platform will suffice, but complicated because the reliable performance of
your system will depend on the care that is put into the platform design. When selecting
your hardware, you must carefully consider the overall design of your system and what
functionality you need to support. This will help you determine your requirements for
the CPU, motherboard, and power supply. If you are simply setting up your first
Asterisk system for the purpose of learning, you can safely ignore the information in
this section. If, however, you are building a mission-critical system suitable for deploy-
ment, these are issues that require some thought.

Server Hardware Selection | 13

Performance Issues
Among other considerations, when selecting the hardware for an Asterisk installation
you must bear in mind this critical question: how powerful must the system be? This
is not an easy question to answer, because the manner in which the system is to be used
will play a big role in the resources it will consume. There is no such thing as an Asterisk
performance-engineering matrix, so you will need to understand how Asterisk uses the
system in order to make intelligent decisions about what kinds of resources will be
required. You will need to consider several factors, including:

The maximum number of concurrent connections the system will be expected to support
Each connection will increase the workload on the system.

The percentage of traffic that will require processor-intensive DSP of compressed codecs
(such as G.729 and GSM)

The Digital Signal Processing (DSP) work that Asterisk performs in software can
have a staggering impact on the number of concurrent calls it will support. A system
that might happily handle 50 concurrent G.711 calls could be brought to its knees
by a request to conference together 10 G.729 compressed channels. We’ll talk more
about G.729, GSM, G.711, and many other codecs in Chapter 8.

Whether conferencing will be provided, and what level of conferencing activity is expected
Will the system be used heavily? Conferencing requires the system to transcode
and mix each individual incoming audio stream into multiple outgoing streams.
Mixing multiple audio streams in near-real-time can place a significant load on the
CPU.

Echo cancellation
Echo cancellation may be required on any call where a Public Switched Telephone
Network (PSTN) interface is involved. Since echo cancellation is a mathematical
function, the more of it the system has to perform, the higher the load on the CPU
will be. † Do not fear. Echo cancellation is another topic for Chapter 8.

Dialplan scripting logic
Whenever Asterisk has to pass call control to an external program, there is a per-
formance penalty. As much logic as possible should be built into the dialplan. If
external scripts are used, they should be designed with performance and efficiency
as critical considerations.

As for the exact performance impact of these factors, it’s difficult to know for sure. The
effect of each is known in general terms, but an accurate performance calculator has
not yet been successfully defined. This is partly because the effect of each component
of the system is dependent on numerous variables, such as CPU power, motherboard
chipset and overall quality, total traffic load on the system, Linux kernel optimizations,
network traffic, number and type of PSTN interfaces, and PSTN traffic—not to mention

† Roughly 30 MHz of CPU power per channel.

14 | Chapter 2: Preparing a System for Asterisk

any non-Asterisk services the system is performing concurrently. Let’s take a look at
the effects of several key factors:

Codecs and transcoding
Simply put, a codec (short for coder/decoder, or compression/decompression) is a
set of mathematical rules that define how an analog waveform will be digitized.
The differences between the various codecs are due in large part to the levels of
compression and quality that they offer. Generally speaking, the more compression
that’s required, the more work the DSP must do to code or decode the signal.
Uncompressed codecs, therefore, put far less strain on the CPU (but require more
network bandwidth). Codec selection must strike a balance between bandwidth
and processor usage.

Central processing unit (and Floating Point Unit)
A CPU is comprised of several components, one of which is the floating point unit
(FPU). The speed of the CPU, coupled with the efficiency of its FPU, will play a
significant role in the number of concurrent connections a system can effectively
support. The next section (“Choosing a Processor) offers some general guidelines
for choosing a CPU that will meet the needs of your system.

Other processes running concurrently on the system
Being Unix-like, Linux is designed to be able to multitask several different pro-
cesses. A problem arises when one of those processes (such as Asterisk) demands
a very high level of responsiveness from the system. By default, Linux will distribute
resources fairly among every application that requests them. If you install a system
with many different server applications, those applications will each be allowed
their fair use of the CPU. Since Asterisk requires frequent high-priority access to
the CPU, it does not get along well with other applications, and if Asterisk must
coexist with other apps, the system may require special optimizations. This pri-
marily involves the assignment of priorities to various applications in the system
and, during installation, careful attention to which applications are installed as
services.

Kernel optimizations
A kernel optimized for the performance of one specific application is something
that very few Linux distributions offer by default and, thus, it requires some
thought. At the very minimum—whichever distribution you choose—a fresh copy
of the Linux kernel (available from http://www.kernel.org) should be downloaded
and compiled on your platform. You may also be able to acquire patches that will
yield performance improvements, but these are considered hacks to the officially
supported kernel.

IRQ latency
Interrupt request (IRQ) latency is basically the delay between the moment a pe-
ripheral card (such as a telephone interface card) requests the CPU to stop what
it’s doing and the moment when the CPU actually responds and is ready to handle
the task. Asterisk’s peripherals (especially the Zaptel cards) are extremely intoler-

Server Hardware Selection | 15

http://www.kernel.org

ant of IRQ latency. This is not due to any problem with the cards so much as part
of the nature of how a software-based TDM engine has to work. If we buffer the
TDM data and send it on the bus as a larger packet, that may be more efficient
from a system perspective, but it will create a delay between the time the audio is
received on the card, and when it is delivered to the CPU. This makes real-time
processing of TDM data next to impossible. In the design of Zaptel, it was decided
that sending the data every 1 ms would create the best trade-off, but a side effect
of this is that any card in the system that uses the Zaptel interface is going to ask
the system to process an interrupt every millisecond. This used to be a factor on
older motherboards, but it has largely ceased to be a cause for concern.

Linux has historically had problems with its ability to service IRQs
quickly; this problem has caused enough trouble for audio devel-
opers that several patches have been created to address this short-
coming. So far, there has been some mild controversy over how to
incorporate these patches into the Linux kernel.

Kernel version
Asterisk is officially supported on Linux Version 2.6.

Linux distribution
Linux distributions are many and varied. In the next chapter, we will discuss the
challenge of selecting a Linux distribution, and how to obtain and install both
Linux and Asterisk.

Choosing a Processor
Since the performance demands of Asterisk will generally involve a large number of
math calculations, it is essential that you select a processor with a powerful FPU. The
signal processing that Asterisk performs can quickly demand a staggering quantity of
complex mathematical computations from the CPU. The efficiency with which these
tasks are carried out will be determined by the power of the FPU within the processor.

To actually name a best processor for Asterisk in this book would fly in the face of
Moore’s law. Even in the time between the authoring and publishing of this book,
processor speeds will undergo rapid improvements, as will Asterisk’s support for var-
ious architectures. Obviously, this is a good thing, but it also makes the giving of advice
on the topic a thankless task. Naturally, the more powerful the FPU is, the more
concurrent DSP tasks Asterisk will be able to handle, so that is the ultimate consider-
ation. When you are selecting a processor, the raw clock speed is only part of the
equation. How well it handles floating-point operations will be a key differentiator, as
DSP operations in Asterisk will place a large demand on that process.

Both Intel and AMD CPUs have powerful FPUs. Current-generation chips from either
of those manufacturers can be expected to perform well.‡

16 | Chapter 2: Preparing a System for Asterisk

The obvious conclusion is that you should get the most powerful CPU your budget will
allow. However, don’t be too quick to buy the most expensive CPU out there. You’ll
need to keep the requirements of your system in mind; after all, a Formula 1 Ferrari is
ill-suited to the rigors of rush-hour traffic. Slower CPUs will often run cooler and, thus,
you might be able to build a lower-powered, fanless Asterisk system for a small office,
which could work well in a dusty environment, perhaps.

In order to attempt to provide a frame of reference from which we can contemplate our
platform decision, we have chosen to define three sizes of Asterisk systems: small,
medium, and large.

Small systems

Small systems (up to 10 phones) are not immune to the performance requirements of
Asterisk, but the typical load that will be placed on a smaller system will generally fall
within the capabilities of a modern processor.

If you are building a small system from older components you have lying around, be
aware that the resulting system cannot be expected to perform at the same level as a
more powerful machine, and will run into performance degradation under a much
lighter load. Hobby systems can be run successfully on very low-powered hardware,
although this is by no means recommended for anyone who is not a whiz at Linux
performance tuning.§

If you are setting up an Asterisk system for the purposes of learning, you will be able
to build a fully featured platform using a relatively low-powered CPU. The authors of
this book run several Asterisk lab systems with 433 MHz to 700 MHz Celeron pro-
cessors, but the workload of these systems is minimal (never more than two concurrent
calls).

AstLinux and Asterisk on OpenWRT
If you are really comfortable working with Linux on embedded platforms, you will want
to join the AstLinux mailing list and run Kristian Kielhofner’s creation, AstLinux, or
get yourself a Linksys WRT54GL and install Brian Capouch’s version of Asterisk for
that platform.

These projects strip Asterisk down to its essentials, and allow incredibly powerful PBX
applications to be deployed on very inexpensive hardware.

‡ If you want to be completely up to the minute on which CPUs are leading the performance race, surf on over
to Tom’s Hardware (http://www.tomshardware.com) or AnandTech (http://www.anandtech.com), where you
will find a wealth of information about both current and out-of-date CPUs, motherboards, and chipsets.

§ Greg Boehnlein once compiled and ran Asterisk on a 133 MHz Pentium system, but that was mostly as an
experiment. Performance problems are far more likely, and properly configuring such a system requires an
expert knowledge of Linux. We do not recommend running Asterisk on anything less than a 500 MHz system
(for a production system, 2 GHz might be a sensible minimum). Still, we think the fact that Asterisk is so
flexible is remarkable.

Server Hardware Selection | 17

http://www.tomshardware.com
http://www.anandtech.com

While both projects require a fair amount of knowlege and effort on your part, they
also share a huge coolness factor, are extrememly popular, and are of excellent quality.

Medium systems

Medium-sized systems (from 10 to 50 phones) are where performance considerations
will be the most challenging to resolve. Generally, these systems will be deployed on
one or two servers only and, thus, each machine will be required to handle more than
one specific task. As loads increase, the limits of the platform will become increasingly
stressed. Users may begin to perceive quality problems without realizing that the system
is not faulty in any way, but simply exceeding its capacity. These problems will get
progressively worse as more and more load is placed on the system, with the user ex-
perience degrading accordingly. It is critical that performance problems be identified
and addressed before they are noticed by users.

Monitoring performance on these systems and quickly acting on any developing trends
is key to ensuring that a quality telephony platform is provided.

Large systems

Large systems (more than 120 channels) can be distributed across multiple systems and
sites and, thus, performance concerns can be managed through the addition of ma-
chines. Very large Asterisk systems have been created in this way.

Building a large system requires an advanced level of knowledge in many different
disciplines. We will not discuss it in detail in this book, other than to say that the issues
you’ll encounter will be similar to those encountered during any deployment of mul-
tiple servers handling a single, distributed task.

Choosing a Motherboard
Just to get any anticipation out of the way, we also cannot recommend specific moth-
erboards in this book. With new motherboards coming out on a weekly basis, any
recommendations we could make would be rendered moot by obsolescence before the
published copy hit the shelves. Not only that, but motherboards are like automobiles:
while they are all very similar in principle, the difference is in the details. And as Asterisk
is a performance application, the details matter.

What we will do, therefore, is give you some idea of the kinds of motherboards that
can be expected to work well with Asterisk, and the features that will make for a good
motherboard. The key is to have both stability and high performance. Here are some
guidelines to follow:

• The various system buses must provide the minimum possible latency. If you are
planning a PSTN connection using analog or PRI interfaces (discussed later in this
chapter), having Zaptel cards in the system will generate 1,000 interrupt requests

18 | Chapter 2: Preparing a System for Asterisk

per second. Having devices on the bus that interfere with this process will result
in degradation of call quality. Chipsets from Intel (for Intel CPUs) and nVidia
nForce (for AMD CPUs) seem to score the best marks in this area. Review the
specific chipset of any motherboard you are evaluating to ensure that it does not
have known problems with IRQ latency.

• If you are running Zaptel cards in your system, you will want to ensure that your
BIOS allows you maximum control over IRQ assignment. As a rule, high-end
motherboards will offer far greater flexibility with respect to BIOS tweaking; value-
priced boards will generally offer very little control. This may be a moot point,
however, as APIC-enabled motherboards turn IRQ control over to the operating
system.

• Server-class motherboards generally implement a different PCI standard than
workstation-class motherboards. While there are many differences, the most ob-
vious and well known is that the two versions have different voltages. Depending
on which cards you purchase, you will need to know if you require 3.3V or 5V PCI
slots.‖ Figure 2-1 shows the visual differences between 3.3V and 5V slots. Most
server motherboards will have both types, but workstations will typically have only
the 5V version.

There is some evidence that suggests connecting together two com-
pletely separate, single-CPU systems may provide far more benefits
than simply using two processors in the same machine. You not
only double your CPU power, but you also achieve a much better
level of redundancy at a similar cost to a single-chassis, dual-CPU
machine. Keep in mind, though, that a dual-server Asterisk solu-
tion will be more complex to design than a single-machine solution.

• Consider using multiple processors, or processors with multiple cores. This will
provide an improvement in the system’s ability to handle multiple tasks. For As-
terisk, this will be of special benefit in the area of floating-point operations.

• If you need a modem, install an external unit that connects to a serial port. If you
must have an internal modem, you will need to ensure that it is not a so-called
“Win-modem”—it must be a completely self-sufficient unit (note that these are
very difficult, if not impossible, to find).

• Consider that with built-in networking, if you have a network component failure,
the entire motherboard will need to be replaced. On the other hand, if you install
a peripheral Network Interface Card (NIC), there may be an increased chance of

‖ With the advent of PCI-X and PCI-Express, it is becoming harder and harder to select a motherboard with
the correct type of slots. Be very certain that the motherboard you select has the correct type and quantity of
card slots for your hardware. Keep in mind that most companies that produce hardware cards for Asterisk
offer PCI and PCI-Express versions, but it’s still up to you to make sure they make sense in whatever
motherboard and chassis combination you choose.

Server Hardware Selection | 19

failure due to the extra mechanical connections involved. It can also be useful to
have separate network cards serving sets and users (the internal network) and VoIP
providers and external sites (the external network). NICs are cheap; we suggest
always having at least two.

• The stability and quality of your Asterisk system will be dependent on the com-
ponents you select for its architecture. Asterisk is a beast, and it expects to be fed
the best. As with just about anything, high cost is not always synonymous with
quality, but you will want to become a connoisseur of computer components.

Having said all that, we need to get back to the original point: Asterisk can and will
happily install on pretty much any system that will run Linux. The lab systems used to
write this book, for example, included everything from a Linksys WRT to a dual-Xeon
locomotive.# We have not experienced any performance or stability problems running
less than five concurrent telephone connections. For the purposes of learning, do not
be afraid to install Asterisk on whatever system you can scrounge up. When you are
ready to put your system into production, however, you will need to understand the
ramifications of the choices you make with respect to your hardware.

Power Supply Requirements
One often-overlooked component in a PC is the power supply (and the supply of pow-
er). For a telecommunications system,* these components can play a significant role in
the quality of the user experience.

3.3V 32-bit

5V 32-bit

3.3V 64-bit

5V 64-bit

Figure 2-1. Visual identification of PCI slots

OK, it wasn’t actually a locomotive, but it sure sounded like one. Does anyone know where to get quiet CPU
fans for Xeon processors? It’s getting too loud in the lab here.

* Or any system that is expected to process audio.

20 | Chapter 2: Preparing a System for Asterisk

Computer power supplies

The power supply you select for your system will play a vital role in the stability of the
entire platform. Asterisk is not a particularly power-hungry application, but anything
relating to multimedia (whether it be telephony, professional audio, video, or the like)
is generally sensitive to power quality.

This oft-neglected component can turn an otherwise top-quality system into a poor
performer. By the same token, a top-notch power supply might enable an otherwise
cheap PC to perform like a champ.

The power supplied to a system must provide not only the energy the system needs to
perform its tasks but also stable, clean signal lines for all of the voltages your system
expects from it.

Spend the money and get a top-notch power supply (gamers are pretty passionate about
this sort of thing, so there are lots of choices out there).

Redundant power supplies

In a carrier-grade or high-availability environment, it is common to deploy servers that
use a redundant power supply. Essentially, this involves two completely independent
power supplies, either one of which is capable of meeting the power requirements of
the system.

If this is important to you, keep in mind that best practices suggest that to be properly
redundant, these power supplies should be connected to completely independent un-
interruptible power supplies (UPSes) that are in turn fed by totally separate electrical
circuits. In truly mission-critical environments (such as hospitals), even the main elec-
trical feeds into the building are redundant, and diesel-powered generators are on-site
to generate electricity during extended power failures (such as the one that hit North-
eastern North America on August 15, 2003).

Environment
Your system’s environment consists of all of those factors that are not actually part of
the server itself but nevertheless play a crucial role in the reliability and quality that can
be expected from the system. Electrical supplies, room temperature and humidity,
sources of interference, and security are all factors that should be contemplated.

Power Conditioning and Uninterruptible Power Supplies
When selecting the power sources for your system, consideration should be given not
only to the amount of power the system will use, but also to the manner in which this
power is delivered.

Environment | 21

Power is not as simple as voltage coming from the outlet in the wall, and you should
never just plug a production system into whatever electrical source is near at
hand.†Giving some consideration to the supply of power to your system can provide a
far more stable power environment, leading to a far more stable system.

One of the benefits of clean power is a reduction in heat, which means less stress on
components, leading to a longer life expectancy.

Properly grounded, conditioned power feeding a premium-quality power supply will
ensure a clean logic ground (a.k.a. 0 volt) reference‡ for the system and keep electrical
noise on the motherboard to a minimum. These are industry-standard best practices
for this type of equipment, which should not be neglected. A relatively simple way to
achieve this is through the use of a power-conditioned UPS.§

Power-conditioned UPSes

The UPS is well known for its role as a battery backup, but the power-conditioning
benefits that high-end UPS units also provide are less well understood.

Power conditioning can provide a valuable level of protection from the electrical envi-
ronment by regenerating clean power through an isolation transformer. A quality
power conditioner in your UPS will eliminate most electrical noise from the power feed
and help to ensure a rock-steady supply of power to your system.

Unfortunately, not all UPS units are created equal; many of the less expensive units do
not provide clean power. What’s worse, manufacturers of these devices will often
promise all kinds of protection from surges, spikes, overvoltages, and transients. While
such devices may protect your system from getting fried in an electrical storm, they will
not clean up the power being fed to your system and, thus, will do nothing to contribute
to stability.

Make sure your UPS is power conditioned. If it doesn’t say exactly that, it isn’t.

Grounding
Voltage is defined as the difference in electrical potential between two points. When
considering a ground (which is basically nothing more than an electrical path to earth),
the common assumption is that it represents 0 volts. But if we do not define that 0V in

† Okay, look, you can plug it in wherever you’d like, and it’ll probably work, but if your system has strange
stability problems, please give this section another read. Deal?

‡ In electronic devices, a binary zero (0) is generally related to a 0 volt signal, while a binary one (1) can be
represented by many different voltages (commonly between 2.5 and 5 volts). The grounding reference that
the system will consider 0 volts is often referred to as the logic ground. A poorly grounded system might have
electrical potential on the logic ground to such a degree that the electronics mistake a binary zero for a binary
one. This can wreak havoc with the system’s ability to process instructions.

§ It is a common misconception belief that all UPSes provide clean power. This is not at all true.

22 | Chapter 2: Preparing a System for Asterisk

relation to something, we are in danger of assuming things that may not be so. If you
measure the voltage between two grounding references, you’ll often find that there is
a voltage potential between them. This voltage potential between grounding points can
be significant enough to cause logic errors—or even damage—in a system where more
than one path to ground is present.

One of the authors recalls once frying a sound card he was trying to
connect to a friend’s stereo system. Even though both the computer and
the stereo were in the same room, more than 6 volts of difference was
measured between the ground conductors of the two electrical outlets
they were plugged into! The wire between the stereo and the PC (by way
of the sound card) provided a path that the voltage eagerly followed,
thus frying a sound card that was not designed to handle that much
current on its signal leads. Connecting both the PC and the stereo to the
same outlet fixed the problem.

When considering electrical regulations, the purpose of a ground is primarily human
safety. In a computer, the ground is used as a 0V logic reference. An electrical system
that provides proper safety will not always provide a proper logic reference—in fact,
the goals of safety and power quality are sometimes in disagreement. Naturally, when
a choice must be made, safety has to take precedence.

Since the difference between a binary zero and a binary one is represen-
ted in computers by voltage differences of sometimes less than 3V, it is
entirely possible for unstable power conditions caused by poor ground-
ing or electrical noise to cause all kinds of intermittent system problems.
Some power and grounding advocates estimate that more than 80 per-
cent of unexplained computer glitches can be traced to power quality.
Most of us blame Microsoft.

Modern switching power supplies are somewhat isolated from power quality issues,
but any high-performance system will always benefit from a well-designed power en-
vironment. In mainframes, proprietary PBXes, and other expensive computing
platforms, the grounding of the system is never left to chance. The electronics and
frames of these systems are always provided with a dedicated ground that does not
depend on the safety grounds supplied with the electrical feed.

Regardless of how much you are willing to invest in grounding, when you specify the
electrical supply to any PBX, ensure that the electrical circuit is completely dedicated
to your system (as discussed in the next section) and that an insulated, isolated ground-
ing conductor is provided. This can be expensive to provision, but it will contribute
greatly to a quality power environment for your system.‖

It is also vital that each and every peripheral you connect to your system be connected
to the same electrical receptacle (or, more specifically, the same ground reference). This

Environment | 23

will cut down on the occurrence of ground loops, which can cause anything from
buzzing and humming noises to damaged or destroyed equipment.

Electrical Circuits
If you’ve ever seen the lights dim when an electrical appliance kicks in, you’ve seen the
effect that a high-energy device can have on an electrical circuit. If you were to look at
the effects of a multitude of such devices, each drawing power in its own way, you
would see that the harmonically perfect 50 or 60 Hz sine wave you may think you’re
getting with your power is anything but. Harmonic noise is extremely common on
electrical circuits , and it can wreak havoc on sensitive electronic equipment. For a PBX,
these problems can manifest as audio problems, logic errors, and system instability.

Ideally, you should never install a server on an electrical circuit that is shared with other
devices. There should be only one outlet on the circuit, and you should connect only
your telephone system (and associated peripherals) to it. The wire (including the
ground) should be run unbroken directly back to the electrical panel. The grounding
conductor should be insulated and isolated. There are far too many stories of photo-
copiers, air conditioners, and vacuum cleaners wreaking havoc with sensitive electron-
ics to ignore this rule of thumb.

The electrical regulations in your area must always take precedence over
any ideas presented here. If in doubt, consult a power quality expert in
your area on how to ensure that you adhere to electrical regulations.
Remember, electrical regulations take into account the fact that human
safety is far more important than the safety of the equipment.

The Equipment Room
Environmental conditions can wreak havoc on systems, and yet it is quite common to
see critical systems deployed with little or no attention given to these matters. When
the system is installed, everything works well, but after as little as six months, compo-
nents begin to fail. Talk to anyone with experience in maintaining servers and systems,
and it becomes obvious that attention to environmental factors can play a significant
role in the stability and reliability of systems.

Humidity

Simply put, humidity is water in the air. Water is a disaster for electronics for two main
reasons: 1) water is a catalyst for corrosion, and 2) water is conductive enough that it

‖ On a hobby system, this is probably too much to ask, but if you are planning on using Asterisk for anything
important, at least be sure to give it a fighting chance; don’t put anything like air conditioners, photocopiers,
laser printers, or motors on the same circuit. The strain such items place on your power supply will shorten
its life expectancy.

24 | Chapter 2: Preparing a System for Asterisk

can cause short circuits. Do not install any electronic equipment in areas of high hu-
midity without providing a means to remove the moisture.

Temperature

Heat is the enemy of electronics. The cooler you keep your system, the more reliably
it will perform, and the longer it will last. If you cannot provide a properly cooled room
for your system, at a minimum ensure that it is placed in a location that ensures a steady
supply of clean, cool air. Also, keep the temperature steady. Changes in temperature
can lead to condensation and other damaging changes.

Dust

An old adage in the computer industry holds that dust bunnies inside of a computer
are lucky. Let’s consider some of the realities of dust bunnies:

• Significant buildup of dust can restrict airflow inside the system, leading to in-
creased levels of heat.

• Dust can contain metal particles, which, in sufficient quantities, can contribute to
signal degradation or shorts on circuit boards.

Put critical servers in a filtered environment, and clean out dust bunnies on a regular
schedule.

Security

Server security naturally involves protecting against network-originated intrusions, but
the environment also plays a part in the security of a system. Telephone equipment
should always be locked away, and only persons who have a need to access the equip-
ment should be allowed near it.

Telephony Hardware
If you are going to connect Asterisk to any traditional telecommunications equipment,
you will need the correct hardware. The hardware you require will be determined by
what it is you want to achieve.

Connecting to the PSTN
Asterisk allows you to seamlessly bridge circuit-switched telecommunications net-
works# with packet-switched data networks.* Because of Asterisk’s open architecture
(and open source code), it is ultimately possible to connect any standards-compliant

Often referred to as TDM networks, due to the Time Division Multiplexing used to carry traffic through the
PSTN.

Telephony Hardware | 25

interface hardware. The selection of open source telephony interface boards is currently
limited, but as interest in Asterisk grows, that will rapidly change.† At the moment, one
of the most popular and cost-effective ways to connect to the PSTN is to use the inter-
face cards that evolved from the work of the Zapata Telephony Project (http://www.za
patatelephony.org).

Analog interface cards

Unless you need a lot of channels (or a have lot of money to spend each month on
telecommunications facilities), chances are that your PSTN interface will consist of one
or more analog circuits, each of which will require a Foreign eXchange Office (FXO)
port.

Digium, the company that sponsors Asterisk development, produces analog interface
cards for Asterisk. Check out its web site for its extensive line of analog cards, including
the venerable TDM400P, the latest TDM800P, and the high-density TDM2400P. As
an example, the TDM800P is an eight-port base card that allows for the insertion of up
to two daughter cards, which each deliver either four FXO or four FXS ports.‡ The
TDM800P can be purchased with these modules preinstalled, and a hardware echo-
canceller can be added as well. Check out Digium’s web site (http://www.digium.com)
for more information about these cards.

Other companies that produce Asterisk-compatible analog cards include:

• Rhino (http://www.channelbanks.com)

• Sangoma (http://www.sangoma.com)

• Voicetronix (http://www.voicetronix.com)

• Pika Technologies (http://www.pikatechnologies.com)

These are all well-established companies that produce excellent products.

Digital interface cards

If you require more than 10 circuits, or require digital connectivity, chances are you’re
going to be in the market for a T1 or E1 card.§ Bear in mind, though, that the monthly
charges for a digital PSTN circuit vary widely. In some places, as few as five circuits can
justify a digital circuit; in others, the technology may never be cost-justifiable. The more

* Popularly called VoIP networks, although Voice over IP is not the only method of transmitting voice over
packet networks (Voice over Frame Relay was very popular in the late 1990s).

† The evolution of inexpensive, commodity-based telephony hardware is only slightly behind the telephony
software revolution. New companies spring up on a weekly basis, each one bringing new and inexpensive
standards-based devices into the market.

‡ FXS and FXO refer to the opposing ends of an analog circuit. Which one you need will be determined by
what you want to connect to. Chapter 7 discusses these in more detail.

§ T1 and E1 are digital telephony circuits. We’ll discuss them further in Chapter 7.

26 | Chapter 2: Preparing a System for Asterisk

http://www.zapatatelephony.org
http://www.zapatatelephony.org
http://www.digium.com
http://www.channelbanks.com
http://www.sangoma.com
http://www.voicetronix.com
http://www.pikatechnologies.com

competition there is in your area, the better chance you have of finding a good deal. Be
sure to shop around.

The Zapata Telephony Project originally produced a T1 card, the Tormenta, that is the
ancestor of most Asterisk-compatible T1 cards. The original Tormenta cards are now
considered obsolete, but they do still work with Asterisk.

Digium makes several different digital circuit interface cards. The features on the cards
are the same; the primary differences are whether they provide T1 or E1 interfaces, and
how many spans each card provides. Digium has been producing Zaptel cards for Linux
longer than anyone else, as they were deeply involved with the development of Zaptel
on Linux, and have been the driving force behind Zaptel development over the years.

Sangoma, which has been producing open source WAN cards for many years, added
Asterisk support for its T1/E1 cards a few years ago.‖ Rhino has had T1 hardware for
Asterisk for a while now, and there are many other companies that offer digital interface
cards for Asterisk as well.

Channel banks

A channel bank is loosely defined as a device that allows a digital circuit to be de-
multiplexed into several analog circuits (and vice versa). More specifically, a channel
bank lets you connect analog telephones and lines into a system across a T1 line.
Figure 2-2 shows how a channel bank fits into a typical office phone system.

Although they can be expensive to purchase, many people feel very strongly that the
only proper way to integrate analog circuits and devices into Asterisk is through a
channel bank. Whether that is true or not depends on a lot of factors, but if you have
the budget, they can be very useful.# You can often pick up used channel banks on
eBay. Look for units from Adtran and Carrier Access Corp. (Rhino makes great channel

‖ It should be noted that a Sangoma Frame Relay card played a role in the original development of Asterisk
(see http://linuxdevices.com/articles/AT8678310302.html); Sangoma has a long history of supporting open
source WAN interfaces with Linux.

FXO
FXS

Channel bank

T1

PBX

Digital Analog

Central office
FXS

Figure 2-2. One way you might connect a channel bank

Telephony Hardware | 27

http://linuxdevices.com/articles/AT8678310302.html

banks, and they are very competitively priced, but they may be hard to find used on
eBay.) Don’t forget that you will need a T1 card in order to connect a channel bank to
Asterisk.

Other types of PSTN interfaces

Many VoIP gateways exist that can be configured to provide access to PSTN circuits.
Generally speaking, these will be of most use in a smaller system (one or two lines).
They can also be very complicated to configure, as grasping the interaction between
the various networks and devices requires a solid understanding of both telephony and
VoIP fundamentals. For that reason, we will not discuss these devices in detail in this
book. They are worth looking into, however; popular units are made by Sipura, Grand-
stream, Digium, and many other companies.

Another way to connect to the PSTN is through the use of Basic Rate Interface (BRI)
ISDN circuits. BRI is a digital telecom standard that specifies a two-channel circuit that
can carry up to 144 Kbps of traffic. It is very rarely used in North America, but in Europe
it is very widely deployed. Due to the variety of different ways this technology has been
implemented, and a lack of testing equipment, we will not be discussing BRI in very
much detail in this book. Please note, however, that BRI is very popular in Europe, and
Digium has produced the B410P card to address this need.

Connecting Exclusively to a Packet-Based Telephone Network
If you do not need to connect to the PSTN, Asterisk requires no hardware other than
a server with a Network Interface Card (NIC).

However, if you are going to be providing music on hold* or conferencing and you have
no physical timing source, you will need the ztdummy Linux kernel module.
ztdummy is a clocking mechanism designed to provide a timing source to a system
where no hardware timing source exists. Think of it as a kind of metronome to allow
the system to mix multiple audio streams in a properly synchronized manner.

Echo Cancellation
One of the issues that can arise if you use analog interfaces on a VoIP system is echo.
Echo is simply what you say being reflected back to you a short time later. The echo is
caused by the far end, but you are the one that hears it. It is a little known fact that echo
would be a massive problem in the PSTN were it not for the fact that the carriers employ
complex (and expensive) strategies to eliminate it. We will talk about echo a bit more
later on, but with respect to hardware we would suggest that you consider adding echo-

We use channel banks to simulate a central office. One 24-port channel bank off an Asterisk system can
provide up to 24 analog lines—perfect for a classroom or lab.

* Technically, no timing source is needed for music on hold, but it generally works better with one.

28 | Chapter 2: Preparing a System for Asterisk

cancellation hardware to any card you purchase for use as a PSTN interface. While
Asterisk can do some work with echo in software, it does not provide nearly enough
power to deal with the problem. Also, echo cancellation in software imposes a load on
the processor; hardware echo cancellers built into the PSTN card take this burden away
from the CPU.

Hardware echo cancellation can add several hundred dollars to your equipment cost,
but if you are serious about having a quality system, invest the extra money now instead
of suffering later. Echo problems are not pleasant at all, and your users will hate the
system if they experience it.

As of this writing, several software echo cancellers have become available. We have not
had a chance to evaluate any of them, but we know that they employ the same algory-
thems the hardware echo cancellers do. If you have a recently purchased Digium analog
card, you can call Digium sales for a keycode to allow its latest software echo canceller
to work with your system.† There are other software options available for other types
of cards, but you will have to look into whether you have to purchase a license to use
them.‡ Keep in mind that there is a performance cost to using software echo cancellers.
They will place a measureable load on the CPU that needs to be taken into account
when you design a system using these technologies.

Types of Phones
Since the title of this book is Asterisk: The Future of Telephony, we would be remiss if
we didn’t discuss the devices that all of this technology ultimately has to interconnect:
telephones!

We all know what a telephone is—but will it be the same five years from now? Part of
the revolution that Asterisk is contributing to is the evolution of the telephone, from a
simple audio communications device into a multimedia communications terminal pro-
viding all kinds of yet-to-be-imagined functions.

As an introduction to this exciting concept, we will briefly discuss the various kinds of
devices we currently call “telephones” (any of which can easily be integrated with As-
terisk). We will also discuss some ideas about what these devices may evolve into in
the future (devices that will also easily integrate with Asterisk).

† This software is not part of a normal Asterisk download because Digium has to pay to license it separately.
Nevertheless, it has grandfathered it into all of its cards, so it is available for free to anyone who has a Digium
analog card that is still under warranty. If you are running a non-Digium analog card, you can purchase a
keycode for this software echo canceller from Digium’s web site.

‡ Sangoma also offers free software echo cancellation on their analog cards (up to six channels).

Types of Phones | 29

Physical Telephones
Any physical device whose primary purpose is terminating an on-demand audio com-
munications circuit between two points can be classified as a physical telephone. At a
minimum, such a device has a handset and a dial pad; it may also have feature keys, a
display screen, and various audio interfaces.

This section takes a brief look at the various user (or endpoint) devices you might want
to connect to your Asterisk system. We’ll delve more deeply into the mechanics of
analog and digital telephony in Chapter 7.

Analog telephones

Analog phones have been around since the invention of the telephone. Up until about
20 years ago, all telephones were analog. Although analog phones have some technical
differences in different countries, they all operate on similar principles.

This contiguous connection is referred to as a circuit, which the
telephone network used to use electromechanical switches to create—
hence the term circuit-switched network.

When a human being speaks, the vocal cords, tongue, teeth, and lips create a complex
variety of sounds. The purpose of the telephone is to capture these sounds and convert
them into a format suitable for transmission over wires. In an analog telephone, the
transmitted signal is analogous to the sound waves produced by the person speaking.
If you could see the sound waves passing from the mouth to the microphone, they
would be proportional to the electrical signal you could measure on the wire.

Analog telephones are the only kind of phone that are commonly available in any retail
electronics store. In the next few years, that can be expected to change dramatically.

Proprietary digital telephones

As digital switching systems developed in the 1980s and 1990s, telecommunications
companies developed digital Private Branch eXchanges (PBXes) and Key Telephone
Systems (KTSes). The proprietary telephones developed for these systems were com-
pletely dependent on the systems to which they were connected and could not be used
on any other systems. Even phones produced by the same manufacturer were not cross-
compatible (for example, a Nortel Norstar set will not work on a Nortel Meridian 1
PBX). The proprietary nature of digital telephones limits their future. In this emerging
era of standards-based communications, they will quickly be relegated to the dustbin
of history.

The handset in a digital telephone is generally identical in function to the handset in
an analog telephone, and they are often compatible with each other. Where the digital

30 | Chapter 2: Preparing a System for Asterisk

phone is different is that inside the telephone, the analog signal is sampled and con-
verted into a digital signal—that is, a numerical representation of the analog waveform.
We’ll leave a detailed discussion of digital signals until Chapter 7; for now, suffice it to
say that the primary advantage of a digital signal is that it can be transmitted over
limitless distances with no loss of signal quality.

The chances of anyone ever making a proprietary digital phone directly compatible
with Asterisk are slim, but companies such as Citel (http://www.citel.com)§ have created
gateways that convert the proprietary signals to Session Initiation Protocol (SIP).‖

ISDN telephones

Prior to VoIP, the closest thing to a standards-based digital telephone was an ISDN-
BRI terminal. Developed in the early 1980s, ISDN was expected to revolutionize the
telecommunications industry in exactly the same way that VoIP promises to finally
achieve today.

There are two types of ISDN: Primary Rate Interface (PRI) and
Basic Rate Interface (BRI). PRI is commonly used to provide trunking
facilities between PBXes and the PSTN, and is widely deployed all over
the world. BRI is not at all popular in North America, but is common
in Europe.

While ISDN was widely deployed by the telephone companies, many consider the
standard to have been a flop, as it generally failed to live up to its promises. The high
costs of implementation, recurring charges, and lack of cooperation among the major
industry players contributed to an environment that caused more problems than it
solved.

BRI was intended to service terminal devices and smaller sites (a BRI loop provides two
digital circuits). A wealth of BRI devices have been developed, but BRI has largely been
deprecated in favor of faster, less expensive technologies such as ADSL, cable modems,
and VoIP.

BRI is still very popular for use in video-conferencing equipment, as it provides a fixed
bandwidth link. Also, BRI does not have the type of quality of service issues a VoIP
connection might, as it is circuit-switched.

§ Citel has produced a fantastic product that is limited by the fact that it is too expensive. If you have old
proprietary PBX telephones, and you want to use them with your Asterisk system, Citel’s technology can do
the job, but make sure you understand how the per-port cost of these units stacks up against replacing the
old sets with pure VoIP telephones.

‖ The SIP is currently the most well-known and popular protocol for VoIP. We will discuss it further in
Chapter 8.

Types of Phones | 31

http://www.citel.com

BRI is still sometimes used in place of analog circuits to provide trunking to a PBX.
Whether or not this is a good idea depends mostly on how your local phone company
prices the service, and what features it is willing to provide.#

IP telephones

IP telephones are heralds of the most exciting change in the telecommunications in-
dustry. Already now, standards-based IP telephones are available in retail stores. The
wealth of possibilities inherent in these devices will cause an explosion of interesting
applications, from video phones to high-fidelity broadcasting devices, to wireless mo-
bility solutions, to purpose-built sets for particular industries, to flexible all-in-one
multimedia systems.

The revolution that IP telephones will spawn has nothing to do with a new type of wire
to connect your phone to, and everything to do with giving you the power to commu-
nicate the way you want.

The early-model IP phones that have been available for several years now do not rep-
resent the future of these exciting appliances. They are merely a stepping-stone, a
familiar package in which to wrap a fantastic new way of thinking.

The future is far more promising.

Softphones
A softphone is a software program that provides telephone functionality on a non-tel-
ephone device, such as a PC or PDA. So how do we recognize such a beast? What might
at first glance seem a simple question actually raises many. A softphone should probably
have some sort of dial pad, and it should provide an interface that reminds users of a
telephone. But will this always be the case?

The term softphone can be expected to evolve rapidly, as our concept of what exactly
a telephone is undergoes a revolutionary metamorphosis.* As an example of this evo-
lution, consider the following: would we correctly define popular communication
programs such as Instant Messenger as softphones? IM provides the ability to initiate
and receive standards-based VoIP connections. Does this not qualify it as a softphone?
Answering that question requires knowledge of the future that we do not yet possess.
Suffice it to say that while at this point in time, softphones are expected to look and
sound like traditional phones, that conception is likely to change in the very near future.

As standards evolve and we move away from the traditional telephone and toward a
multimedia communications culture, the line between softphones and physical tele-
phones will become blurred indeed. For example, we might purchase a communica-

If you are in North America, give up on this idea, unless you have a lot of patience and money, and are a bit
of a masochist.

* Ever heard of Skype?

32 | Chapter 2: Preparing a System for Asterisk

tions terminal to serve as a telephone and install a softphone program onto it to provide
the functions we desire.

Having thus muddied the waters, the best we can do at this point is to define what the
term softphone will refer to in relation to this book, with the understanding that the
meaning of the term can be expected to undergo a massive change over the next few
years. For our purposes, we will define a softphone as any device that runs on a personal
computer, presents the look and feel of a telephone, and provides as its primary function
the ability to make and receive full-duplex audio communications (formerly known as
“phone calls”)† through E.164 addressing.‡

Telephony Adaptors
A telephony adaptor (usually referred to as an ATA, or Analog Terminal Adaptor) can
loosely be described as an end-user device that converts communications circuits from
one protocol to another. Most commonly, these devices are used to convert from some
digital (IP or proprietary) signal to an analog connection that you can plug a standard
telephone or fax machine into.

These adaptors could be described as gateways, for that is their function. However,
popular usage of the term telephony gateway would probably best describe a multiport
telephony adaptor, generally with more complicated routing functions.

Telephony adaptors will be with us for as long as there is a need to connect incompatible
standards and old devices to new networks. Eventually, our reliance on these devices
will disappear, as did our reliance on the modem—obsolescence through irrelevance.

Communications Terminals
Communications terminal is an old term that disappeared for a decade or two and is
being reintroduced here, very possibly for no other reason than that it needs to be
discussed so that it can eventually disappear again—once it becomes ubiquitous.

First, a little history. When digital PBX systems were first released, manufacturers of
these machines realized that they could not refer to their endpoints as telephones—
their proprietary nature prevented them from connecting to the PSTN. They were
therefore called terminals, or stations. Users, of course, weren’t having any of it. It
looked like a telephone and acted like a telephone, and therefore it was a telephone.
You will still occasionally find PBX sets referred to as terminals, but for the most part
they are called telephones.

† OK, so you think you know what a phone call is? So did we. Let’s just wait a few years, shall we?

‡ E.164 is the ITU standard that defines how phone numbers are assigned. If you’ve used a telephone, you’ve
used E.164 addressing.

Types of Phones | 33

The renewed relevance of the term communications terminal has nothing to do with
anything proprietary—rather, it’s the opposite. As we develop more creative ways of
communicating with each other, we gain access to many different devices that will allow
us to connect. Consider the following scenarios:

• If I use my PDA to connect to my voicemail and retrieve my voice messages (con-
verted to text), does my PDA become a phone?

• If I attach a video camera to my PC, connect to a company’s web site, and request
a live chat with a customer service rep, is my PC now a telephone?

• If I use the IP phone in my kitchen to surf for recipes, is that a phone call?

The point is simply this: we’ll probably always be “phoning” each other, but will we
always be using “telephones” to do so?

Linux Considerations
If you ask anyone at the Free Software Foundation, they will tell you that what we know
as Linux is in fact GNU/Linux. All etymological arguments aside, there is some valuable
truth to this statement. While the kernel of the operating system is indeed Linux, the
vast majority of the utilities installed on a Linux system and used regularly are in fact
GNU utilities. “Linux” is probably only 5 percent Linux, possibly 75 percent GNU,
and perhaps 20 percent everything else.

Why does this matter? Well, the flexibility of Linux is both a blessing and a curse. It is
a blessing because with Linux you can truly craft your very own operating system from
scratch. Since very few people ever do this, the curse is in large part due to the respon-
sibility you must bear in determining which of the GNU utilities to install, and how to
configure the system.

If this seems overwhelming, do not fear. In the next chapter, we will discuss the selec-
tion, installation, and configuration of the software environment for your Asterisk
system.

Conclusion
In this chapter, we’ve discussed all manner of issues that can contribute to the stability
and quality of an Asterisk installation. Before we scare you off, we should tell you that
many people have installed Asterisk on top of a graphical Linux workstation—running
a web server, a database, and who knows what else—with no problems whatsoev-
er.§How much time and effort you should devote to following the best practices and

§ Just don’t ever install the X-windowing environment (which is anything that delivers a desktop, such as
GNOME, KDE, and such). You are almost guaranteed to have audio quality problems, as Asterisk and the
GUI will fight for control of the CPU.

34 | Chapter 2: Preparing a System for Asterisk

engineering tips in this chapter all depends on how much work you expect the Asterisk
server to perform, and how much quality and reliability your system must provide. If
you are experimenting with Asterisk, don’t worry too much; just be aware that any
problems you have may not be the fault of the Asterisk system.

What we have attempted to do in this chapter is give you a feel for the kinds of best
practices that will help to ensure that your Asterisk system will be built on a reliable,
stable platform. Asterisk is quite willing to operate under far worse conditions, but the
amount of effort and consideration you decide to give these matters will play a part in
the stability of your PBX. Your decision should depend on how critical your Asterisk
system will be.

Conclusion | 35

CHAPTER 3

Installing Asterisk

I long to accomplish great and noble tasks, but it is my
chief duty to accomplish humble tasks as though they
were great and noble. The world is moved along, not

only by the mighty shoves of its heroes, but also by the
aggregate of the tiny pushes of each honest worker.

—Helen Keller

In the previous chapter, we discussed preparing a system to install Asterisk. Now it’s
time to get our hands dirty!

Although a large number of Linux* distributions and PC architectures are excellent
candidates for Asterisk, we have chosen to focus on a single distribution in order to
maintain brevity and clarity throughout the book. The instructions that follow have
been made as generic as possible, but you will notice a leaning toward CentOS directory
structure and system utilities. We have chosen to focus on CentOS (arguably, the most
popular distro for Asterisk) because its command set, directory structure, and so forth
are likely to be familiar to a larger percentage of readers (we have found that many
Linux administrators are familiar with CentOS, even if they don’t prefer it). This doesn’t
mean that CentOS is the only choice, or even the best one for you. A question that often
appears on the mailing lists is: “Which distribution of Linux is the best to use with
Asterisk?” The multitude of answers generally boils down to “the one you like the
best.”†

* And some non-Linux operating systems as well, such as Solaris, *BSD, and OS X. You should note that while
people have managed to successfully run Asterisk on these alternative systems, Asterisk was, and continues
to be, actively developed for Linux.

† We will be using CentOS Server 4.4 in this book, which we usually install with nothing except the Editors
package selected. If you are not sure what distribution to choose, CentOS is an excellent choice. CentOS can
be obtained from http://www.centos.org.

37

http://www.centos.org

What Packages Do I Need?
Most Asterisk configurations are composed of three main packages : the main Asterisk
program (asterisk), the Zapata telephony drivers (zaptel), and the PRI libraries (libpri).
If you plan on a pure VoIP network, the only real requirement is the asterisk package,
but we recommend installing all three packages; you can choose what modules to ac-
tivate later. The zaptel drivers are required if you are using analog or digital hardware,
or if you’re using the ztdummy driver (discussed later in this chapter) as a timing source.
The libpri library is optional unless you’re using ISDN PRI interfaces, and you may save
a small amount of RAM if you don’t load it, but we recommend that it be installed in
conjunction with the zaptel package for completeness.

In the first edition of this book, we recommended that you install the additional
asterisk-sounds package. This was a separate compressed archive that you would
download, extract, and then install. As of Asterisk version 1.4.0, there are now two sets
of sounds packages: the Core Sound package and the Extra Sound package. Since As-
terisk supports several different audio formats, these packages can be obtained in a
number of different sound formats, such as G.729 and GSM. The reason for all of the
different formats is that Asterisk can use the sound format that requires the least amount
of CPU transcode. For example, if you have a lot of connections coming in on VoIP
channels that are running GSM, you would want to have the GSM version of the sound
files. You can select one or more sound prompt types in the menuselect screen (dis-
cussed later in this chapter). We recommend that you install at least one type of sounds
file from both the Core Sound package and Extra Sound package menu items. Since
we may make use of some of the Extra Sound files throughout this book, we will assume
you have at least one of the formats installed.

Linux Package Requirements
To compile Asterisk, you must have the GCC compiler (version 3.x or later) and its
dependencies on your system. Asterisk also requires bison, a parser generator program
that replaces yacc, and ncurses for CLI functionality. The cryptographic library in As-
terisk requires OpenSSL and its development packages.

Zaptel requires libnewt and its development packages for the zttool program (see “Using
ztcfg and zttool later in this chapter). If you’re using PRI interfaces, Zaptel also requires
the libpri package (again, even if you aren’t using PRI circuits, we recommend that you
install libpri along with zaptel).

If you install the Software Development packages in CentOS, you will have all of these
tools. If you are looking to keep things trim, and wish to install the bare minimum to
compile Asterisk and its related packages, Table 3-1 will prove useful.

38 | Chapter 3: Installing Asterisk

In the following table, the -y switch to the yum application means to
answer yes to all prompts, and using it will install the application and
all dependencies without prompting you. If this is not what you want,
omit the -y switch.

If you just want to install all of the above packages in one go, you can
specify more than one package on the command line, e.g.:

yum install -y gcc ncurses-devel libtermcap-devel [...]

Table 3-1. List of packages required to compile libpri, zaptel, and asterisk

Package name Installation command Note Used by

GCC 3.x yum install -y
gcc

Required to compile zaptel,
libpri, and asterisk

libpri, zaptel, asterisk

ncurses-devel yum install -y
ncurses-devel

Required by menuselect menuselect

libtermcap-devel yum install -y
libtermcap-devel

Required by asterisk asterisk

Kernel Development Headers yum install -y
kernel-devel

Required to compile zaptel zaptel

Kernel Development
Headers (SMP)

yum install -y
kernel-smp-devel

Required to compile zaptel zaptel

GCC C++ 3.x yum install -y
gcc-c++

Required by asterisk asterisk

OpenSSL (optional) yum install -y
openssl-devel

Dependency of OSP, IAX2 en-
cryption, res_crypto (RSA
key support)

asterisk

newt-devel (optional) yum install -y
newt-devel

Dependency of zttool zaptel

zlib-devel (optional) yum install -y
zlib-devel

Dependency of DUNDi asterisk

unixODBC; unixODBC-devel
(optional)

yum install -y
unixODBC-devel

Dependency of func_odbc,
cdr_odbc, res_config_odbc,
res_odbc, ODBC_STORAGE

asterisk

libtool (optional;
recommended)

yum install -y
libtool

Dependency of ODBC-related
modules

asterisk

GNU make (version 3.80 or
higher) a

yum install -y
make

Required to compile zaptel
and asterisk

asterisk

a It is a common problem among new installs on some Linux distriebutons to see GNU make versions of 3.79 or lower. Note that Asterisk will
no longer build correctly unless you have at least version 3.80 of GNU make.

What Packages Do I Need? | 39

Obtaining the Source Code
The best place to get source code for Asterisk and it’s packages is directly from the
http://www.asterisk.org web site or FTP server.

Release Versus Trunk
The Asterisk code base is under a constant state of change. Developers use a sofware
revision tool called Subversion (SVN)‡ to manage the code base. Subversion allows a
communty of developers to collaborate with each other on complex programming
projects.

There are two main areas where Asterisk is developed, and these are referred to as the
Branch and the Trunk. In the Trunk, new features, architectural changes, and any of
the brand-new stuff that is going on is performed. This place in the code base contains
all the new toys, but at any time can be in a nonworking state, and is absolutely for-
bidden from production use (see figure).

Trunk

1.0 1.2 1.4

Just like a tree, a Trunk will have Branches. These Branches have the major revision
numbers such as 1.0, 1.2, and 1.4 (in the future we will likely see 1.6, 1.8, 1.8.2, 1.8.4.
1.8.6, 1.8.8. 1.8.8.2…um…etc…).§ Within the Branch there are no major architectural
changes or new features—simply bug and security fixes. In a production environment,
stability is far more important than feature evolution.

Roughly every 14 months (although Asterisk does not follow a formal release timeline
like many commercial software packages), a version of Asterisk is released intended for
use in production environments. The first version of Asterisk was 1.0, which was re-
leased at the very first AstriCon in Atlanta in September of 2004. Asterisk 1.2 was
released at IP4IT in November 2005, and Asterisk 1.4 was released in December of
2006.

Obtaining Asterisk Source Code
The easiest way to obtain the most recent release is through the use of the program
wget.

‡ Subversion is an excellent code management system, available at http://subversion.tigris.org/. It also has an equally
excellent Creative Commons released book, Version Control with Subversion, by Ben Collins Sussman et al.
(O’Reilly), available online at http://svnbook.red-bean.com/.

§ As of the release date of this book, there has been no determination that the next Asterisk release will be 1.6. It
could just as easily be 2.0. Therefore, when discussing new features, you’ll see us talk about what’s in Trunk or
what will be in the next release—without mentioning the specific version.

40 | Chapter 3: Installing Asterisk

http://www.asterisk.org
http://subversion.tigris.org/
http://svnbook.red-bean.com/

Note that we will be making use of the /usr/src/ directory to extract and compile the
Asterisk source, although some system administrators may prefer to use /usr/local/src.
Also be aware that you will need root access to write files to the /usr/src/ directory and
to install Asterisk and its associated packages.

See Chapter 13 for information on running Asterisk as non-root. All
security professionals will recommend that you run your daemons as a
non-root user in case there are security vulnerabilities in the software.
This helps to lower (but obviously does not eliminate) the risk of some-
one compromising the root user.

To obtain the latest release source code via wget, enter the following commands on the
command line:

cd /usr/src/
wget http://downloads.digium.com/pub/asterisk/asterisk-1.4-current.tar.gz
wget http://downloads.digium.com/pub/libpri/libpri-1.4-current.tar.gz
wget http://downloads.digium.com/pub/zaptel/zaptel-1.4-current.tar.gz

The latest versions of the asterisk, libpri, and zaptel packages may not
necessarily be the same version number.

Alternatively, during development and testing you will probably want to work with the
latest branch. To check it out from SVN, run:

svn co http://svn.digium.com/svn/asterisk/branches/1.4 asterisk-1.4

If you retrieved the described source code via the release files on the Digium FTP server,
then extract the files as described in the next section before continuing on with
compiling.

Extracting the Source Code
The packages you downloaded from the FTP server are compressed archives containing
the source code; thus, you will need to extract them before compiling. If you didn’t
download the packages to /usr/src/, either move them there now or specify the full path
to their location. We will be using the GNU tar application to extract the source code
from the compressed archive. This is a simple process that can be achieved through the
use of the following commands:

cd /usr/src/
tar zxvf zaptel-1.4-current.tar.gz
tar zxvf libpri-1.4-current.tar.gz
tar zxvf asterisk-1.4-current.tar.gz

Obtaining the Source Code | 41

In bash (and other shell systems which support it), you can use an ex-
tremely handy feature called Tab completion. This will allow you to type
part of a filename and have the rest of it completed automatically. For
example, if you type tar zxvf zap<tab> that will complete the full
zaptel filename for you. If more than one filename matches the pattern
and you hit Tab twice, it will list the files matching that pattern.

These commands will extract the packages and source code to their respective direc-
tories. When you extract the asterisk-1.4-current.tar.gz file, you will find that the file
will extract to the current version of Asterisk, i.e. asterisk-1.4.4.

It’s always a good idea to keep the source code of the most recently
working version of a package in case you have to “roll back” out of a
new bug introduced, or some other strange behavior you can’t solve
immediately.

Menuselect
In the 1.4.0 version of Asterisk and its related packages, a new build system,
autoconf, was implemented. This has changed the build process slightly, but has given
more flexibilty to control what modules are being built at build time. This has an ad-
vantage in that we only have to build the modules we want and need instead of building
everything.

Along with the new build system, a new menu-based selection system was introduced,
courtesy of Russell Bryant. This new system permits a finer-grained selection to which
modules are built before compiling the software and no longer requires the user to edit
Makefiles. So instead of discussing how to use menuselect in every “Compiling ...”
section, we will discuss it here, so when you see make menuselect you will understand
what to do once inside the menuselect configuration screen.

In Figure 3-1, we see the opening menuselect screen for the Asterisk software. Other
packages will look extremely similar, but with less options. We can navigate up and
down the list using the arrow keys. We can select one of the menu options by pressing
Enter or by using the right arrow key. The left arrow key can be used to go back.

Figure 3-2 shows a list of possible dialplan applications that can be built for use in
Asterisk. Modules to be built are marked as [*]. A module is marked as not being built
by []. Modules that have XXX in front of them are missing a package dependency which
must be satisfied before it will be available to be built. In Figure 3-2, we can see that
the app_flash module cannot be built due to a missing dependency of Zaptel (i.e., the
Zaptel module has not been built and installed on the system since the last
time ./configure was run). If you have satisfied a dependency since the last time you

42 | Chapter 3: Installing Asterisk

ran ./configure, then run it again, and rerun menuselect. Your module should now be
available for building.

After you have finished making changes to menuselect, type x to save and quit. q will
also quit out of menuselect, but it will not save the changes. If you make changes and
type q, your changes may be lost!

Compiling Zaptel
Figure 3-3 shows the layers of interaction between Asterisk and the Linux kernel with
respect to hardware control. On the Asterisk side is the Zapata channel module,
chan_zap. Asterisk uses this interface to communicate with the Linux kernel, where
the drivers for the hardware are loaded.

The Zaptel interface is a kernel loadable module that presents an abstraction layer
between the hardware drivers and the Zapata module in Asterisk. It is this concept that
allows the device drivers to be modified without any changes being made to the Asterisk

Figure 3-1. Sample menuselect screen

Compiling Zaptel | 43

source itself. The device drivers are used to communicate with the hardware directly
and to pass the information between Zaptel and the hardware.

While Asterisk itself compiles on a variety of platforms, the Zaptel driv-
ers are Linux-specific—they are written to interface directly with the
Linux kernel. There is a project at http://www.solarisvoip.com that pro-
vides Zaptel support for Solaris. There is also a project that is working
to provide Zapata drivers for BSD, located at http://www.voip-info.org/
tiki-index.php?page=FreeBSD+zaptel.

First we will discuss the ztdummy driver, used on systems that require a timing interface
but that do not have hardware. Then we will look at compiling and installing the drivers.
(The configuration of Zaptel drivers will be discussed in the next chapter.)

Figure 3-2. List of modules to be built

44 | Chapter 3: Installing Asterisk

http://www.solarisvoip.com
http://www.voip-info.org/tiki-index.php?page=FreeBSD+zaptel
http://www.voip-info.org/tiki-index.php?page=FreeBSD+zaptel

Before compiling the Zaptel drivers on a system running a Linux 2.4
kernel, you should verify that /usr/src/ contains a symbolic link named
linux-2.4 pointing to your kernel source. If the symbolic link doesn’t
exist, you can create it with the following command (assuming you’ve
installed the source in /usr/src/):

ln -s /usr/src/'uname -r' /usr/src/linux-2.4

Computers running Linux 2.6 kernel-based distributions do not usually
require the use of the symbolic link, as these distributions will search
for the kernel build directory automatically. However, if you’ve placed
the build directory in a nonstandard place (i.e., somewhere other
than /lib/modules/ <kernel version> /build/), you will require the use of
the symbolic link.

While Asterisk and the other related packages run on Linux 2.4.x ker-
nels, development is done first and foremost on 2.6.x kernels and
support for 2.4.x kernels is not guarenteed in the future.

The ztdummy Driver
In Asterisk, certain applications and features require a timing device in order to operate
(Asterisk won’t even compile them if no timing device is found). All Digium PCI hard-
ware provides a 1 kHz timing interface that satisfies this requirement. If you lack the
PCI hardware required to provide timing, the ztdummy driver can be used as a timing
device. On Linux 2.4 kernel-based distributions, ztdummy must use the clocking pro-
vided by the UHCI USB controller.

Asterisk

chan_zap.so

/dev/zap

Zaptel

Hardware driver
(wctdm)

Hardware

Linux kernel

Figure 3-3. Layers of device interaction with Asterisk

Compiling Zaptel | 45

Many older systems (and some newer ones) use an OHCI USB controller
chip, which is incompatible with ztdummy. However, if you’re using a
2.6 kernel there is no need to worry about which USB controller chip
your system has.

The driver looks to see that the usb-uhci module is loaded and that the kernel version
is at least 2.4.5. Older kernel versions are incompatible with ztdummy.

On a 2.6 kernel-based distribution, ztdummy does not require the use of the USB con-
troller. (As of v2.6.0, the kernel now provides 1 kHz timing‖ with which the driver can
interface; thus, the USB controller hardware requirement is no longer necessary.)

The Zapata Telephony Drivers
Compiling the Zapata telephony drivers for use with your Digium hardware is straight-
forward; however, the method employed between the 1.2 and 1.4 versions is slightly
different due to the new build environment. First we need to run ./configure in order
to determine what applications and libraries are installed on the system. This will ensure
that everything Zaptel needs is installed. The following commands will build Zaptel
and its modules:

cd /usr/src/zaptel-version

make clean
./configure
make menuselect
make
make install

While running make clean is not always necessary, it’s a good idea to
run it before recompiling any of the modules, as it will remove the com-
piled binary files from within the source code directory. You can also
use it to clean up after installing if you don’t like to leave the compiled
binaries floating around. Note that this removes the binaries only from
the source directory, not from the system.

In addition to the executables, make clean also removes the intermediary
files (i.e., the object files) after compilation. You don’t need them oc-
cupying space on your hard drive.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directories
(such as CentOS and other Red Hat-based distros), you may wish to run the make con

‖ Note that this is configurable in the kernel, so it is possible certain distributions may not have this set to 1,000
Hz; CentOS, however, does have this set at the correct frequency.

46 | Chapter 3: Installing Asterisk

fig command as well. This will install the startup scripts and configure the system,
using the chkconfig command to load the zaptel module automatically at startup:

make config

The Debian equivalent of chkconfig is update-rc.d.

While Digium only officially supports Zaptel on Linux, several projects
to port Zaptel to other platforms should be noted:

• Solaris (http://www.solarisvoip.com)

• BSD (http://lists.digium.com/mailman/listinfo/asterisk-bsd)

Using ztcfg and zttool
Two programs installed along with Zaptel are ztcfg and zttool. The ztcfg program is
used to read the configuration in /etc/zaptel.conf to configure the hardware. The
zttool program can be used to check the status of your installed hardware. For instance,
if you are using a T1 card and there is no communication between the endpoints, you
will see a red alarm. If everything is configured correctly and communication is possible,
you should see an “OK.” The zttool application is also useful for analog cards, because
it tells you their current state (configured, off-hook, etc.). The use of these programs
will be explored further in the next chapter.

The libnewt libraries and their development packages (newt-devel on
Red Hat-based distributions) must be installed for zttool to be compiled.

The ztcfg and zttool applications, along with other useful utilities, are
located under the Utilities section of the Zaptel menuselect screen.

Compiling libpri
The libpri libraries do not make use of the autoconf build environment or the menu-
select feature as they are unnecessary; thus, the installation is simplified. libpri is used
by various makers of Time Division Multiplexing (TDM) hardware, but even if you
don’t have the hardware installed, it is safe to compile and install this library. You must
compile and install libpri before Asterisk, as it will be detected and used when Asterisk
is compiled. Here are the commands (replace version with your version of libpri):

cd /usr/src/libpri-version

make clean
make
make install

Compiling libpri | 47

http://www.solarisvoip.com
http://lists.digium.com/mailman/listinfo/asterisk-bsd

Compiling Asterisk
Once you’ve compiled and installed the zaptel and libpri packages (if you need them),
you can move on to Asterisk. This section walks you through a standard installation
and introduces some of the alternative make arguments that you may find useful.

Standard Installation
Asterisk is compiled with gcc through the use of the GNU make program. To get started
compiling Asterisk, simply run the following commands (replace version with your
version of Asterisk):

cd /usr/src/asterisk-version

make clean
./configure
make menuselect
make install
make samples

Be aware that compile times will vary between systems. On a current-generation pro-
cessor, you shouldn’t need to wait more than five minutes. At AstriCon (http://
www.astricon.net), someone reported successfully compiling Asterisk on a 133 MHz
Pentium, but it took approximately five hours. You do the math.

Run the make samples command to install the default configuration files. Installing these
files (instead of configuring each file manually) will allow you to get your Asterisk
system up and running much faster. Many of the default values are fine for Asterisk.
Files that require editing will be explained in future chapters.

If you already have configuration files installed in /etc/asterisk/ when you
run the make samples command, .old will be appended to the end of each
of your current configuration files, for example, extensions.conf will be
renamed extensions.conf.old. Be careful, though, because if you run make
samples more than once you will overwrite your original configuration
files!

The sample configuration files can also be found in the configs/ subdir-
ectory within your Asterisk sources directory.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directories,
you may wish to run the make config command as well. This will install the startup
scripts and configure the system (through the use of the chkconfig command) to execute
Asterisk automatically at startup:

make config

48 | Chapter 3: Installing Asterisk

http://www.astricon.net
http://www.astricon.net

Alternative make Arguments
There are several other make arguments that you can pass at compile time. While some
of these will be discussed here, the remainder are used internally within the file and
really have no bearing or use for the end user. (Of course, new functions may have been
added, so be sure to check the Makefile for other options.)

Let’s take a look at some useful make arguments.

make clean

The make clean command is used to remove the compiled binaries from within the
source directory. This command should be run before you attempt to recompile or, if
space is an issue, if you would like to clean up the files.

make distclean

The make distclean command is used to remove the compiled binaries and to clean
the source directory back to its original state after being extracted from the compressed
archive.

make update

The make update command is used to update the existing code from the Digium SVN
server. If you downloaded the source code from the FTP server, you will receive a notice
stating so.

make webvmail

The Asterisk Web Voicemail script is used to give a graphical interface to your voicemail
account, allowing you to manage and interact with your voicemail remotely from a web
browser.

When you run the make webvmail command, the Asterisk Web Voicemail script will be
placed into the cgi-bin/ directory of your HTTP daemon. If you have specific policies
with respect to security, be aware that it uses a setuid root Perl script. This command
will install only on a CentOS or Fedora box, as other distributions may have different
paths to their cgi-bin/ directories. (This, of course, can be changed by editing the
HTTP_CFGDIR variable in the Makefile at line 133 at the time of this writing.)

make progdocs

The make progdocs command will create documentation using the doxygen software
from comments placed within the source code by the developers. You must have the
appropriate doxygen software installed on your system in order for this to work. Note
that doxygen assumes that the source code is well documented, which, sadly, is not
always the case, although much work was published since the first edition of this book!
The information contained within the doxygen system will be useful only to developers.

Compiling Asterisk | 49

make config

The make config command will install Red Hat-style initialization scripts, if
the /etc/rc.d/init.d or /etc/init.d directories are found to exist. If they do exist, the scripts
are installed with file permissions equal to 755. If the script detects
that /etc/rc.d/init.d/ exists, the chkconfig --add asterisk command will also be run to
cause Asterisk to be started automatically at boot time. This is not the case, however,
with distributions that only use the /etc/init.d/ directory. Running make config will not
do anything to an already running Asterisk process, or start one if it’s not running.

This script currently is really only useful on a Red Hat-based system, although initial-
ization scripts are available for other distributions (such as Gentoo, Mandrake, and
Slackware) in the ./contrib./init.d/ directory of your Asterisk source directory.

Using Precompiled Binaries
While the documented process of installing Asterisk expects you to compile the source
code yourself, there are Linux distributions (such as Debian) that include precompiled
Asterisk binaries. Failing that, you may be able to install Asterisk with the package
managers that those distributions of Linux provide (such as apt-get for Debian and
portage for Gentoo).# However, you may also find that many of these prebuilt binaries
are quite out of date and do not follow the same furious development cycle as Asterisk.

Finally, there do exist basic, precompiled Asterisk binaries that can be downloaded and
installed in whatever Linux distribution you have chosen. However, the use of pre-
compiled binaries doesn’t really save much time, and we have found that compiling
Asterisk with each install is not a very cumbersome task. We believe that the best way
to install Asterisk is to compile from the source code, so we won’t discuss prebuilt
binaries very much in this book―and besides, don’t you want to be l33t?* In the next
chapter, we’ll look at how to initially configure Asterisk and several kinds of channels.

Installing Additional Prompts
Additional prompts are installed via the menuselect application in your Asterisk source
directory. There are three sets of audio packages: Core Sound, Extra Sound, and Music
On Hold File. Each set of packages is broken down into different formats (and the Core
Sound packages are available in multiple languages). Using the menuselect application,

Gentoo doesn’t actually use a precompiled binary, but rather pulls the source from a repository, and builds
and installs the software using its own package management system. But the version you get is still dependant
upon the maintainers packaging it for you, when you could simply build it yourself!

* l33t is a funny way of saying “elite,” known as leetspeak (computer slang). Even more funny is a well-written,
serious article by Microsoft about leetspeak at http://www.microsoft.com/athome/security/children/
leetspeak.mspx.

50 | Chapter 3: Installing Asterisk

http://www.microsoft.com/athome/security/children/leetspeak.mspx
http://www.microsoft.com/athome/security/children/leetspeak.mspx

you can select combinations of audio packages for use in your environment. Some of
the formats available include:

• WAV

• μlaw

• alaw

• GSM

• G.729

• G.722 (wideband, 16-bit)

As of this writing, the Core Sound packages are available in the following languages:

• English

• Spanish

• French

Selecting any sounds in menuselect will cause the system to download
the files from the Digium FTP server upon install. The size of these files
ranges anywhere from 2 MB to 27 MB, so be aware of this when instal-
ling offline, or on slow and expensive links.

Other Useful Add-ons
The asterisk-addons package contains code to allow the storage of Call Detail Records
(CDRs) to a MySQL database. There is also code that allows Asterisk to natively play
MP3s (which we don’t recommend unless you have a powerful system with very few
phones on it). Some folks may also be interested in the interpreter that allows you to
load Perl code into memory for the life of an Asterisk process (which can be very helpful
if you have a large number of AGI calls to the Perl interpreter). Programs are placed
into asterisk-addons when there are licensing issues preventing them from being im-
plemented directly into the Asterisk source code, or when they are not considred mature
enough to be integrated with Asterisk.

The http://ftp.digium.com/pub/asterisk/g729/ directory contains the code and registra-
tion program for the proprietary G.729A codec . If you install the g729 sounds packages,
Asterisk will be able to communicate with devices that natively support the G.729A
codec, but will not be able to transcode between other codecs and G.729A until a license
is obtained to use it.

Common Compiling Issues
There are many common compiling issues that users often run into. Here are some of
the more common problems, and how to resolve them.

Common Compiling Issues | 51

http://ftp.digium.com/pub/asterisk/g729/

Asterisk
First, let’s take a look at some of the errors you may encounter when running the
configure script.

configure: error: no acceptable C compiler found in $PATH

If you receive the following error while attempting to run the configure script, you must
install the gcc compiler and its dependencies:

configure: error: no acceptable C compiler found in $PATH

The following packages are required for gcc:

• gcc

• cpp

• glibc-headers

• glibc-devel

• glibc-kernheaders

These can be installed manually, by copying the files off of your distribution disks, or
through the yum package manager, with the command yum install gcc.

configure: error: C++ preprocessor "/lib/cpp" fails sanity check

The following error will be displayed if no C++ preprocessor is found installed on the
system. You must install the gcc-c++ package and its dependencies:

configure: error: C++ preprocessor "/lib/cpp" fails sanity check

The following packages are required for the gcc-c++ preprocessor; installed by running
yum install gcc-c++:

• gcc-c++

• libstdc++-devel

configure: error: *** termcap support not found

The following error may be encountered during initialization of the configure script if
the libtermcap-devel package is not installed:

configure: error: *** termcap support not found

The following file is required in order to compile Asterisk; it can be installed with the
yum install libtermcap-devel command:

• libtermcap-devel

52 | Chapter 3: Installing Asterisk

Zaptel
You may also run into errors when compiling Zaptel. Here are some of the most com-
monly occurring problems, and what to do about them. If your error is not listed below,
see the previous section as your error may be covered there.

make: cc: Command not found

You will receive the following error if you attempt to build Zaptel without the gcc
compiler installed:

make: cc: Command not found
make: *** [gendigits.o] Error 127

Be sure to install gcc and its dependencies. For more information, see “configure: error:
no acceptable C compiler found in $PATH in the previous section.

FATAL: Module wctdm/fxs/fxo not found

The TDM400P cards require the PCI bus to be version 2.2. If you attempt to load the
Zapata telephony drivers with an older version, you may get the following errors:

• When attempting to load the wctdm driver, you may see this error:

FATAL: Module wctdm not found

• When attempting to load the wctdm or wcfxo driver, you may see an error such as
this:

ZT_CHANCONFIG failed on channel 1: No such device or address (6)
FATAL: Module wctdm not found

The only way to resolve these errors is to use a newer motherboard that supports PCI
version 2.2:

You may also encounter these errors if the power has not been attached
to the Molex connector found on the TDM400P card.

Unresolved symbol link when loading ztdummy

The ztdummy driver requires that a UHCI USB controller be available on Linux 2.4
kernels (the USB controller is not a requirement on Linux 2.6 kernels, because they are
capable of generating the 1 kHz timing reference). There exists a secondary kind of
controller, known as OHCI, which is not compatible with the ztdummy driver. If the
UHCI USB controller is not accessible on Linux 2.4 kernels, the following error will
occur:

/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol unlink_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

Common Compiling Issues | 53

symbol alloc_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol delete_desc
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_devices
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_interrupt
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol fill_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol insert_td_horizontal
/lib/modules/2.4.22/misc/ztdummy.o: insmod /lib/modules/2.4.22/misc/ztdummy.o failed
/lib/modules/2.4.22/misc/ztdummy.o: insmod ztdummy failed

You can verify that you have the correct style of USB controller and its associated drivers
with the lsmod command:

lsmod
Module Size Used by
usb_uhci 26412 0
usbcore 79040 1 [hid usb-uhci]

As you can see in the example above, you are looking to make sure that the usbcore
and usb_uhci modules are loaded. If these modules are not loaded, be sure that USB
has been activated within your BIOS and that the modules exist.

If the USB drivers are not loaded, you can still check which type of USB controller you
have with the dmesg command:

dmesg | grep -i usb

To verify that you indeed have a UHCI USB controller, look for the following lines:

uhci_hcd 0000:00:04.2: new USB bus registered, assigned bus number 1
hub 1-0:1.0: USB hub found
uhci_hcd 0000:00:04.3: new USB bus registered, assigned bus number 2
hub 2-0:1.0: USB hub found

Depmod errors during compilation

If you experience depmod errors during compilation, you more than likely don’t have a
symbolic link to your Linux kernel sources. If you don’t have your Linux kernel sources
installed, retrieve the sources for your installed kernel, install them, and create a sym-
bolic link against /usr/src/linux-2.4. The following is an example of a depmod error:

depmod: *** Unresolved symbols in /lib/modules/2.4.22/kernel/drivers/block/
loop.o

Loading Asterisk and Zaptel Quickly
If you run make config in the Asterisk or Zaptel source directories, then the initialization
scripts used to control Asterisk or Zaptel will be copied to /etc/rc.d/init.d/. The scripts
can be used to easily load and unload Asterisk and Zaptel. They will also run the

54 | Chapter 3: Installing Asterisk

chkconfig command for you so Asterisk and Zaptel will be started automatically upon
system boot. The following shows their usage:

service zaptel start
service asterisk start

Each initialization script has several options that can be utilized to control the PBX or
the drivers. Tables 3-2 and 3-3 show the commands run by the script as if you had typed
them into the command-line interface (CLI) yourself:

Table 3-2. Asterisk initialization script options

service asterisk <option> Manual equivalent

start asterisk

stop killproc asterisk

restart stop; start

reload asterisk -rx "reload"

status ps aux | grep [a]sterisk

Table 3-3. Zaptel initialization script options

service zaptel <option> Manual equivalent

start modprobe zaptel; modprobe <module>; /sbin/ztcfg

stop rmmod ztdummy; rmmod zaptel

restart stop; start

reload /sbin/ztcfg

Loading Zaptel Modules Without Scripts
In this section, we’ll take a quick look at how to load the zaptel and ztdummy modules
without the CentOS initialization script. The zaptel module does not require any con-
figuration if it’s being used only for the ztdummy module. If you plan on loading the
ztdummy module as your timing source (and thus, you will not be running any PCI
hardware in your system), now is a good time to load both drivers.

Systems Running udevd
In the early days of Linux, the system’s /dev/ directory was populated with a list of
devices with which the system could potentially interact. At the time, nearly 18,000
devices were listed. That all changed when devfs was released, allowing dynamic cre-
ation of devices that are active within the system. Some of the recently released
distributions have incorporated the udev daemon into their systems to dynamically
populate /dev/ with device nodes.

Loading Zaptel Modules Without Scripts | 55

To allow Zaptel and other device drivers to access the PCI hardware installed in your
system, you must add some rules. Using your favorite text editor, open up your
udevd rules file. On CentOS, for example, this file is located
at /etc/udev/rules.d/50-udev.rules. Add the following lines to the end of your rules file:

Section for zaptel

device
 KERNEL="zapctl", NAME="zap/ctl"
 KERNEL="zaptimer", NAME="zap/timer"
 KERNEL="zapchannel", NAME="zap/channel"
 KERNEL="zappseudo", NAME="zap/pseudo"
 KERNEL="zap[0-9]*", NAME="zap/%n"

Save the file and reboot your system for the settings to take effect.

You may not have to actually edit anything in your system, as the Zaptel
installation script will try to install the rules for you; however, we have
left this here as a reference for those systems that are not automatically
configured.

Loading Zaptel
The zaptel module must be loaded before any of the other modules are loaded and used.
Note that if you will be using the zaptel module with PCI hardware, you must config-
ure /etc/zaptel.conf before you load it. (We will discuss how to configure zaptel.conf for
use with hardware in Chapter 4.) If you are using zaptel only to access ztdummy, you
can load it with the modprobe command, as follows:

modprobe zaptel

If all goes well, you shouldn’t see any output. To verify that the zaptel module loaded
successfully, use the lsmod command. You should be returned a line showing the
zaptel module and the amount of memory it is using, as in the following:

lsmod | grep zaptel
zaptel 201988 0

Loading ztdummy
The ztdummy module is an interface to a device that provides timing, which in turn
allows Asterisk to provide timing to various applications and functions that require it.
Use the modprobe command to load the ztdummy module after zaptel has been loaded:

modprobe ztdummy

If ztdummy loads successfully, no output will be displayed. To verify that ztdummy is
loaded and is being used by zaptel, use the lsmod command. The following output is
from a computer running the 2.6 kernel:

56 | Chapter 3: Installing Asterisk

lsmod | grep ztdummy
 Module Size Used by
 ztdummy 3796 0
 zaptel 201988 1 ztdummy

If you happen to be running a 2.4 kernel-based computer, your output from lsmod will
show that ztdummy is using the usb-uhci module:

 # lsmod | grep ztdummy
 Module Size Used by
 ztdummy 3796 0
 zaptel 201988 0 ztdummy
 usb-uhci 24524 0 ztdummy

Loading libpri Without Script
The libpri libraries do not need to be loaded like modules. Asterisk looks for libpri at
compile time and configures itself to use the libraries if they are found.

Starting Asterisk Without Scripts
Asterisk can be loaded in a variety of ways. The easiest way is to start Asterisk by running
the binary file directly from the Linux command-line interface. If you are running a
system that uses the init.d scripts, you can easily start and restart Asterisk that way as
well. However, the preferred way of starting Asterisk is via the safe_asterisk script.

Console Commands
The Asterisk binary is, by default, located at /usr/sbin/asterisk. If you
run /usr/sbin/asterisk, it will be loaded as a daemon. There are also a few switches you
should be aware of that allow you to (re)connect to the Asterisk CLI, set the verbosity
of CLI output, and allow core dumps if Asterisk crashes (for debugging with gdb). To
explore the full range of options, run Asterisk with the -h switch:

/usr/sbin/asterisk -h

Here is a list of the most commonly used options:

-c
Console. This will start Asterisk as a user process (not as a server), and will connect
you to the Asterisk CLI. This option is good when you are debugging your startup
parameters, but should not be used for a normal system (if Asterisk is already
running, this option will not work and will issue a complaint).

-v
Verbosity. This is used to set the amount of output for CLI debugging. The more
“v”s, the more verbose.

Loading libpri Without Script | 57

-g
Core dump. If Asterisk were to crash unexpectedly, this would cause a core file to
be created for later tracing with gdb. You generally do not use this in production,
unless you are writing code for Asterisk and want to debug any resulting crashes.

-r
Remote. This is used to reconnect remotely to an already running Asterisk process.
(The process is remote from the standpoint of the console connecting to it but is
actually a local process on the machine. This has nothing to do with connecting to
a remote process over a network using a protocol such as IP, as this is not suppor-
ted.) This is the most common option and it is what you would use to connect to
Asterisk on a system where it is running as a daemon/service that was started by
init at boot time.

-x "<CLI command>"
Execute. Using this command in combination with -r allows you to execute a CLI
command without having to connect to the CLI and type it manually. An example
would be to send a restart, which you would do by typing asterisk -rx
"reload" from the command line.

Let’s look at some examples. If you want to start Asterisk as a user program (because
you are tweaking your config and will be starting and stopping it several times), and
you want a verbosity level of 3, use the following command:

/usr/sbin/asterisk -cvvv

If the Asterisk process is already running (for example, if you have installed Asterisk as
part of the init process of the system), use the reconnect switch, like so:

/usr/sbin/asterisk -vvvr

If you want Asterisk to dump a core file after a crash, you can use the -g switch when
starting Asterisk:

/usr/sbin/asterisk -g

To execute a command without connecting to the CLI and typing it (perhaps for use
within a script), you can use the -x switch in combination with the -r switch:

/usr/sbin/asterisk -rx "restart now"
/usr/sbin/asterisk -rx "database show"
/usr/sbin/asterisk -rx "sip show peers"

If you are experiencing crashes and would like to output to a debug file, use the fol-
lowing command:

/usr/sbin/asterisk -vvvvc | tee /tmp/debug.log

Note that you do not have to use the v switch if you do not want the system to provide
detailed output of what is going on. On a busy system, you may not want to get any
output, as it can interfere with whatever you are doing on the console.

58 | Chapter 3: Installing Asterisk

Directories Used by Asterisk
Asterisk uses several directories on a Linux system to manage the various aspects of the
system, such as voicemail recordings, voice prompts, and configuration files. This sec-
tion discusses the necessary directories, all of which are created during installation and
configured in the asterisk.conf file.

/etc/asterisk/
The /etc/asterisk/ directory contains the Asterisk configuration files. One file, however
—zaptel.conf—is located in the /etc/ directory. The Zaptel hardware was originally
designed by Jim Dixon of the Zapata Telephony Group as a way of bringing reasonable
and affordable computer telephony equipment to the world. Asterisk makes use of this
hardware, but any other software can also make use of the Zaptel hardware and drivers.
Consequently, the zaptel.conf configuration file is not directly located in
the /etc/asterisk/ directory.

/usr/lib/asterisk/modules/
The /usr/lib/asterisk/modules/ directory contains all of the Asterisk loadable modules.
Within this directory are the various applications, codecs, formats, and channels used
by Asterisk. By default, Asterisk loads all of these modules at startup. You can disable
any modules you are not using in the modules.conf file, but be aware that certain mod-
ules are required by Asterisk or are dependencies of other modules. Attempting to load
Asterisk without these modules will cause an error at startup.

/var/lib/asterisk
The /var/lib/asterisk/ directory contains the astdb file and a number of subdirectories.
The astdb file contains the local Asterisk database information, which is somewhat like
the Microsoft Windows Registry. The Asterisk database is a simple implementation
based on v1 of the Berkeley database. The db.c file in the Asterisk source states that this
version was chosen for the following reason: “DB3 implementation is released under
an alternative license incompatible with the GPL. Thus, in order to keep Asterisk li-
censing simplistic, it was decided to use version 1 as it is released under the BSD
license.”

The subdirectories within /var/lib/asterisk/ include:

agi-bin/
The agi-bin/ directory contains your custom scripts, which can interface with As-
terisk via the various built-in AGI applications. For more information about AGI,
see Chapter 8.

Directories Used by Asterisk | 59

firmware/
The firmware/ directory contains firmware for various Asterisk-compatible devi-
ces. It currently contains only the iax/ subdirectory, which holds the binary
firmware image for Digium’s IAXy.

images/
Applications that communicate with channels supporting graphical images look
in the images/ directory. Most channels do not support the transmission of images,
so this directory is rarely used. However, if more devices that support and make
use of graphical images are released, this directory will become more relevant.

keys/
Asterisk can use a public/private key system to authenticate peers connecting to
your box via an RSA digital signature. If you place a peer’s public key in your
keys/ directory, that peer can be authenticated by channels supporting this method
(such as the IAX2 channels). The private key is never distributed to the public. The
reverse is also true: you can distribute your public key to your peers, allowing you
to be authenticated with the use of your private key. Both the public and private
keys—ending in the .pub and .key file extensions, respectively—are stored in the
keys/ directory.

mohmp3/
When you configure Asterisk for Music on Hold, applications utilizing this feature
look for their MP3 files in the mohmp3/ directory. Asterisk is a bit picky about how
the MP3 files are formatted, so you should use constant bitrate (CBR) encoding
and strip the ID3 tags from your files.

sounds/
All of the available voice prompts for Asterisk reside in the sounds/ directory. The
contents of the basic prompts included with Asterisk are in the sounds.txt file lo-
cated in your Asterisk source code directory. Contents of the additional prompts
are located in the sounds-extra.txt file in the directory to which you extracted the
asterisk-sounds package earlier in this chapter.

/var/spool/asterisk/
The Asterisk spool directory contains several subdirectories, including
dictate/, meetme/, monitor/, outgoing/, system/, tmp/, and voicemail/ (see Figure 3-4).
Asterisk monitors the outgoing directory for text files containing call request informa-
tion. These files allow you to generate a call simply by moving the correctly structured
file into the outgoing/ directory.

Call files being placed into the outgoing/ directory can contain useful information, such
as the Context, Extension, and Priority where the answered call should start, or simply
the application and its arguments. You can also set variables and specify an account
code for Call Detail Records. More information about the use of call files is presented
in Chapter 9.

60 | Chapter 3: Installing Asterisk

The dictate/ directory is the default location where the Dictate() application looks for
files.

The meetme/ directory is the location where MeetMe() conference recordings are saved.

Recordings from either one-touch recording (the w and W flags to the Dial() application),
the MixMonitor(), or Monitor() applications are stored in the monitor/ directory.

system/ is used by the System() application for temporary storage of data.

The tmp/ directory is used, funny enough, to hold temporary information. Certain
applications may require a place to write files to before copying the complete files to
their final destinations. This prevents two processes from trying to write to and read
from a file at the same time.

All voicemail and user greetings are contained within the voicemail/ directory. Exten-
sions configured in voicemail.conf that have been logged in to at least once are created
as subdirectories of voicemail/.

/var/run/
The /var/run/ directory contains the process ID (PID) information for all active pro-
cesses on the system, including Asterisk (as specified in the asterisk.conf file). Note
that /var/run/ is OS-dependent and may differ.

var

spool

asterisk

outgoing

qcall

tmp

voicemail

Figure 3-4. /var/spool/asterisk/ directory structure

Directories Used by Asterisk | 61

/var/log/asterisk/
The /var/log/asterisk/ directory is where Asterisk logs information. You can control the
type of information being logged to the various files by editing the logger.conf file lo-
cated in the /etc/asterisk/ directory. Basic configuration of the logger.conf file is covered
in Appendix D.

/var/log/asterisk/cdr-csv
The /var/log/asterisk/cdr-csv directory is used to store the CDRs in comma-separated
value (CSV) format. By default information is stored in the Master.csv file, but indi-
vidual accounts can store their own CDRs in separate files with the use of the
accountcode option (see Appendix A for more information).

AsteriskNOW™

In the following sections we will provide a gentle introduction to the AsteriskNOW
software, which gives you a complete PBX system with graphical configuration screen
all built into one!

What Is AsteriskNOW?
AsteriskNOW is an open source software appliance, a customized Linux distribution
that includes Asterisk, the Asterisk GUI, and all other software needed for an Asterisk
system. The Asterisk GUI gives you the ability to easily configure your Asterisk system
without being a technical expert.

Note: The complete software appliance distribution is provided under the GPL (http://
www.gnu.org/copyleft/gpl.html) and may legally be used for any purpose, commercial
or otherwise.

Before You Begin
AsteriskNOW installation is easy, because the appliance includes only those compo-
nents necessary to run, debug, and build Asterisk. You no longer have to worry about
kernel versions and package dependencies. AsteriskNOW is a custom Linux distribu-
tion for Asterisk based on rPath Linux.

What You Will Need
• A system on which you can install AsteriskNOW

• A CD writer and associated software

• Connection to the Internet

62 | Chapter 3: Installing Asterisk

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

• Firefox browser

The Asterisk GUI currently requires the Firefox browser (available at
http://www.mozilla.com/en-US/ for optimum performance. Wider
browser support will be available with future versions.

Installation
You should observe all normal precautions when preparing and installing a new dis-
tribution. Any existing operating systems on your hard drive will be removed by the
Express Installation. If you are not sure that you are ready to alter your system, try one
of the alternate installations (discussed in “Alternate Installations”) to give Asteris-
kNOW a try. For more help on Asterisk and rPath see the “For More Information”
section at the end of the chapter.

Quick installation

The essential installation of AsteriskNOW is really quite simple and gives you the ability
to get up and running in a short amount of time. Use this quick installation procedure
if you are comfortable with accepting the defaults. Any help you may need is provided
with the installation screens. If you would like more information on the installation
procedure, refer to the “Extended procedure” section below:

1. Download the AsteriskNOW ISO file (http://www.asterisknow.org/downloads) and
create a CD image from the file. This step is required before installation can begin.
The process for creating a CD image will vary depending upon the CD authoring
software you are using.

2. Insert your newly created AsteriskNOW CD into the CD-ROM drive of the PC.

3. Boot from the CD by restarting the PC. A basic AsteriskNOW boot menu with
several options will be provided:

• To install or upgrade in graphical mode, press Enter.

• To install or upgrade in Linux text mode, type linux text and then press Enter.

The recommended, and default, installation mode is graphical. If you do not make
an entry, the installation will continue in graphical mode.

4. From here, follow the self-explanatory, onscreen prompts to guide you through
the installation process.

5. When installation is complete, the system will prompt you to reboot. After re-
booting, a URL to access the Asterisk GUI will be displayed.

6. You are now ready to configure and run AsteriskNOW.

AsteriskNOW™ | 63

http://www.mozilla.com/en-US/
http://www.asterisknow.org/downloads

Extended procedure

1. Download the AsteriskNOW ISO file (http://www.asterisknow.org/downloads) and
create a CD image from the file. This step is required before installation can begin.
The process for creating a CD image will vary depending upon the CD authoring
software you are using.

2. Insert your newly created AsteriskNOW CD into the CD-ROM drive.

3. Boot from the CD by restarting the PC. A basic AsteriskNOW boot menu with
several options will be provided:

• To install or upgrade in graphical mode, press Enter.

• To install or upgrade in Linux text mode, type linux text and then press Enter.

The recommended, and default, installation mode is graphical. If you do not make
an entry, the installation will continue in graphical mode.

After a bit of processing, the initial installation screen is displayed. The initial screen
is similar to the following illustration:

4. From the initial installation screen you can read the release notes or the Help in-
formation. When you are ready, click Next to continue the installation.

The next installation screen lets you choose the type of installation. The two modes
of installation available are:

Express Installation
The Express Installation installs all of the software needed to install Asterisk.
Debugging and development tools are installed with this installation type.

Expert
Select this installation type if you want to have complete control over all in-
stallation options. Among the options you can control are software package
selection, partitioning, and language selection.

The default installation type is Express Installation. This installation type assumes
an English language reader and that you aren’t concerned with the finer points.
Choose Expert if you don’t read English, and/or want more control over the in-
stallation details. For the purposes of this procedure, Express Installation is
discussed.

5. Choose your installation type and then click Next.

The Automatic Partitioning screen is displayed. The Automatic Partitioning screen
gives you several options to choose from before the software partitions your drive.
This gives you the opportunity to choose which data (if any) is removed from your
system, and how the drive is partitioned. The following options are available:

Remove All Linux Partitions
This option will only remove any Linux partitions created from a previous
Linux installation.

64 | Chapter 3: Installing Asterisk

http://www.asterisknow.org/downloads

Remove All Partitions
Select this option if you want to remove all partitions on your system, including
those created by other operating systems (such as Windows).

Keep All Partitions
You should choose this option if you want to retain all of your current data
and partitions. You will need enough hard drive space for your Asterisk im-
plementation. Twenty GB is a realistic minimum, but the minimum space is
dependent on the needs of the system you want to create.

In most cases, you will want to choose Remove All Partitions. A hard drive dedi-
cated to your Asterisk implementation is the best way to ensure maximum per-
formance. Select the Review checkbox on the Automatic Partitioning screen if you
want to review or modify your partition selections.

6. A list of the hard drives available for use is listed on the Automatic Partitioning
screen. Select the checkbox next to the hard drive(s) you want to use for your
system. Click Next to continue with the installation.

• If you selected Remove All Partitions or Remove All Linux Partitions, a warning
dialog will be displayed that asks if you want to proceed. Click Yes to proceed,
or No to change your partition selection.

• If you selected Review on the Automatic Partitioning screen, a screen will be
displayed with the partitions created. You can modify your partitions on this
screen. To proceed, click Next.

7. The Network Configuration screen is displayed.

• You can configure the network devices associated with your system on the Net-
work Configuration screen. Any network devices attached to your system are
automatically detected by the installation program and displayed in the Net-
work Devices list. You can either accept the device(s) automatically selected by
the installation program, or you can edit them by selecting Edit.

• Set the Hostname by either selecting Automatically via DHCP, or by selecting
Manually and enter the hostname for your system. Once you have specified the
hostname, click Next to proceed.

8. The Time Zone Selection screen is displayed.

• The Time Zone Selection screen offers several ways for you to select the time
zone appropriate for your installation. You can either use the world map, which
displays major cities, select from a list of locations and time zones, or select the
System Clock Uses UTC to use the system time. Once you have selected a time
zone, click Next.

9. The Administrator Password screen is displayed.

• You must set a password for the AsteriskNOW administrator account, “admin”.
This password will be used to log on to the system, as well as the Asterisk GUI.
Set and confirm an administrator password, and then click Next to proceed.

AsteriskNOW™ | 65

• The About to Install screen is displayed, giving you an opportunity to delay or
abort the installation process. If you are ready to continue with the installation,
click Next.

10. The Installing Packages screen is displayed.

• While AsteriskNOW is being installed, the Installing Packages screen will be
displayed. The installation will continue for a few minutes.

• Once the installation is complete, the system will prompt you to reboot. Remove
the installation disk you created, and click Reboot. After rebooting, a URL to
access the Asterisk GUI will be displayed.

Accessing the GUI
Once you have completed your installation and rebooted your machine, you will be
able to access the Asterisk GUI. The URL used to access the Asterisk GUI is the IP
address or hostname displayed after rebooting your machine. Enter this IP address in
your browser URL. You will be able to refine your AsteriskNOW installation by ac-
cessing the Asterisk GUI.

Alternate Installations
You can also try out AsteriskNOW using the available VMware Player image (http://
www.vmware.com/download/player/), Xen universal guest domain image (http://wi
ki.rpath.com/wiki/Xen_Solutions_Using_rPath_Technologies) or the LiveCD (just burn
and boot). All alternate installations can be downloaded from the AsteriskNOW
download (http://www.asterisknow.org/downloads) page.

Note: When using the LiveCD, the default username is “admin” with “password” as
the password.

For More Information
An AsteriskNOW Users’ Guide is currently under development by the Asterisk com-
munity on the Asterisk Forums. For additional information on AsteriskNOW, includ-
ing step-by-step installation screenshots and configuration screenshots showing the
setup wizard, please refer to http://www.asterisknow.org, and visit the Asterisk Forums
at http://forums.digium.com. For more information and help with rPath Linux, please
see rPath’s wiki, http://wiki.rpath.com.

66 | Chapter 3: Installing Asterisk

http://www.vmware.com/download/player/
http://www.vmware.com/download/player/
http://wiki.rpath.com/wiki/Xen_Solutions_Using_rPath_Technologies
http://wiki.rpath.com/wiki/Xen_Solutions_Using_rPath_Technologies
http://www.asterisknow.org/downloads
http://www.asterisknow.org/downloads
http://www.asterisknow.org
http://forums.digium.com
http://wiki.rpath.com

Conclusion
In this chapter, we have reviewed the procedures for obtaining, compiling, and instal-
ling Asterisk and the associated packages. In the following chapter, we will touch on
the initial configuration of your system with regard to various communications chan-
nels, such as analog devices attached to FXS and FXO ports, SIP channels, and IAX2
endpoints.

Conclusion | 67

CHAPTER 4

Initial Configuration of Asterisk

I don’t always know what I’m talking about,
but I know I’m right.

—Muhammad Ali

Completing all the steps in Chapter 3 should have left you with a working Asterisk
system. If it did not, please take the time to go back and review the steps, consult the
wiki, engage the community, and get your system running.

Unfortunately, we cannot yet make any calls, because we have not yet created any
channels. To get this plane to fly, we’re going to need some runways. While there are
dozens of different channel types, and dozens of different ways to configure each type
of channel, we just want to get some calls happening, so let’s try and keep things simple.
We have decided to guide you through the configuration of four channels: a Foreign
eXchange Office (FXO) channel, a Foreign eXchange Station (FXS) channel, a Session
Initiation Protocol (SIP) channel, and an Inter-Asterisk eXchange (IAX) channel.* We
selected these channel types because they are far and away the most popular channel
types in use in small Asterisk systems, and one of the goals of this book is to keep things
as simple as is reasonable. If we cover the basics of these channels, we will not have
done an exhaustive survey of all channel types or topologies, but we will have created
a base platform on which to develop your telecommunications system. Further sce-
narios and channel configuration details can be found in Appendix D.

Our first effort will be to explore the basic configuration of analog interfaces such as
FXS and FXO ports with the use of a Digium TDM11B (which is an analog card with
one FXS port and one FXO port).†

* Officially, the current version is IAX2, but since all support for IAX1 was dropped many years ago, whether
you say “IAX” or “IAX2,” you are talking about the same version.

† This configuration used to be known as the Digium Dev-lite kit. For more information on FXS versus FXO,
keep reading. Put simply, this card will give us one port to connect to a traditional analog line from the phone
company (FXO), and one port to connect to an analog telephone (FXS), which is any type of phone that will
work with a traditional home telephone circuit.

69

Next, we’ll tackle a few Voice over Internet Protocol (VoIP) interfaces: a local SIP and
IAX2 channel connected to a softphone or hardphone, along with connecting two As-
terisk boxes via these two popular protocols.

For SIP, we are going to cover Linksys, Polycom, Aastra, Grandstream, and Cisco sets.
If we do not cover your phone model, we apologize, but what is important to realize is
that while most of these devices have many different parameters that you can define,
generally only a few parameters need to be defined in order to get the device to work.
That will be our goal, because we figure it’s a lot less frustrating to tweak a functioning
device than to get it perfectly set up on the first try. We won’t discuss all the features
you may want your channel to have (such as caller ID or advanced codec and security
settings), but you will be able to make and receive calls with your phone, which should
put a smile on your face—a good state to be in as we dig deeper into things.

Once you’ve worked through this chapter, you will have a basic system consisting of
many useful interfaces, which will provide the foundation we need to explore the
extensions.conf file (discussed in detail in Chapter 5), where the dialplan is stored
(technically, it contains the instructions Asterisk needs to build the dialplan). If you do
not have access to the analog hardware, some of the examples will not be available to
you, but you will still have configured a system suitable for a pure-VoIP environment.

What Do I Really Need?
The asterisk character (*) is used as a wildcard in many different applications. It is a
good name for this PBX for many reasons, one of which is the enormous number of
interface types to which Asterisk can connect. These include:

• Analog interfaces, such as your telephone line and analog telephones

• Digital circuits, such as T1 and E1 lines

• VoIP protocols such as SIP and IAX‡

Asterisk doesn’t need any specialized hardware—not even a sound card—even though
it is common to expect a telephone system to physically connect to a voice network.
There are many types of channel cards that allow you to connect your Asterisk to things
like analog phones or PSTN circuits, but they are not essential to the functioning of
Asterisk. On the user (or station) side of the system, you can choose from all kinds of
softphones that are available for Windows, Linux, and other operating systems—or
use almost any physical IP phone. That handles the telephone side of the system. On
the carrier side, if you don’t connect directly to a circuit from your central office, you
can still route your calls over the Internet using a VoIP service provider.

‡ …and H.323 and SCCP and MGCP and UNISTIM

70 | Chapter 4: Initial Configuration of Asterisk

Working with Interface Configuration Files
In this chapter, we’re going to build an Asterisk configuration on the platform we have
just installed. For the first few sections on FXO and FXS channels, we’ll assume that
you have a Digium TDM11B kit (which comes with one FXO and one FXS interface).
This will allow you to connect to an analog circuit (FXO) and to an analog telephone
(FXS). Note that this hardware interface isn’t necessary; if you want to build an IP-only
configuration, you can skip to the section on configuring SIP.

The configuration we do in this chapter won’t be particularly useful on its own, but it
will be a kernel to build on. We’re going to touch on the following files:

zaptel.conf
Here, we’ll do low-level configuration for the hardware interface. We’ll set up one
FXO channel and one FXS channel. This configures the driver for the Linux kernel.

zapata.conf
In this file, we’ll configure Asterisk’s interface to the hardware. This file contains
a slightly higher-level configuration of the hardware in the Asterisk user-level
process.

extensions.conf
The dialplans we create will be extremely primitive, but they will prove that the
system is working.

sip.conf
This is where we’ll configure the SIP protocol.

iax.conf
This is where we’ll configure incoming and outgoing IAX channels.

In the following sections, you will be editing several configuration files. You’ll have to
reload these files for your changes to take effect. After you edit the zaptel.conf file, you
will need to reload the configuration for the hardware with /sbin/ztcfg -vv (you may
omit the -vv if you don’t need verbose output). Changes made in zapata.conf will require
a module reload from the Asterisk console; however, changing signaling methods re-
quires a restart. You will need to perform an iax2 reload and a sip reload after editing
the iax.conf and sip.conf files, respectively.

In order to test the new devices we have defined, we must have a dialplan through which
we can make connections. Even though we have not discussed the Asterisk dialplan
(that’s coming up in the next chapter), we want you to create a basic extensions.conf
file so that we can test our work in this chapter.

Make a backup copy of the sample extensions.conf (try the bash command mv exten
sions.conf extensions.conf.sample), and then create a blank extensions.conf file (using
the bash command touch extensions.conf), and insert the following lines:

Working with Interface Configuration Files | 71

[globals]

[general]
autofallthrough=yes

[default]

[incoming_calls]

[internal]

[phones]
include => internal

In the [general] section, we have set autofallthrough=yes, which tells
Asterisk to continue when an extension runs out of things to do. If you
set this to no, then Asterisk will sit and wait for input after all priorities
have executed. This is most prevalent if the Background() application is
the last application executed in an extension. If set to yes (which is now
the default in 1.4), Asterisk will drop the call after Background() finishes
executing (at the end of the prompt(s) supplied to it). In order to force
Asterisk to wait for input after the Background() application finishes
playing the voice prompts supplied to it, we use the WaitExten()
application.

Do not be afraid if what we’ve just written doesn’t make a whole lot of
sense, as we haven’t explored the dialplan, applications, priorities, or
extensions yet (that is coming up in the next chapter). So for now, just
set autofallthrough=yes. It is safest to use the autofallthrough=yes
command as we don’t want Asterisk hanging around waiting for input
unless we explicitly tell it to do so.

There is nothing else for now, but we’ll be using this file as we go through this chapter
to build a test dialplan so we can ensure that all of our devices are working. Also, be
sure to run the dialplan reload command from the Asterisk CLI to update to the latest
changes. Verify your changes by running the CLI command dialplan show:

*CLI> dialplan show
[Context 'phones' created by 'pbx_config']
 Include => 'internal' [pbx_config]

[Context 'internal' created by 'pbx_config']

[Context 'incoming_calls' created by 'pbx_config']

[Context 'default' created by 'pbx_config']

[Context 'parkedcalls' created by 'res_features']
 '700' => 1. Park((null)) [res_features]

-= 1 extension (1 priority) in 5 contexts. =-

72 | Chapter 4: Initial Configuration of Asterisk

You will see the parkedcalls context because it is an internal context to
Asterisk, specified in the features.conf file.

Setting Up the Dialplan for Some Test Calls
Now let’s expand upon the test dialplan we started in the previous section, allowing
us to dial back into the softphone after we have configured it and to use a dialplan
application called Echo() that will allow us to test bidirectional audio. We’ll learn more
about dialplans in Chapter 5, so for now, just add the italicized bits to your existing
extensions.conf file. We’ll be making use of this dialplan throughout the chapter, and
expanding on it in certain sections. Once you’ve entered the text into extensions.conf,
reload the dialplan by running dialplan reload from the Asterisk console:

[globals]

[general]

[default]
exten => s,1,Verbose(1|Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()

[incoming_calls]

[internal]
exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()

[phones]
include => internal

FXO and FXS Channels
The difference between an FXO channel and an FXS channel is simply which end of
the connection provides the dial tone. An FXO port does not generate a dial tone; it
accepts one. A common example is the dial tone provided by your phone company. An
FXS port provides both the dial tone and ringing voltage to alert the station user of an
inbound call. Both interfaces provide bidirectional communication (i.e., communica-
tion that is transmitted and received in both directions simultaneously).§

§ Bidirectional communication is also known as full duplex in some circles. Half duplex means communication
is only traveling in one direction at a time.

Setting Up the Dialplan for Some Test Calls | 73

If your Asterisk server has a compatible FXO port, you can plug a telephone line from
your telephone company (or “telco”) into this port. Asterisk can then use the telco line
to place and receive telephone calls. By the same token, if your Asterisk server has a
compatible FXS port, you may plug an analog telephone into your Asterisk server, so
that Asterisk may call the phone and you may place calls.

Ports are defined in the configuration by the signaling they use, as opposed to the
physical type of port they are. For instance, a physical FXO port will be defined in the
configuration with FXS signaling, and an FXS port will be defined with FXO signaling.
This can be confusing until you understand the reasons for it. FX_ cards are named not
according to what they are, but rather according to what is connected to them. An
FXS card, therefore, is a card that connects to a station. Since that is so, you can see
that in order to do its job, an FXS card must behave like a central office and use FXO
signaling. Similarly, an FXO card connects to a central office (CO), which means it will
need to behave like a station and use FXS signaling. The modem in your computer is
a classic example of an FXO device.

The older Digium X100P card used a Motorola chipset, and the X101P
(which Digium sold before completely switching to the TDM400P) is
based on the Ambient/Intel MD3200 chipset. These cards are modems
with drivers adapted to utilize the card as a single FXO device (the tel-
ephone interface cannot be used as an FXS port). Support for the X101P
card has been dropped in favor of the TDM series of cards.

These cards (or their clones) SHOULD NOT be used in production en-
vironments. They are $10 on eBay for a reason.

The X100P/X101P cards are poor cards for production use due to their
tendency to introduce echo into your telephone calls, and their lack of
remote disconnect supervision. Do yourself a favor and don’t waste your
time with this hardware. You will find that if you ask the community
for support of these cards, many responses will be hostile. You have
been warned.

Determining the FXO and FXS Ports on Your TDM400P
Figure 4-1 contains a picture of a TDM400P with an FXS module and an FXO module.
You can’t see the colors, but module 1 is a green FXS module, and module 2 is an
orange-red FXO module. In the bottom-right corner of the picture is the Molex con-
nector, where power is supplied from the computer’s power supply.

Plugging an FXS port (the green module) into the PSTN may destroy
the module and the card due to voltage being introduced into a system
that wants to produce voltage, not receive it!

74 | Chapter 4: Initial Configuration of Asterisk

Be sure to connect your computer’s power supply to the Molex con-
nector on the TDM400P if you have FXS modules, as it is used to supply
the voltage needed to drive the ring generator on the FXS ports. The
Molex connector is not required if you have only FXO modules.

Configuring an FXO Channel for a PSTN Connection
We’ll start by configuring an FXO channel. First we’ll configure the Zaptel hardware,
and then the Zapata hardware. We’ll set up a very basic dialplan, and we’ll show you
how to test the channel.

Zaptel Hardware Configuration
The zaptel.conf file located in /etc/ is used to configure your hardware. The following
minimal configuration defines an FXO port with FXS signaling:

fxsks=2
loadzone=us
defaultzone=us

1
2
3

4

1 2 3 4

Figure 4-1. A TDM400P with an FXS module (1 across) and an FXO module (2 across)

Configuring an FXO Channel for a PSTN Connection | 75

In the first line, in addition to indicating whether we are using FXO or FXS signaling,
we specify one of the following protocols for channel 2:

• Loop start (ls)

• Ground start (gs)

• Kewlstart (ks)

The difference between loop start and ground start has to do with how the equipment
requests a dial tone: a ground-start circuit signals the far end that it wants a dial tone
by momentarily grounding one of the leads; a loop-start circuit uses a short to request
a dial tone. Though not common for new installations, analog ground start lines still
exist in many areas of the country.‖ Ground start is really a rather strange thing, because
it doesn’t exist in its analog form in Asterisk, so technically, there is no ground signal
happening, but is rather a signaling bit that is intended for analog circuitry that his-
torically would have been at the end of the T1. If this does not make much sense, don’t
sweat it; chances are you won’t have to worry about ground-start signaling. All home
lines (and analog telephones/modems/faxes) in North America use loop-start signaling.
Kewlstart is in fact the same as loop start, except that it has greater intelligence and is
thus better able to detect far-end disconnects.# Kewlstart is the preferred signaling
protocol for analog circuits in Asterisk.

To configure a signaling method other than kewlstart, replace the ks in fxsks with either
ls or gs (for loop start or ground start, respectively).

loadzone configures the set of indications (as configured in zonedata.c) to use for the
channel. The zonedata.c file contains information about all of the various sounds that
a phone system makes in a particular country: dial tone, ringing cycles, busy tone, and
so on. When you apply a loaded tone zone to a Zap channel, that channel will mimic
the indications for the specified country. Different indication sets can be configured for
different channels. The defaultzone is used if no zone is specified for a channel.

After configuring zaptel.conf, you can load the drivers for the card. modprobe is used to
load modules for use by the Linux kernel. For example, to load the wctdm driver, you
would run:

modprobe wctdm

If the drivers load without any output, they have loaded successfully.* You can verify
that the hardware and ports were loaded and configured correctly with the use of the
ztcfg program:

‖ Yes, there is such a thing as ground-start signaling on channelized T1s, but that has nothing to do with an
actual ground condition on the circuit (which is entirely digital).

A far-end disconnect happens when the far end hangs up. In an unsupervised circuit, there is no method of
telling the near end that the call has ended. If you are on the phone this is no problem, since you will know
the call has ended and will manually hang up your end. If, however, your voicemail system is recording a
message, it will have no way of knowing that the far end has terminated and will, thus, keep recording silence,
or even the dial tone or reorder tone. Kewlstart can detect these conditions and disconnect the circuit.

76 | Chapter 4: Initial Configuration of Asterisk

/sbin/ztcfg -vv

The channels that are configured and the signaling method being used will be displayed.
For example, a TDM400P with one FXO module has the following output:

Zaptel Configuration
======================
Channel map:
Channel 02: FXS Kewlstart (Default) (Slaves: 02)
1 channels configured.

If you receive the following error, you have configured the channel for the wrong sig-
naling method (or there is no hardware present at that address):

ZT_CHANCONFIG failed on channel 2: Invalid argument (22)
Did you forget that FXS interfaces are configured with FXO signaling
and that FXO interfaces use FXS signaling?

To unload drivers from memory, use the rmmod (remove module) command, like so:

rmmod wctdm

The zttool program is a diagnostic tool used to determine the state of your hardware.
After running it, you will be presented with a menu of all installed hardware. You can
then select the hardware and view the current state. A state of “OK” means the hardware
is successfully loaded:

Alarms Span
OK Wildcard TDM400P REV E/F Board 1

Zapata Hardware Configuration
Asterisk uses the zapata.conf file to determine the settings and configuration for tel-
ephony hardware installed in the system. The zapata.conf file also controls the various
features and functionality associated with the hardware channels, such as Caller ID,
call waiting, echo cancellation, and a myriad of other options.

When you configure zaptel.conf and load the modules, Asterisk is not aware of anything
you’ve configured. The hardware doesn’t have to be used by Asterisk; it could very well
be used by another piece of software that interfaces with the Zaptel modules. You tell
Asterisk about the hardware and control the associated features via zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]
; hardware channels

* It is generally safe to assume that the modules have loaded successfully, but to view the debugging output
when loading the module, check the console output (by default this is located on TTY terminal 9, but this is
configurable in the safe_asterisk script—see the previous chapter for details).

Configuring an FXO Channel for a PSTN Connection | 77

; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes

; define channels
context=incoming ; Incoming calls go to [incoming] in extensions.conf
signaling=fxs_ks ; Use FXS signaling for an FXO channel
channel => 2 ; PSTN attached to port 2

The [trunkgroups] section is used for connections where multiple physical lines are
used as a single logical connection to the telephone network, and won’t be discussed
further in this book. If you require this type of functionality, see the
zapata.conf.sample file and your favorite search engine for more information.

The [channels] section determines the signaling method for hardware channels and
their options. Once an option is defined, it is inherited down through the rest of the
file. A channel is defined using channel =>, and each channel definition inherits all of
the options defined above that line. If you wish to configure different options for dif-
ferent channels, remember that the options should be configured before the channel
=> definition.

We’ve enabled Caller ID with usecallerid=yes and specified that it will not be hidden
for outgoing calls with hidecallerid=no. Call waiting is deactivated on an FXO line
with callwaiting=no. Enabling three-way calling with threewaycalling=yes allows an
active call to be placed on hold with a hook switch flash (discussed in Chapter 7) to
suspend the current call. You may then dial a third party and join them to the conver-
sation with another hook switch. The default is to not enable three-way calling.

Allowing call transfer with a hook switch is accomplished by configuring trans
fer=yes; it requires that three-way calling be enabled. The Asterisk echo canceller is
used to remove the echo that can be created on analog lines. You can enable the echo
canceller with echocancel=yes. The echo canceller in Asterisk requires some time to
learn the echo, but you can speed this up by enabling echo training (echotrain
ing=yes). This tells Asterisk to send a tone down the line at the start of a call to measure
the echo, and therefore learn it more quickly.

When a call comes in on an FXO interface, you will want to perform some action. The
action to be performed is configured inside a block of instructions called a context.
Incoming calls on the FXO interface are directed to the incoming context with con
text=incoming. The instructions to perform inside the context are defined within
extensions.conf.

Finally, since an FXO channel uses FXS signaling, we define it as such with signal
ing=fxs_ks.

78 | Chapter 4: Initial Configuration of Asterisk

Dialplan Configuration
The following minimal dialplan makes use of the Echo() application to verify that bi-
directional communications for the channel are working:

[incoming]
; incoming calls from the FXO port are directed to this context
;from zapata.conf
exten => s,1,Answer()
exten => s,n,Echo()

Whatever you say, the Echo() application will relay back to you.

Dialing In
Now that the FXO channel is configured, let’s test it. Run the zttool application and
connect your PSTN line to the FXO port on your TDM400P. Once you have a phone
line connected to your FXO port, you can watch the card come out of a RED alarm.

Now dial the PSTN number from another external phone (such as a cell phone). As-
terisk will answer the call and execute the Echo() application. If you can hear your voice
being reflected back, you have successfully installed and configured your FXO channel.

Configuring an FXS Channel for an Analog Telephone
The configuration of an FXS channel is similar to that of an FXO channel. Let’s take a
look.

Zaptel Hardware Configuration
The following is a minimal configuration for an FXS channel on a TDM400P. The
configuration is identical to the FXO channel configuration above, with the addition
of fxoks=1.

Recall from our earlier discussion that the opposite type of signaling is used for FXO
and FXS channels, so we will be configuring FXO signaling for our FXS channel. In the
example below we are configuring channel 1 to use FXO signaling, with the kewlstart
signaling protocol:

fxoks=1
fxsks=2
loadzone=us
defaultzone=us

After loading the drivers for your hardware, you can verify their state with the use
of /sbin/ztcfg -vv:

Configuring an FXS Channel for an Analog Telephone | 79

Zaptel Configuration
======================

Channel map:

Channel 01: FXO Kewlstart (Default) (Slaves: 01)
Channel 02: FXS Kewlstart (Default) (Slaves: 02)

2 channels configured.

Zapata Hardware Configuration
The following configuration is identical to that for the FXO channel, with the addition
of a section for our FXS port and, of the line immediate=no. The context for our FXS
port is phones, the signaling is fxoks (kewlstart), and the channel number is set to 1.

FXS channels can be configured to perform one of two different actions when a phone
is taken off the hook. The most common (and often expected) option is for Asterisk to
produce a dial tone and wait for input from the user. This action is configured with
immediate=no. The alternative action is for Asterisk to automatically perform a set of
instructions configured in the dialplan instead of producing a dial tone, which you
indicate by configuring immediate=yes.† The instructions to be performed are found in
the context configured for the channel and will match the s extension (both of these
topics will be discussed further in the following chapter).

Here’s our new zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]
; hardware channels
; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes
immediate=no

; define channels
context=phones ; Uses the [internal] context in extensions.conf
signalling=fxo_ks ; Uses FXO signalling for an FXS channel

channel => 1 ; Telephone attached to port 1

† Also referred to as the Batphone method, and more formally known as an Automatic Ringdown or Private
Line Automatic Ringdown (PLAR) circuit. This method is commonly used at rental car counters and airports.

80 | Chapter 4: Initial Configuration of Asterisk

context=incoming ; Incoming calls go to [incoming] in extensions.conf
signalling=fxs_ks ; Use FXS signalling for an FXO channel
channel => 2 ; PSTN attached to port 2

Dialplan Configuration
We will make use of our minimal dialplan we configured earlier in the chapter to test
our FXS port with the use of the Echo() application. The relevant section, which should
already exist in your dialplan, looks like this:

[internal]
exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()

[phones]
include => internal

Whatever you say, the Echo() application will relay back to you.

Configuring SIP Telephones
The Session Initiation Protocol (SIP),‡ commonly used in VoIP phones (either hard
phones, or softphones), takes care of the setup and teardown of calls, along with any
changes during a call such as call transfers. The purpose of SIP is to help two endpoints
talk to each other (if possible, directly to each other). The SIP protocol is simply a
signaling protocol, which means that its purpose is only to get the two endpoints talking
to each other, and not to deal with the media of the call (your voice). Rather, your voice
is carried using another protocol called the Real-Time Transport Protocol (RTP; RFC
3550) to transfer media directly between the two endpoints.

We use the term media to refer to the data transferred between endpoints
and used to reconstruct your voice at the other end. It may also refer to
music or prompts from the PBX.

In the world of SIP, we call our endpoints user agents, of which there are two types:
client and server. The client is the endpoint that generates the request, and the server
processes the request and generates a response. When an endpoint wishes to place a
call to another endpoint (such as our softphone calling another softphone), we generate
our request and send this to a SIP proxy.§ A proxy server will take the request, determine

‡ RFC 3261 is available at http://www.ietf.org/rfc/rfc3261.txt. While the document is fairly large, we strongly
encourage anyone who wishes to become an Asterisk professional to read at least the first 100 or so pages of
this document and to understand how calls are set up, as this knowledge will be imperative when you’re
looking at a SIP trace (sip debug from the Asterisk console) trying to determine why your calls are not getting
set up correctly.

Configuring SIP Telephones | 81

http://www.ietf.org/rfc/rfc3261.txt

where the request is destined for, and forward it on. Once the two user agents have
negotiated a successful call setup, the media is transported via the RTP protocol and
sent directly between the two user agents. SIP proxies do not handle media; they simply
deal with the SIP packets.

Asterisk, on the other hand, is called a Back-To-Back User Agent (B2BUA). This means
that Asterisk acts like a user agent in either the server (receiving) or client (sending)
role. So when our softphone dials an extension number, the call is set up between the
softphone and Asterisk directly. If the logic we’ve built into Asterisk determines that
you mean to call another user agent, then Asterisk acts as a user agent client and sets
up another connection (known as a channel) to the other phone. The media between
the two phones then flows directly through Asterisk.‖ From the viewpoint of the
phones, they are talking with Asterisk directly.

Basic SIP Telephone Configuration in Asterisk
Configuring a SIP phone to work with Asterisk does not require much. However, be-
cause there are so many options possible in both Asterisk and the configuration of the
particular telephone set or softphone, things can get confusing. Add to this the fact that
similar things can have different names, and you have a recipe for frustration. What we
are going to do, therefore, is give you the bare-bones basics. If you follow our advice,
you should be able to get the sets we cover working (and be well on your way to getting
a phone that we have not covered to work as well). We are not saying that this is the
best way, or even the right way, but it is the simplest way, and from a working foun-
dation, it is much easier to take a basic configuration and tweak things until you get
the solution you need.

Just as we did with the extensions.conf file; run the following commands
in your bash shell:

mv sip.conf sip.conf.sample
touch sip.conf

Defining the SIP device in Asterisk

If you put the following in a sip.conf file, you will be able to register a phone to the
system.

[general]

§ An excellent open source SIP proxy is OpenSER, available at http://www.openser.org.

‖ Yes, there are ways to making the media flow directly between the phones once the call is set up. This is done
in the sip.conf file using either directrtpsetup=yes (an experimental option allowing the media to be
redirected in the initial call setup) or canreinvite=yes (where media initially goes through Asterisk until a re-
INVITE happens, at which point the media can be sent directly between the phones).

82 | Chapter 4: Initial Configuration of Asterisk

http://www.openser.org

[1000]
type=friend
context=phones
host=dynamic

Not pretty, not secure, not flexible, not fully-featured, but this will work.

Even though we have named this SIP device 1000, and we are probably going to assign
it that extension number, you should note that we could have named it whatever we
wanted. Names such as mysipset, john, 0004f201ab0c are all valid, popular, and may
suit your needs better.# What we are doing is assigning a unique identifier to a device,
which will form part of the credentials when a call is placed using the SIP channel.

Since we want to be able to both send calls to the softphone and allow the client to
place calls, we have defined the type as friend. The other two types are user and
peer. From the viewpoint of Asterisk, a user is configured to enter the dialplan, and a
peer is created for calls leaving the dialplan (via the Dial() application). A friend is
simply a shortcut that defines both a user and a peer. If in doubt, define the type as
friend.

The host option is used to define where the client exists on the network when Asterisk
needs to send a call to it. This can either be defined statically by defining something
like host=192.168.1.100, or if the client has a dynamic IP address, then we set
host=dynamic. When the host option is set as dynamic, and the client is configured to
register, Asterisk will receive a REGISTER packet from the endpoint (i.e., telephone
set or softphone), telling Asterisk which IP address the SIP peer is using.

If you do not trust your network, you should probably also force the use of a password
by adding the following to the device definition. This is one of those things that is not
technically necessary, but is probably a good idea:

secret=guessthis

Configuring the Device Itself
In the configuration menus of the phone itself (which could be via a web GUI, through
menus on the phone itself, or possibly using configuration files that are stored on a
server), the unique identifier (which in this case is 1000) again forms part of the cre-
dentials for the authentication process. Naturally, for a connection to be successful,
this has to match in both Asterisk and in the set itself. The fun begins when you realize
that there is no set rule as to what this identifier is formally called. We have elected
simply to call it the Unique Identifier.

The maximum length of a username is 255 characters.

Configuring SIP Telephones | 83

In the SIP RFC (http://www.faqs.org/rfcs/rfc3261.html), section 19.1
calls this user token, “the identifier of a particular resource at the host
being addressed,” verbiage consistent with our usage of [1000] as the
set identifier in the sip.conf file of Asterisk.

Instead, you will want to look for fields that are labeled user name, auth name,
authentication name, and so on. The thing to remember is that since you know that the
Asterisk end of the equation is configured simply and correctly, you can experiment
with the phone setting until you find a combination that works. This is much better
than the usual suffering that new users go through, as they change settings in both
places and have no luck getting a phone to register.

We’re gonna say it again: configure sip.conf in the simplest manner pos-
sible, and then don’t change your Asterisk configuration. Trust us; what
we have written here will work. Get your set working (i.e., where you
can make and receive calls), and you will be in a far better position to
begin experimenting with different settings. We have seen too much
suffering (including our own), and we want it to end.

Simplifying sip.conf
The sip.conf file (which was copied to the /etc/asterisk directory by the make samples
command we ran in the previous chapter) contains a large number of options and
documentation inside it, but the file is actually very minimal if you remove all the
commented parameters. The default file really breaks down to just the following few
lines being uncommented by default:

[general]
context=default ; Default context for incoming calls
allowoverlap=no ; Disable overlap dialing support. (Default is yes)
bindport=5060 ; UDP Port to bind to (SIP standard port is 5060)
 ; bindport is the local UDP port that Asterisk will
 ; listen on
bindaddr=0.0.0.0 ; IP address to bind to (0.0.0.0 binds to all)
srvlookup=yes ; Enable DNS SRV lookups on outbound calls
 ; Note: Asterisk only uses the first host
 ; in SRV records
 ; Disabling DNS SRV lookups disables the
 ; ability to place SIP calls based on domain
 ; names to some other SIP users on the Internet

[authentication]

The [general] section contains the options that will apply to all SIP clients and trunks.
Some settings elsewhere are set only in the [general] section, and others can be set in
the [general] section as defaults for all conditionals unless overridden. These options
are listed under the two columns labeled [users] and [peers] below the
[authentication] header.

84 | Chapter 4: Initial Configuration of Asterisk

http://www.faqs.org/rfcs/rfc3261.html

Generally, the commented-out options will show you the default setting Asterisk uses,
or will tell you the default option in the option’s description.

You can also check the current state of the SIP channel in Asterisk with the sip show
settings CLI command.

If you are running Asterisk and a softphone on the same system (i.e.,
running an X-Lite softphone and Asterisk on a laptop or desktop), then
you will need to modify the SIP port that client listens on. It will need
to be changed from 5060 to 5061 (or some other unused port) so that
Asterisk and the softphone do not interfere with each other.

Essential Server Components
Before we get into how to define these files, there are a few things that need to be
configured on your server. Running the right services on your network will ensure
your Polycom sets can autoconfigure from the moment you plug them in. There’s a
little work involved here, but we promise that the payoff is worth it. Once you’ve done
this a few times, it only really takes a few minutes on each new system, and going
forward, it’ll save you a lot of mucking about with web interfaces. When you take your
new Polycom phone out of the box, plug it into your network, watch it autoconfigure
itself, and then successfully register with your Asterisk machine, you will know the sort
of joy that only geeks can experience.*

It’s not really that complicated. Where we think people get confused is in making sense
of the various ways this can be achieved, because there are a lot of choices.

DHCP server

Typically, a DHCP server is used to configure basic IP parameters for a device (IP ad-
dress, default gateway, and DNS), but the DHCP protocol can actually pass many other
parameters. In our case, we want it to pass some information to the sets that will tell
them where to download their config files from. Here is a sample config from a Linux
DHCP server that will do what is required:

ddns-update-style interim;
ignore client-updates;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option domain-name-servers 192.168.1.1;
 option ntp-servers pool.ntp.org;

* Typically, it’s at 4 A.M. on the morning of a critical 8 A.M. meeting, after having worked all weekend. Red
Bull is probably the most popular drink of the Asterisk developers. Dr. Pepper would be a close second. Red
Bull, anyone?

Configuring SIP Telephones | 85

 option time-offset -18000;

range dynamic-bootp 192.168.1.128 192.168.1.254;
default-lease-time 21600;
max-lease-time 43200;
}

Keep in mind that this assumes that the only things on this network are devices that
belong to the phone system (this setup will hand out an IP address to any device that
requests it). If you have a more complex environment, you will need to configure the
DHCP daemon to handle the various devices it is serving. For example, you might want
to devise a scope that restricts IP addresses in your voice LAN to Polycom phones. Since
all Polycom IP desk phones have 00:04:f2 as their OUI (Organizationally Unique Iden-
tifier), you might choose to restrict scope based on that.

In a Microsoft DHCP environment, the tftp-server-name is referred to
as Boot server host name. It is defined under option 66.

The DHCP protocol is far more flexible than is often realized, because in most envi-
ronments it is not used for complex provisioning tasks. With a little care and attention,
you can devise a DHCP environment that serves both your voice and data devices and
greatly simplifies administrative workload when adding new devices.

FTP server

FTP is currently our favorite†way to configure Polycom sets. We would recommend it
over TFTP for any set that allows for both. To install it on your CentOS system, the
following command will install VSFTPD, the Very Secure FTP Daemon:

yum -y install vsftpd

Then, in order to lock things down, we need to prevent anonymous logins with a simple
change to the vsftpd config file, /etc/vsftpd/vsftpd.conf:

anonymous_enable=NO

Restart the server with service vsftpd restart. To ensure that the daemon runs after
every reboot, run chkconfig vsftpd on.

Now, we have to create a user account and group for the sets to use. In this case, we
will create an account for the Polycom sets:

† FTP is preferred over TFTP due to the ability of a Polycom phone to see timestamps on FTP files. This allows
the phone to avoid redownloading configuration files and firmware updates that it already has—thus
shortening boot time.

86 | Chapter 4: Initial Configuration of Asterisk

groupadd PlcmSpIp
useradd PlcmSpIp -g PlcmSpIp -p PlcmSpIp
passwd PlcmSpIp

Set the password to PlcmSpIp (the default FTP password for Polycom sets). This can
be changed, but will then require manual configuration from each set in order to advise
them of their nonstandard credentials.‡

For added security, let’s make sure the FTP server keeps that account in a chroot jail:

echo PlcmSpIp >> /etc/vsftpd/vsftpd.chroot_list

That pretty much does it as far as preparing the operating system to provide the required
services to the phones.

In the next few sections we have provided instructions for various popular SIP tele-
phones. Choose the section that applies best to the phone that you are planning to use
(whether a hard- or soft-phone). You will note that we have given all of these phones
the exact same unique identifier. If you plan on installing more than one of them, you
will need to ensure that they have unique names, and be sure to update your sip.conf
file to include those device definitions.

CounterPath’s X-Lite Softphone
CounterPath’s X-Lite softphone has become very popular with the Asterisk commun-
ity. It is simple, functional, easy on the eyes, and—most importantly—free.

In this section we will be configuring the X-Lite softphone to connect to Asterisk.
The IP address of the phone is 192.168.1.250, and Asterisk is located at 192.168.1.100.
The X-Lite is available for Microsoft Windows, Mac, and Linux. You can obtain a copy
of X-Lite from http://www.counterpath.com/index.php?menu=download.

Now let’s configure our softphone for connecting to our Asterisk box. To configure X-
Lite, click on the Settings button, as circled in Figure 4-2.

Select System Settings → SIP Proxy → [Default], which will display the default configu-
ration for the softphone. Configure the screen as shown in Figure 4-3.

If you have not already started Asterisk, then start it now (see Chapter 3 for help in-
stalling and starting Asterisk). If Asterisk is running in the background, you can
reconnect to the CLI by running the following command:

asterisk -rvvv

‡ You can get into assigning complex and unguessable passwords for the phones to use, but unless you are
going to input the passwords into each phone manually, you’ll have to pass them their FTP username and
password from the DHCP server. Any device that can get on the voice network can get the same information
from the DHCP server. We’re not telling you to ignore security; just don’t assume that creating separate
passwords for each phone is going to improve security.

Configuring SIP Telephones | 87

http://www.counterpath.com/index.php?menu=download

You will then be given the Asterisk CLI like so:

*CLI>

If Asterisk was already running before changing the sip.conf as instructed in this chapter,
then reload the dialplan and SIP channel with the following two commands:

Settings button

Figure 4-2. X-Lite configuration

Figure 4-3. X-Lite user configuration

88 | Chapter 4: Initial Configuration of Asterisk

*CLI> dialplan reload

*CLI> sip reload

In your X-Lite softphone client, close the Settings windows by clicking the BACK button
until the windows are all closed. You should see X-Lite try to register to Asterisk, and
if successful, you will see the following at the Asterisk CLI:

-- Registered SIP '1000' at 192.168.1.250 port 5061 expires 3600

You can verify the registration status at any time like so:

*CLI> sip show peers

Name/username Host Dyn Nat ACL Port Status
1000/1000 192.168.1.250 D N 5061 OK (63 ms)
1 sip peers [1 online , 0 offline]

More detailed stats of the peer can be shown as follows with sip show peer 1000:

*CLI> sip show peer 1000

 * Name : 1000
 Secret : <Not set>
 MD5Secret : <Not set>
 Context : phones
 Subscr.Cont. : <Not set>
 Language :
 AMA flags : Unknown
 Transfer mode: open
 CallingPres : Presentation Allowed, Not Screened
 Callgroup :
 Pickupgroup :
 Mailbox :
 VM Extension : asterisk
 LastMsgsSent : 32767/65535
 Call limit : 0
 Dynamic : Yes
 Callerid : "" <>
 MaxCallBR : 384 kbps
 Expire : 1032
 Insecure : no
 Nat : RFC3581
 ACL : No
 T38 pt UDPTL : No
 CanReinvite : Yes
 PromiscRedir : No
 User=Phone : No
 Video Support: No
 Trust RPID : No
 Send RPID : No
 Subscriptions: Yes
 Overlap dial : Yes
 DTMFmode : rfc2833
 LastMsg : 0

Configuring SIP Telephones | 89

 ToHost :
 Addr->IP : 192.168.1.250 Port 5061
 Defaddr->IP : 0.0.0.0 Port 5060
 Def. Username: 1000
 SIP Options : (none)
 Codecs : 0x8000e (gsm|ulaw|alaw|h263)
 Codec Order : (none)
 Auto-Framing: No
 Status : Unmonitored
 Useragent : X-Lite release 1105d
 Reg. Contact : sip:1000@192.168.1.250:5061

Polycom’s IP 430
A lot of folks say configuring Polycom phones is difficult. From what we can tell, they
base this on one of two reasons: 1) The Polycom web-based interface is horrible, or 2)
the automatic provisioning process is painful and confusing.

With respect to item 1, we agree. The web interface on the Polycom phones has got to
be one of the most annoying web interfaces ever developed for an IP telephone. We
don’t use it, and we don’t recommend it.§

So that leaves us with some sort of server-based configuration. Fortunately, in this
regard, the Polycom IP phones are superb—so much so that we can pretty much forgive
the web interface. Set configurations are stored in files on a server, and each set navigates
to the server, downloads the configuration files that are relevant to it, and applies them
to itself.

DHCP server

If you cannot control your DHCP server, you may have to manually specify the FTP
server information on the phone. This is done by rebooting the set, pressing the setup
button before the set begins the load process, and specifying the address of the FTP
server in the small boot menu that these phones offer.

Protocol to use for downloading

The Polycom phones are able to download their configuration by one of three proto-
cols: TFTP, HTTP, and FTP.

Right off the bat we are going to tell you to avoid TFTP. It is not secure, and the set
cannot use date information to determine which versions of various files are the most
current. It works, but there are better ways, and we are not going to discuss it further.

Polycom phones can pull their config data using HTTP as well, but it has not proven
to be popular, and so we are going to move on.

§ Actually, it does serve one useful purpose, which is to allow you to log on to a set via a browser and query
its configuration.

90 | Chapter 4: Initial Configuration of Asterisk

FTP is currently the preferred method of allowing Polycom phones to obtain their
configuration. It works well, is fairly easy to configure, and is well supported by the
community.

FTP

FTP is currently our favorite way to configure Polycom sets. To install it on your CentOS
system, the following command will install VSFTPD, the Very Secure FTP Daemon:

yum -y install vsftpd

Then, in order to lock things down, we need to prevent anonymous logins, with a simple
change to the vsftpd config file, /etc/vsftpd/vsftpd.conf:

anonymous_enable=NO

Restart the server with service vsftpd restart. To ensure that the daemon runs after
every reboot, run chkconfig vsftpd on.

Now, we have to create a user account and group for the Polycom sets to use:

groupadd PlcmSpIp
useradd PlcmSpIp -g PlcmSpIp -p PlcmSpIp
passwd PlcmSpIp

Set the password to PlcmSpIp (the default FTP password for Polycom sets). This can
be changed, but will then require manual configuration from each set in order to advise
them of their nonstandard credentials.‖

For added security, let’s make sure the FTP server keeps that account in a chroot jail:

echo PlcmSpIp >> /etc/vsftpd/vsftpd.chroot_list

That pretty much does it as far as preparing the operating system to provide the required
services to the phones.

The Polycom configuration files

While there seem to be a lot of different files that are needed to make a Polycom set
work, they are each fairly easy to understand.

This can best be described as the BIOS and operating system of the phone.
Perhaps there is a more technical explanation, but why make things confusing? The
bootROM should not need to be updated regularly, but it is good to keep an eye on
the current releases to see if a newer bootROM has features that will be of benefit in
your environment. This file will be named bootrom.ld.

The bootROM.

‖ You can get into assigning complex and unguessable passwords for the phones to use, but unless you are
going to input the passwords into each phone manually, you’ll have to pass them their FTP user name and
password from the DHCP server. Any device that can get on the voice network can get the same information
from the DHCP server. We’re not telling you to ignore security, just don’t assume that creating separate
passwords for each phone is going to improve security.

Configuring SIP Telephones | 91

Since Polycom sets are capable of supporting other VoIP protocols
(MGCP is supported, for example), the protocol that this set will employ forms part of
the application image that the phone will download and run. If the image on the set is
already correct, this file is not actually needed on the FTP server; however, it is common
to have this file available to ensure that the most recent version of the protocol is avail-
able for the sets to download. You will sometimes receive phones that are not running
the latest version, so having the most current image will ensure that all sets are up-to-
date.

There is normally only one version of this file on a system, but it can be
named anything you want, and there can be as many different versions of this file as
are needed. For example, if you had an office where there were two different languages
in use, some users might prefer French on their set, and others English. In that case,
you’d create a french.sip.conf file and an english.sip.conf file to handle each case. Name
this file as you see fit, but pick a name that makes sense so that future administrators
have a chance to make sense of your design choices.

This file is very simple and small. It is named to match
the MAC address of each phone (so each set will need its own copy of this file) and tells
the set what other files it needs to download in order to configure itself. This is the first
config file each set will read. In this file will be a reference to the application image this
set will use (currently named sip.ld), as well as the names of the XML files that have the
parameters for this phone (the .cfg files). A master config file for a set might look some-
thing like this:

'<?xml version="1.0" standalone="yes"?>'
'<!-- Default Master SIP Configuration File-->'
'<!-- Edit and rename this file to <Ethernet-address>.cfg for each phone.-->'
'<!-- $Revision: 1.14 $ $Date: 2005/07/27 18:43:30 $ -->'
'<APPLICATION APP_FILE_PATH="sip.ld"
 CONFIG_FILES="phone1.cfg, sip.cfg"
 MISC_FILES=""
 LOG_FILE_DIRECTORY=""
 OVERRIDES_DIRECTORY=""
 CONTACTS_DIRECTORY=""
/>'

Note the name of the application file that we want this set to use, and the config files
that it will be trying to find and apply.

We recommend giving the phone1.cfg files names that make
sense. For example, SET<xxx>.cfg (such as SET201.cfg) to match the extension num-
ber of the phone, or FLOOR4CUBE23.cfg, or maybe BOB_SMITHS_IP430_SET.cfg,
or whatever seems best to you. What’s the best way to name them? We’re going to
answer that question by asking a question. Let’s say you have 100 of these phones.
When you list the contents of the /home/PlcmSpIp folder, how do you want the 100
config files for the sets to appear?

The application image.

The sip.cfg file.

The master config file for each phone.

The set-specific config file.

92 | Chapter 4: Initial Configuration of Asterisk

Settings that are configured directly on the telephone will be stored on the
filesystem of the set, and may take precedence over parameters passed in config files.
If you are having any problems applying changes to a set, try reformatting the phone.
This will force the set to accept the parameters contained in the config files.

Cisco 7960 Telephone
The venerable old C7960 is now a part of VoIP history. One of the first SIP telephones
that could actually be taken seriously, the only real complaint one can have about this
phone is the price: they are the Cadillac of SIP phones (meaning that they have all the
bells and whistles but are tough to justify at the price, and are a little out of date
sometimes).

If you can get one of these, you are getting an excellent SIP telephone. If you buy one
new, be prepared to pay.

One of the ways this phone is out of date is the lack of remote provisioning from any-
thing other than TFTP. TFTP has lost favor with networking professionals due to the
lack of authentication and encryption, but since it is the only method of remotely pro-
visioning the phone, we are going to have to use the tftp-server daemon. We can install
tftp-server with the following command:

yum install -y tftp-server

Once installed, we need to enable the server by modifying the /etc/xinetd.d/tftp file. To
enable the TFTP server, change the disable=yes line to disable=no.

service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 disable = no
 per_source = 11
 cps = 100 2
 flags = IPv4
}

Then start the TFTP server by running:

service xinetd restart

We can verify the server is running with the following command:

chkconfig --list | grep tftp
 tftp: on

As long as tftp: on was returned, the server is up and running.

Gotchas.

Configuring SIP Telephones | 93

Cisco phones by default are loaded with their own communication pro-
tocol known as SCCP (or Skinny). We will be showing you how to
configure the phone, but due to the proprietary nature of Cisco and its
phones, you will need to obtain the SIP firmware from your distributor.
Also, there are both chan_sccp and chan_skinny modules for Asterisk,
but they are beyond the scope of this book.

We will be registering our Cisco phone to the SIP friend we configured in “Zaptel
Hardware Configuration.” The following configuration file should be saved into a file
taking the format of SIP<mac>.cnf, where <mac> represents the MAC address of the
telephone device you are configuring. Place this file into the /tftpboot/ directory on your
server:

Line 1 Configuration
line1_name: "1000"
line1_authname: "1000"
line1_shortname: "Jimmy Carter"
line1_password: ""
line1_displayname: ""

The phone label, displayed in the upper-righthand corner of the phone
phone_label: "aristotle" ; Has no effect on SIP messaging

Phone password used for console or telnet access, limited to 31 characters
phone_password: "cisco"

Then configure the address to register in the SIPDefault.cnf file, also placed in
the /tftpboot/ directory of your server. proxy1_address will contain the IP address of
your Asterisk server of where the phone should register for line 1. The image_version
contains the version of the .loads and .sb2 files the phone will load into memory.

image_version: P0S3-08-4-00
proxy1_address: 192.168.1.100

We need one additional file called OS79XX.TXT. This file contains only a single
line―the .bin and .sbn file version to load into memory:

P003-08-4-00

In order for our Cisco 7960 to use these files, we need to tell the phone where to pull
its configuration from. If using the DHCP server from your Linux server, you can modify
the /etc/dhcpd.conf file in order to tell the phone where to pull its configuration from
by adding the line:

option tftp-server-name "192.168.1.100";

which contains the IP address of the server hosting the TFTP server (assuming of course
the TFTP server is configured at that address. This is the address we’ve been using for
our Asterisk server, and we again assume you’ve installed the TFTP server on the same
box as Asterisk). See “DHCP server” for more information about configuring the DHCP
server:

94 | Chapter 4: Initial Configuration of Asterisk

ddns-update-style interim;
ignore client-updates;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option domain-name-servers 192.168.1.1;
 option tftp-server-name "192.168.1.100";
 option ntp-servers pool.ntp.org;
 option time-offset -18000;

 range dynamic-bootp 192.168.1.128 192.168.1.254;
 default-lease-time 21600;
 max-lease-time 43200;
}

Alternatively, you can configure from the phone itself to manually use
an alternative TFTP server than that given by the DHCP server. To do
so, press the settings button, (on the G version of the Cisco phones, this
looks like a square with a check mark inside of it; G means Global). You
will then need to unlock the settings by pressing the 9 key. The default
password is cisco. Once the phone is unlocked, press the 3 key on the
dialpad to enter the Network Configuration. Scroll down to option 32
and set the Alternate TFTP to YES. Then scroll up to option 7 and enter
the IP address of the TFTP server you wish to boot from. Accept the
settings and back out of the menu until the phone reboots itself. You
can also use the *-6-settings three finger salute to reboot your phone at
any time.

You can watch the phone pull its configuration from the TFTP server by using tshark
(yum install ethereal). Filter on port 69 using the following command:

tshark port 69

You should then be able to watch the network traffic from the phone requesting data
from your TFTP server.

If all goes well, then you should see your phone registered to Asterisk!

Linksys SPA-942
Ever since they purchased Sipura Technologies, Linksys has been producing a line of
economical VoIP telephones and ATAs (Analog Terminal Adaptors). Linksys has been
stealing a lot of business from Cisco. If you have read Clayton M. Christensen’s
The Innovator’s Dilemma (HarperCollins), it becomes easier to understand Cisco’s
strategy with respect to Linksys.

Linksys (and Sipura) products are well regarded for their excellent quality, especially
relative to their price, but they are also famous for being painfully difficult to configure.

Configuring SIP Telephones | 95

This is mostly because their configuration GUI offers hundreds of configurable pa-
rameters.

We don’t care about that. Here’s what you need to know to get an SPA-942 working
with your Asterisk system (and, we hope, most other Linksys VoIP devices as well).

Logging in to the phone

The first thing you need to do is get the IP address of the phone so you can log in to
the GUI interface. From the phone itself, select the icon that looks like a piece of paper
with a dog-eared corner (right below the envelope icon). This is the Settings button,
and is shown in Figure 4-4.

To get the IP address of the phone, press the Settings button, followed by 9 (or use
directional pad and scroll down to Network). Then press the select button (there is a
row of 4 buttons under the LCD screen—select is the leftmost button). The second field
should show you the IP address of the phone.

Now open your browser, enter the IP address into the address bar, hit Enter, and you
will be at the Info screen of the phone.

Registering your phone to Asterisk

Select the Admin Login link in the upper-right corner of the screen. Once you’ve done
this, you will be given several new tabs, such as Regional, Phone, Ext 1, Ext 2, and User.

Select the Ext 1 tab which will set up our first line. Then make the following menu
selections:

1. General → Line Enable → yes

2. NAT Settings → NAT Mapping Enable → no

3. NAT Settings → NAT Keep Alive Enable → no

Figure 4-4. SPA-942 keypad

96 | Chapter 4: Initial Configuration of Asterisk

4. Proxy and Registration → Proxy → enter the IP address of Asterisk
(e.g., 192.168.1.100)

5. Proxy and Registration → Register → yes

6. Proxy and Registration → Make Call Without Reg → no

7. Proxy and Registration → Ans Call Without Reg → no

8. Subscriber Information → Display Name → Caller ID information

9. Subscriber Information → User ID → 1000

10. Subscriber Information → Password → (leave blank if you’re using the simple con-
figuration from earlier in this chapter)

11. Subscriber Information → Use Auth ID → yes

12. Subscriber Information → Auth ID → 1000

13. Audio Configuration → Preferred Codec → G711u

14. Audio Configuration → Use Pref Codec Only → no

15. Audio Configuration → Silence Supp Enable → no

16. Audio Configuration → DTMF Tx Method → Auto

17. Submit All Changes

And that’s it! Your phone should be registered to Asterisk now. You’ll know this be-
cause the first lighted line button beside the LCD screen will change from orange to
green.

Configuring the Dialplan for Testing
In order to allow our phone to call other phones (or, if a multiline phone, to call itself),
we need to modify the extensions.conf file. Building on what we had in “Setting Up the
Dialplan for Some Test Calls,” add the following parts to the [internal] context:

exten => 1000,1,Verbose(1|Extension 1000)
exten => 1000,n,Dial(SIP/1000,30)
exten => 1000,n,Hangup()

If you have two phones, or multiple lines configured, you can duplicate the previous
configuration and change the 1000 to the other extension name.

Connecting to a SIP Service Provider
With the advent of Internet telephony, there has been an influx of Internet-based phone
companies springing up all over the world! This gives you a large number of choices
from which to choose. Many of these service providers allow you to connect your As-
terisk-based system to their networks,# and some of them are even running Asterisk
themselves!

Connecting to a SIP Service Provider | 97

The following configuration should get you connected with an Internet Telephony
Service Provider (ITSP),* although it is impossible to know the unique configurations
each service provider will require from you, and ideally the provider will give you the
configuration required to connect your system with its own. However, not all are going
to support Asterisk, so we’re going to provide you with a generic configuration which
should help you get on your way and, ideally, going in a matter of minutes:

[my_service_provider]
type=peer
host=10.251.55.100
fromuser=my_unique_id
secret=my_special_secret
context=incoming_calls
dtmfmode=rfc2833
disallow=all
allow=gsm
allow=ulaw
deny=0.0.0.0/0
permit=10.251.55.100/32
insecure=invite

Configuring a Local Firewall
If you’re running iptables on the same machine as the Asterisk box, then you can run
the following commands to open port 5060 for SIP signaling, and ports 10,000 through
20,000 for the RTP traffic. You can also narrow the range of RTP ports in the rtp.conf
file located in /etc/asterisk. An excellent book on iptables firewalls is Linux Firewalls by
Steve Suehring and Robert Ziegler (Novell Press).

iptables -I RH-Firewall-1-INPUT -p udp --dport 5060 -j ACCEPT
iptables -I RH-Firewall-1-INPUT -p udp --dport 10000:20000 -j ACCEPT
service iptables save

Be aware that this will allow all UDP traffic from any source access to ports 5060 and
10,000 through 20,000.

Most of the previous configuration may be familiar to you by now, but in case it’s not,
here is a brief rundown.

By defining the type as a peer, we are telling Asterisk not to match on the [my_serv
ice_provider] name, but rather to match on the IP address in the INVITE message
(when the provider is sending us a call). The host parameter is the IP address that we’ll
place our calls to, and the IP address we’ll be matching on when receiving a call from
the provider.

Be sure to check the policy of any service provider you are looking to connect with, as some of them may not
allow you to use a PBX system with its service.

* Also known as a VoIP Service Provider (VSP).

98 | Chapter 4: Initial Configuration of Asterisk

Matching on Username Instead of IP Address
Some service providers may insteadSession Initiation Protocol be sending their calls to
you via multiple IP addresses, requiring you to create a separate peer account for each
IP address. If you don’t know each of these IP addresses, you may need to match on
the username instead. The format for the service provider definition needs to only
change slightly, but the biggest change to note is that you will need to set the [serv-
ice_provider_header] as the username your service provider is going to send the call
to. We have also changed the type from a peer to a friend, which from the viewpoint
of Asterisk creates both a type user and type peer, where the type user will be matched
before the peer:

[my_unique_id]
type=friend
host=10.251.55.100
fromuser=my_unique_id
secret=my_special_secret
context=incoming_calls
dtmfmode=rfc2833
disallow=all
allow=gsm
allow=ulaw
insecure=invite

Note that we’ve removed the deny and permit parameters since we may not know the
IP addresses the calls will be coming from. If you do happen to know them and still
wish to match them, you can add back in the deny and permit(s) for the IP addresses.

The fromuser parameter is going to affect the way our INVITE message is structured
when sending the call to the provider. By setting our username in the fromuser param-
eter, we will modify the From: and Contact: fields of the INVITE when sending a call
to the provider. This may be required by the provider if it’s using these fields as part of
its authentication routine. You can see the places Asterisk modifies the header in the
next two code blocks.

Without the fromuser:

Audio is at 66.135.99.122 port 18154
Adding codec 0x2 (gsm) to SDP
Adding codec 0x4 (ulaw) to SDP
Adding non-codec 0x1 (telephone-event) to SDP
Reliably Transmitting (no NAT) to 10.251.55.100:5060:
INVITE sip:15195915119@10.251.55.100 SIP/2.0
Via: SIP/2.0/UDP 66.135.99.122:5060;branch=z9hG4bK32469d35;rport
From: "asterisk" <sip:asterisk@66.135.99.122>;tag=as4975f3ff
To: <sip:15195915119@10.251.55.100>
Contact: <sip:asterisk@66.135.99.122>
Call-ID: 58e3dfb2584930cd77fe989c00986584@66.135.99.122
CSeq: 102 INVITE
User-Agent: Asterisk PBX
Max-Forwards: 70
Date: Fri, 20 Apr 2007 14:59:24 GMT

Connecting to a SIP Service Provider | 99

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY
Supported: replaces
Content-Type: application/sdp
Content-Length: 265

With the fromuser:

Audio is at 66.135.99.122 port 11700
Adding codec 0x2 (gsm) to SDP
Adding codec 0x4 (ulaw) to SDP
Adding non-codec 0x1 (telephone-event) to SDP
Reliably Transmitting (no NAT) to 10.251.55.100:5060:
INVITE sip:15195915119@10.251.55.100 SIP/2.0
Via: SIP/2.0/UDP 66.135.99.122:5060;branch=z9hG4bK635b0b1b;rport
From: "asterisk" <sip:my_unique_id@66.135.99.122>;tag=as3186c1ba
To: <sip:15195915119@10.251.55.100>
Contact: <sip:my_unique_id@66.135.99.122>
Call-ID: 0c7ad6156f92e70b1fecde903550a12f@66.135.99.122
CSeq: 102 INVITE
User-Agent: Asterisk PBX
Max-Forwards: 70
Date: Fri, 20 Apr 2007 15:00:30 GMT
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY
Supported: replaces
Content-Type: application/sdp
Content-Length: 265

The deny and permit statements are used to deny all incoming calls to this peer except
the IP address defined by the permit parameter. This is simply a security measure used
to make sure nothing else matches on this peer except traffic coming from the IP address
we expect.

At the end is insecure=invite, which may be required for your provider. This is because
the source of the INVITE may originate from its backend platform, but could be di-
rected through its SIP proxy server. Basically what this means is that the IP address that
the peer is coming from, and which you are matching on, may not be the IP address
that is in the Contact line: field of the INVITE message when you are accepting a call
from your provider. This tells Asterisk to ignore this inconsistency and to accept the
INVITE anyway.

You may need to set invite=invite,port if the port address is also in-
consistent with what Asterisk is expecting.

Now we need one additional parameter set in the [general] section of our sip.conf file:
register. register is going to tell the service provider where to send calls when it has
a call to deliver to us. This is Asterisk’s way of saying to the service provider, “Hey! If
you’ve got a call for me, send it to me at IP address 10.251.55.100.” The register
parameter takes the following form:

100 | Chapter 4: Initial Configuration of Asterisk

register => username:secret@my.service_provider.tld

Now we just need to configure a simple dialplan to handle our incoming calls and to
send calls via the service provider. We’re going to modify the simple dialplan we started
building in the “Setting Up the Dialplan for Some Test Calls” section of this chapter.
The italicized sections are the new parts that we’re adding to the dialplan, with every-
thing else existing previously.†

[globals]

[general]

[default]
exten => s,1,Verbose(1|Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()

[incoming_calls]
exten => _X.,1.NoOp()
exten => _X.,n,Dial(SIP/1000)

[outgoing_calls]
exten => _X.,1,NoOp()
exten => _X.,n,Dial(SIP/my_service_provider/${EXTEN})

[internal]
exten => 1000,1,Verbose(1|Extension 1000)
exten => 1000,n,Dial(SIP/1000,30)
exten => 1000,n,Hangup()

exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()

[phones]
include => internal
include => outgoing_calls

Connecting Two Asterisk Boxes Together via SIP
There may come a time when you have a pair of Asterisk boxes, and you’d like to pass
calls between them. Luckily this isn’t very difficult, although it does have some oddities
that we need to deal with, but from the configuration viewpoint it isn’t really all that
difficult.

† We also assume you have configured at least one SIP extension from the previous section.

Connecting Two Asterisk Boxes Together via SIP | 101

Configuring a Local Firewall
If you’re running iptables on the same machine as the Asterisk box, then you can run
the following commands to open port 5060 for SIP signaling, and ports 10,000 through
20,000 for the RTP traffic. You can also narrow the range of RTP ports in the rtp.conf
file located in /etc/asterisk. An excellent book on iptables firewalls is Linux Firewalls by
Steve Suehring and Robert Ziegler (Novell Press):

iptables -I RH-Firewall-1-INPUT -p udp --dport 5060 -j ACCEPT
iptables -I RH-Firewall-1-INPUT -p udp --dport 10000:20000 -j ACCEPT
service iptables save

Be aware that this will allow all UDP traffic from any source access to ports 5060 and
10,000 through 20,000.

Our topology will consist of a SIP phone (Alice) registered to Asterisk A (Toronto), and
a separate SIP phone (Bob) registered to Asterisk B (Osaka). At the end of this section,
you will be able to set up a call from Alice to Bob (and vice versa) through your pair of
Asterisk boxes (see Figure 4-5). This is a common scenario when you have two physical
locations, such as a company with multiple offices that wants a single logical extension
topology.

First, let’s configure our Asterisk boxes.

Configuring Our Asterisk Boxes
We have a pair of Asterisk boxes that we’re going to call Toronto and Osaka and that
we’re going to have register to each other. We’re going to use the most basic sip.conf
file that will work in this scenario. Just like the SIP phone configuration earlier in this
chapter, it’s not necessarily the best way to do it, but it’ll work.

Here is the configuration for the Toronto box:

[general]
register => toronto:welcome@192.168.1.101/osaka

[osaka]

Toronto Osaka

Figure 4-5. SIP trunking topology

102 | Chapter 4: Initial Configuration of Asterisk

type=friend
secret=welcome
context=osaka_incoming
host=dynamic
disallow=all
allow=ulaw

And the configuration for the Osaka box:

[general]
register => osaka:welcome@192.168.2.202/toronto

[toronto]
type=friend
secret=welcome
context=toronto_incoming
host=dynamic
disallow=all
allow=ulaw

Many of the previous options may be familiar to you by now, but let’s take a look at
them further just in case they are not.

The second line of the file tells our Asterisk box to register to the other box, with the
purpose of telling the remote Asterisk box where to send calls when it wishes to send
a call to our local Asterisk box. Remember how we mentioned a little oddity in the
configuration? Notice that at the end of the registration line we tag on a forward slash
and the username of the remote Asterisk box? What this does is tell the remote Asterisk
box what digest name to use when it wants to set up a call. If you forget to add this,
then when the far end tries to send you a call, you’ll see the following at your Asterisk
CLI:

[Apr 22 18:52:32] WARNING[23631]: chan_sip.c:8117 check_auth: username mismatch,
 have <toronto>, digest has <s>

So by adding the forward slash and username, we tell the other end what to place in
the Digest username of the Proxy Authorization field in the SIP INVITE message.

The rest of the file is the authorization block we use to control the incoming and out-
going calls from the other Asterisk box. On the Toronto box, we have the [osaka]
authorization block, and on the Osaka box, we have the [toronto] block. We define
the type as a friend, which allows us to both receive and place calls from the other
Asterisk box. The secret is the password the other system should use when authenti-
cating. The context is where incoming calls are processed in the dialplan
(extensions.conf). We set the host parameter to dynamic, which tells our Asterisk box
that the other endpoint will register to us, thereby telling us what IP address to set up
calls when we want to send a call to the other end. Finally, the disallow and allow
parameters control the codecs we wish to use with the other end.

If you save the file and reload the SIP channel on both Asterisk boxes (sip reload from
the Asterisk console), you should see something like the following, which will tell you
the remote box successfully registered:

Connecting Two Asterisk Boxes Together via SIP | 103

*CLI> -- Saved useragent "Asterisk PBX" for peer toronto

You should see the status of the Host change from (Unspecified) to the IP address of
the remote box when you run sip show peers:

*CLI> sip show peers
Name/username Host Dyn Nat ACL Port Status
toronto/osaka 192.168.2.202 D 5060 Unmonitored

You can verify that your own registration was successful by running sip show
registry from the Asterisk console:

*CLI> sip show registry
Host Username Refresh State Reg.Time
192.168.1.101:5060 osaka 105 Registered Sun, 22 Apr 2007 19:13:20

Now that our Asterisk boxes are happy with each other, let’s configure a couple of SIP
phones so we can call between the boxes.

SIP Phone Configuration
See the “Configuring an FXS Channel for an Analog Telephone” section of this chapter
for more information about configuring SIP phones with Asterisk. Below is the con-
figuration for two SIP phones in the sip.conf file for each server, which we’ll be
referencing from the dialplan in the next section, thereby giving us two endpoints to
call between. Append this configuration to the end of the sip.conf file on each respective
server.

Toronto sip.conf:

[1000]
type=friend
host=dynamic
context=phones

Osaka sip.conf:

[1001]
type=friend
host=dynamic
context=phones

You should now have extension 1000 registered to Toronto, and extension 1001 reg-
istered to Osaka. You can verify this with the sip show peers command from the
Asterisk console. Next, we’re going to configure the dialplan logic that will allow us to
call between the extensions.

Configuring the Dialplan
Now we can configure a simple dialplan for each server allowing us to call between the
two phones we have registered: one to Toronto, the other to Osaka. In the “Working
with Interface Configuration Files” section of this chapter, we asked you to create a

104 | Chapter 4: Initial Configuration of Asterisk

simple extensions.conf file. We are going to build up a dialplan based on this simple
configuration. The dialplan for each server will be very similar to the other one, but for
clarity we will show both. The new lines we’re adding to the file will be italicized.

Toronto extensions.conf:

[globals]

[general]
autofallthrough=yes

[default]

[incoming_calls]

[phones]
include => internal
include => remote

[internal]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(SIP/${EXTEN},30)
exten => _2XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail)
exten => _2XXX,n,Hangup()

[remote]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(SIP/osaka/${EXTEN})
exten => _1XXX,n,Hangup()

[osaka_incoming]
include => internal

Osaka extensions.conf:

[globals]

[general]
autofallthrough=yes

[default]

[incoming_calls]

[phones]
include => internal
include => remote

[internal]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(SIP/${EXTEN},30)
exten => _1XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail)
exten => _1XXX,n,Hangup()

[remote]
exten => _2XXX,1,NoOp()

Connecting Two Asterisk Boxes Together via SIP | 105

exten => _2XXX,n,Dial(SIP/toronto/${EXTEN})
exten => _2XXX,n,Hangup()

[toronto_incoming]
include => internal

Once you’ve configured your extensions.conf file, you can reload it from the Asterisk
console with the dialplan reload command. Verify your dialplan loaded with the
dialplan show command.

And that’s it! You should be able to place calls between your two Asterisk servers now.

Configuring an IAX Softphone
A major advantage of using the IAX2 protocol is that it is designed to be more friendly
to working within odd network configurations, especially working behind NAT. This
makes it a fantastic protocol for softphone clients since they are often utilized on laptops
that roam into many different networks, often with no control of the network itself
(such as when traveling between hotel networks).

The Inter-Asterisk eXchange (IAX) protocol is usually used for server-to-server com-
munication; more hard phones are available that talk SIP. However, there are several
softphones that support the IAX protocol, and work is progressing on several fronts
for hard phone support in firmware. The primary difference between the IAX and SIP
protocols is the way media (your voice) is passed between endpoints.

With SIP, the RTP (media) traffic is passed using different ports than those used by the
signaling methods. For example, Asterisk receives the signaling of SIP on port 5060 and
the RTP (media) traffic on ports 10,000 through 20,000 by default. The IAX protocol
differs in that both the signaling and media traffic are passed via a single port: 4569.
An advantage to this approach is that the IAX protocol tends to be better suited to
topologies involving NAT.

There exist many IAX-based softphones, but not so many hardware based phones. The
most pronounced reason is because IAX2 is not yet an IETF standard, yet many people
have become early adopters and have reaped the benefits.

An excellent IAX2 softphone is idefisk, available at http://www.asteriskguru.com‡ for
free download. The authors have had excellent results with this softphone, and since
it runs on Microsoft Windows, Mac OS X, and Linux, it is an excellent cross-platform
softphone to write about. We will be demonstrating version 1.31 in this book, although
version 2.0 was recently released (April 2007) but is not yet available for Linux.

‡ The Asterisk Guru site is also an excellent source of documentation!

106 | Chapter 4: Initial Configuration of Asterisk

http://www.asteriskguru.com

Configuring the Channel Configuration File (iax.conf)
Like the rest of this chapter, we’re attempting to get you up and running quickly with
the smallest configuration file set possible in order to minimize the problems you may
have in configuring your devices. Just like the sip.conf file, iax.conf requires only a few
simple lines to get our IAX phone registered to Asterisk. Let’s take a look:

[general]
autokill=yes

[idefisk]
type=friend
host=dynamic
context=phones

Yes, really, that’s all you need to get your softphone up and running. It’s not the most
secure or feature-rich configuration (we’re not even using a password), but this will
work.

In the [general] section of our iax.conf file, we have a single option: autokill= yes. We
use this option to avoid things from stalling when a peer does not ACK (reply) to our
NEW packet (new call setup request) within 2000 milliseconds. Instead of the reply to
value yes, you can set this to the number of milliseconds to wait for the ACK to our
NEW packet. You can control the autokill option for each individual peer by defining
qualify for those peers that you know may be on poor network connections.

The rest of the file contains the definition for our softphone. We define the type as
friend, which tells Asterisk we will send calls to this device and also accept calls from
this device. A friend is a shortcut for defining a separate peer (send calls to the soft-
phone), and user (accept calls from the softphone). We could also have defined
individual definitions for the peer and user like so:

[idefisk]
type=user
context=phones

[idefisk]
type=peer
host=dynamic

Once you’ve configured your iax.conf file, save the file and reload the IAX2 channel
module from your Asterisk console with module reload chan_iax2.so. Confirm your
new peer exists by running iax2 show peers.

localhost*CLI> iax2 show peers
Name/Username Host Mask Port Status
idefisk (Unspecified) (D) 255.255.255.255 0 Unmonitored
1 iax2 peers [0 online, 0 offline, 1 unmonitored]

Configuring an IAX Softphone | 107

Configure the Softphone
Once you’ve installed the idefisk softphone, open up the client and you’ll see the main
screen shown in Figure 4-6.

After we’ve started the softphone, we need to configure our softphone so we can place
calls. We also need to register to Asterisk so we can receive calls. To do this, Right-click
on the icon in the top-left corner of the screen, which will open a drop-down menu.
Select Account Options from the drop-down, which will bring up the screen shown in
Figure 4-7.

Figure 4-6. idefisk

Figure 4-7. idefisk Account Options screen

108 | Chapter 4: Initial Configuration of Asterisk

Start by creating a new account on the softphone by clicking the New button and filling
out the relevant information. The Host should point to the IP address or domain name
of your Asterisk system, with the username matching that of the value located between
the square brackets [] in your iax.conf file. Leave the password field blank, as we did
not configure a secret in iax.conf, and the Caller ID and Number can be set to whatever
you wish. If you want idefisk to register this account on startup, select the “Register on
startup” checkbox. When done, click the OK button to save the new account.

If you clicked the “Register on startup checkbox,” then the phone will attempt to reg-
ister to Asterisk. On the Asterisk console you will see output telling you that the phone
has registered:

-- Registered IAX2 'idefisk' (UNAUTHENTICATED) at 127.0.0.1:32771

You can verify your registration with the iax2 show peers command at the Asterisk
console:

localhost*CLI> iax2 show peers
Name/Username Host Mask Port Status
idefisk 127.0.0.1 (D) 255.255.255.255 32771 Unmonitored
1 iax2 peers [0 online, 0 offline, 1 unmonitored]

Configuring the Dialplan for Testing
One final thing to do is confirm dialing through our phone by configuring a simple
dialplan in extensions.conf. You can simply test that you have audio in both directions
by calling extension 500, or you can modify the dialplan we created in the “Setting Up
the Dialplan for Some Test Calls” section of this chapter to place some test calls. If you
also configured a SIP phone at extension 1000 in the previous sections, then the fol-
lowing will not overlap with that, as we’ll be using extension 1001 (unless you
configured multiple SIP extensions, in which case just configure a unique extension
number for your IAX2 softphone):

[globals]

[general]

[default]
exten => s,1,Verbose(1|Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()

[incoming_calls]

[internal]
exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()

Configuring an IAX Softphone | 109

exten => 1001,1,Verbose(1|Extension 1000)
exten => 1001,n,Dial(IAX2/idefisk,30)
exten => 1001,n,Hangup()

[phones]
include => phones

Connecting to an IAX Service Provider
Some Internet Telephony Service Providers (ITSPs) provide the ability to originate and
terminate calls via the IAX2 protocol. Beyond minimizing the number of ports required
to be open on the firewall (IAX2 only requires a single port for both signaling and
media), the protocol’s trunking feature is attractive to both ITSPs and their customers
due to the savings in bandwidth that can be obtained when running many simultaneous
calls between endpoints.

If your ITSP is offering IAX2 termination, there is a strong chance it is running Asterisk;
thus the configuration for connecting to these service providers is more than likely going
to be similar to what we are providing here.

The following configuration is a template for connecting to an IAX2 service provider:

[general]
autokill=yes

register => username:password@my.service-provider.tld

[my_unique_id]
type=user
secret=my_unique_password
context=incoming_calls
trunking=yes
disallow=all
allow=gsm
allow=ulaw
deny=0.0.0.0/0.0.0.0
permit=10.251.100.1/255.255.255.255

[my_unique_id]
type=peer
host=10.251.100.1
trunking=yes
disallow=all
allow=gsm
allow=ulaw

To accept incoming calls from the Direct Inward Dialing (DID) number that your serv-
ice provider assigned to you, we need to modify our extensions.conf file. Perhaps you
want to send the call to an auto-attendant, or maybe simply to your desk phone. In
either case, you can accept calls from your service provider and match on the incoming
DID with the following bit of dialplan logic:

110 | Chapter 4: Initial Configuration of Asterisk

[globals]

[general]
autofallthrough=yes

[default]

[incoming_calls]
exten => 14165551212,1,NoOp()
exten => 14165551212,n,Dial(SIP/1000,30)
exten => 14165551212,n,Playback(the-party-you-are-calling&is-curntly-unavail)
exten => 14165551212,n,Hangup()

exten => 4165551212,1,Goto(1${EXTEN})

[internal]

[phones]
include => internal

Connecting Two Asterisk Boxes Together via IAX
Often it is desirable to connect two physical Asterisk boxes together via IAX in order
to send calls between two physical locations (the distance between these locations may
be centimeters or kilometers). One of the advantages to using the IAX protocol to do
this is a feature called trunking, which utilizes a method of sending the voice data for
multiple calls at once with a single header. This has little effect on only one or two
simultaneous calls, but if you are sending tens or hundreds of calls between two loca-
tions, the bandwidth savings by utilizing trunking can be tremendous.

Configuring a Local Firewall
If you’re running iptables on the same machine as the Asterisk box, then you can run
the following commands to open port 4569 for the IAX2 protocol. An excellent book
on iptables firewalls is Linux Firewalls by Steve Suehring and Robert Ziegler (Novell
Press).

iptables -I RH-Firewall-1-INPUT -p udp --dport 4569 -j ACCEPT
service iptables save

Be aware that this will allow all UDP traffic from any source access to port 4569.

You will need a timing interface installed on your system, whether it be
hardware from Digium or via the kernel by using the ztdummy driver.
This will require you to have Zaptel installed on your system and run-
ning. See Chapter 3 for more information about installing Zaptel.

Connecting Two Asterisk Boxes Together via IAX | 111

Configuring Our Asterisk Boxes
We’ll be utilizing a simple topology where we have two Asterisk boxes registered to
each other directly, and separate phones registered to each Asterisk box. We’ll call the
two Asterisk boxes Toronto and Osakafi (see “Connecting Two Asterisk Boxes To-
gether via SIP”). Bob’s phone will be registered and connected to Toronto, while Alice’s
phone will be registered and connected to Osaka.

The first thing we want to do is create a new channel file (iax.conf) by renaming the
current sample file to iax.conf.sample and creating a new blank iax.conf:

cd /etc/asterisk
mv iax.conf iax.conf.sample
touch iax.conf

Next, open up the iax.conf file and enter the following configuration on the Toronto
Asterisk box:

[general]
autokill=yes

register => toronto:welcome@192.168.1.107

[osaka]
type=friend
host=dynamic
trunk=yes
secret=welcome
context=incoming_osaka
deny=0.0.0.0/0.0.0.0
permit=192.168.1.107/255.255.255.255

autokill=yes was explained in the previous section, but its purpose is to make sure new
calls being set up to a remote system that are not acknowledged within a reasonable
amount of time (two seconds by default) are torn down correctly. This saves us from
having a lot of hung channels simply waiting for an acknowledgement that probably
isn’t coming.

The register line is used to tell the remote Asterisk box where we are so that when the
box at 192.168.1.107 is ready to send us a call, it sends it to our IP address (in this case
our IP address is 192.168.1.104, which you’ll see in the iax.conf configuration of the
Osaka box). We send the username Toronto and the password welcome to Osaka, which
authenticates our registration, and if accepted, writes the location of our Asterisk box
into its memory for when it needs to send us a call.

The [Osaka] definition is used to control the authentication of the remote box and
delivery into our dialplan. Osaka is the username used in the incoming authentication.
We set the type to friend because we want to have both the ability to send calls to
Osaka and to receive calls from Osaka. The host option is set to dynamic which tells
Asterisk to send calls to the IP address obtained when the opposite endpoint registers
with us.

112 | Chapter 4: Initial Configuration of Asterisk

In the introduction to this section, we mentioned the possible bandwidth savings when
utilizing IAX2 trunking. It’s simple to enable this functionality in Asterisk, as we just
need to add trunk=yes to our friend definition. As long as a timing interface is installed
and running (i.e., dummy), then we can take advantage of IAX2 trunking.

The secret is straightforward: it’s our authentication password. We’re defining the
[incoming_osaka] context as the place we will process incoming calls for this friend in
the extensions.conf file. Finally, we block all IP addresses with the deny option from
being allowed to authenticate, and explicitly permit 192.168.1.107.

The iax.conf configuration for Osaka is nearly identical, except for the changes in IP
address and names:

[general]
autokill=yes

register => osaka:welcome@192.168.1.104

[toronto]
type=friend
host=dynamic
trunk=yes
secret=welcome
context=incoming_toronto
deny=0.0.0.0/0.0.0.0
permit=192.168.1.104/255.255.255.255

IAX Phone Configuration
In the “Configure the Softphone” section, we configured our first IAX2 softphone using
idefisk. The configuration we’ll be using here is nearly identical except for minor
changes in order to cause the peers to be unique. If you’ve already configured a SIP
softphone, then you can also utilize that on one (or both) of the peers. Remember that
Asterisk is a multiprotocol application, and you can send a call from a SIP phone to
Asterisk, across an IAX2 trunk, and then down to another SIP phone (or H.323, MGCP,
etc.).

On Osaka:

[1001]
type=friend
host=dynamic
context=phones

On Toronto:

[2001]
type=friend
host=dynamic
context=phones

Connecting Two Asterisk Boxes Together via IAX | 113

Next, configure your IAX2 softphone to register to Asterisk. If the phone successfully
registers, you’ll see something like:

*CLI> -- Registered IAX2 '1001' (UNAUTHENTICATED) at 192.168.1.104:4569

Configuring the Dialplan
In order to allow calling between our two Asterisk boxes over the IAX2 trunk, we need
to configure a simple dialplan. The following dialplan will send all extensions in the
1000 range (1000–1999) to Osaka, and all extensions in the 2000 range (2000–2999)
to Toronto. Our example is going to assume that you have configured a pair of IAX2
softphones, but feel free to utilize a SIP phone if you’ve already configured one (or two).
Just be aware that you’ll need to change the Dial() application to send the call to the
SIP phone via the SIP protocol instead of IAX2 (i.e. Dial(SIP/${EXTEN},30) instead of
Dial(IAX2/${EXTEN},30)).

The extensions.conf file on Toronto:

[globals]

[general]
autofallthrough=yes

[default]

[incoming_calls]

[phones]
include => internal
include => remote

[internal]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(IAX2/${EXTEN},30)
exten => _1XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail)
exten => _1XXX,n,Hangup()

[remote]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(IAX2/toronto/${EXTEN})
exten => _2XXX,n,Hangup()

[toronto_incoming]
include => internal

The extensions.conf file on Osaka:

[globals]

[general]
autofallthrough=yes

[default]

114 | Chapter 4: Initial Configuration of Asterisk

[incoming_calls]

[phones]
include => internal
include => remote

[internal]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(IAX2/${EXTEN},30)
exten => _2XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail)
exten => _2XXX,n,Hangup()

[remote]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(IAX2/osaka/${EXTEN})
exten => _1XXX,n,Hangup()

[osaka_incoming]
include => internal

Using Templates in Your Configuration Files
There is a little-known secret in Asterisk config files that is so brilliant that we had to
devote a little section to it.

Let us say that you have 20 SIP phones that are all pretty much identical in terms of
how they are configured. The documented way to create them is to specify the param-
eters for each. Part of such a sip.conf file might look like this:

[1000]
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1000
secret=AllYourSetsAreBelongToUs

[1001]
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1001
secret=AllYourSetsAreBelongToUs

[1002]
type=friend
context=internal
host=dynamic

Using Templates in Your Configuration Files | 115

disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1002
secret=AllYourSetsAreBelongToUs

Seems like a lot of extra typing, cutting, and pasting, yes? And what if you decide that
you are going to change the context for your sets to another name. Not looking good,
is it?

Enter the template. Let’s create the same SIP friends as we did above, only this time
using the template construct:

[sets](!) ; <== note the exclamation point in parenthesis. That makes this a template.
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
secret=AllYourSetsAreBelongToUs

[1000](sets) ; <== note the template name in parenthesis. All of that templates
 ; settings will be inhereted.
maibox=1000

[1001](sets)
maibox=1001

[1002](sets)
maibox=1002

This is one of the best kept secrets of conf file creation. In our experience, very few
people use this, but for no other reason than that they don’t know about it. Well, that’s
about to change. Our goal is to see everyone using these from now on; and yes, we will
be checking.

Debugging
Several methods of debugging are available in Asterisk. Once you’ve connected to the
console, you can enable different levels of verbosity and debugging output, as well as
protocol packet tracing. We’ll take a look at the various options in this section.

Connecting to the Console
To connect to the Asterisk console, you can either start the server in the console directly
(in which case you will not be able to exit out of the console without killing the Asterisk
process), or start Asterisk as a daemon and then connect to a remote console.

To start the Asterisk process directly in the console, use the console flag:

116 | Chapter 4: Initial Configuration of Asterisk

/usr/sbin/asterisk -c

To connect to a remote Asterisk console, start the daemon first and then connect with
the -r flag:

/usr/sbin/asterisk
/usr/sbin/asterisk -r

If you are having a problem with a specific module not loading, or a module causing
Asterisk to not load, start the Asterisk process with the -c flag to monitor the status of
modules loading. For example, if you attempt to load the OSS channel driver (which
allows the use of the CONSOLE channel), and Asterisk is unable to open /dev/dsp, you will
receive the following error on startup:

WARNING[32174]: chan_oss.c:470 soundcard_init: Unable to open /dev/dsp:
No such file or directory
 == No sound card detected -- console channel will be unavailable
 == Turn off OSS support by adding 'noload=chan_oss.so' in /etc/
 asterisk/modules.conf

Enabling Verbosity and Debugging
Asterisk can output debugging information in the form of WARNING, NOTICE, and ERROR
messages. These messages will give you information about your system, such as regis-
trations, status, and progression of calls, and various other useful bits of information.
Note that WARNING and NOTICE messages are not errors; however, ERROR messages should
be investigated. To enable various levels of verbosity, use set verbose followed by a
numerical value. Useful values range from 3 to 10. For example, to set the highest level
of verbosity, use:

set verbose 10

You can also enable core debugging messages with set debug followed by a numerical
value. To enable DEBUG output on the console, you may need to enable it in the
logger.conf file by adding debug to the console => statement, as follows:

console => warning,notice,error,event,debug

Useful values for set debug range from 3 to 10. For example:

set debug 10

Conclusion
If you've worked through all of the sections in this chapter, you will have configured a
pair of analog interfaces, a local SIP and IAX2 channel connected to a softphone and/
or a hardphone, and placed calls across servers using the SIP and IAX2 protocols. These
configurations are quite basic, but they give us functional channels to work with. We
will make use of them in the following chapters, while we learn to build more useful
dialplans.

Conclusion | 117

CHAPTER 5

Dialplan Basics

Everything should be made as simple as possible, but not
simpler.

—Albert Einstein (1879–1955)

The dialplan is truly the heart of any Asterisk system, as it defines how Asterisk handles
inbound and outbound calls. In a nutshell, it consists of a list of instructions or steps
that Asterisk will follow. Unlike traditional phone systems, Asterisk’s dialplan is fully
customizable. To successfully set up your own Asterisk system, you will need to un-
derstand the dialplan.

If you have attempted to read some sample dialplans and found them overwhelming,
or if you’ve tried to write an Asterisk dialplan and had no success, help is at hand. This
chapter explains how dialplans work in a step-by-step manner and teaches the skills
necessary to create your own. The examples have been designed to build upon one
another, so feel free to go back and reread a section if something doesn’t quite make
sense. Please also note that this chapter is by no means an exhaustive survey of all the
possible things dialplans can do; our aim is to cover just the fundamentals. We’ll cover
more advanced dialplan topics in later chapters.

Dialplan Syntax
The Asterisk dialplan is specified in the configuration file named extensions.conf.

The extensions.conf file usually resides in the /etc/asterisk/ directory, but
its location may vary depending on how you installed Asterisk. Other
common locations for this file include /usr/local/asterisk/etc/
and /opt/asterisk/etc/.

The dialplan is made up of four main concepts: contexts, extensions, priorities, and
applications. In the next few sections, we’ll cover each of these parts and explain how

119

they work together. After explaining the role each of these elements plays in the
dialplan, we will step you though the process of creating a basic, functioning dialplan.

Sample Configuration Files
If you installed the sample configuration files when you installed Asterisk, you will most
likely have an existing extensions.conf file. Instead of starting with the sample file, we
suggest that you build your extensions.conf file from scratch. This will be very beneficial,
as it will give you a better understanding of dialplan concepts and fundamentals.

That being said, the sample extensions.conf file remains a fantastic resource, full of
examples and ideas that you can use after you’ve learned the basic concepts. We suggest
you rename the sample file to something like extensions.conf.sample. That way, you
can refer to it in the future. You can also find the sample configuration files in
the /configs/ directory of the Asterisk source.

Contexts
Dialplans are broken into sections called contexts. Contexts are named groups of ex-
tensions, which serve several purposes.

Contexts keep different parts of the dialplan from interacting with one another. An
extension that is defined in one context is completely isolated from extensions in any
other context, unless interaction is specifically allowed. (We’ll cover how to allow in-
teraction between contexts near the end of the chapter.)

As a simple example, let’s imagine we have two companies sharing an Asterisk server.
If we place each company’s voice menu in its own context, they are effectively separated
from each other. This allows us to independently define what happens when, say, ex-
tension 0 is dialed: people pressing 0 at Company A’s voice menu will get Company
A’s receptionist, and callers pressing 0 at Company B’s voice menu will get Company
B’s receptionist. (This example assumes, of course, that we’ve told Asterisk to transfer
the calls to the receptionists when callers press 0.)

Contexts are denoted by placing the name of the context inside square brackets ([]).
The name can be made up of the letters A through Z (upper- and lowercase), the num-
bers 0 through 9, and the hyphen and underscore.* For example, a context for incoming
calls looks like this:

[incoming]

* Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in
your context names—you won’t like the result!

120 | Chapter 5: Dialplan Basics

Context names have a maximum length of 79 characters (80 characters
–1 terminating null)

All of the instructions placed after a context definition are part of that context, until
the next context is defined. At the beginning of the dialplan, there are two special
contexts named [general] and [globals]. The [general] section contains a list of gen-
eral dialplan settings (which you’ll probably never have to worry about), and we will
discuss the [globals] context the “Global variables” section; for now it’s just important
to know that these two contexts are special. As long as you avoid the names [gen
eral] and [globals], you may name your contexts anything you like.

When you define a channel (which is how you connect things to the system), one of
the parameters that is defined in the channel definition is the context. In other words,
the context is the point in the dialplan where connections from that channel will begin.

Another important use of contexts (perhaps the most important) is to provide security.
By using contexts correctly, you can give certain callers access to features (such as long-
distance calling) that aren’t made available to others. If you don’t design your dialplan
carefully, you may inadvertently allow others to fraudulently use your system. Please
keep this in mind as you build your Asterisk system.

The doc/ subdirectory of the Asterisk source code contains a very im-
portant file named security.txt, which outlines several steps you should
take to keep your Asterisk system secure. It is vitally important that you
read and understand this file. If you ignore the security precautions
outlined there, you may end up allowing anyone and everyone to make
long-distance or toll calls at your expense!

If you don’t take the security of your Asterisk system seriously, you may
end up paying—literally! Please take the time and effort to secure your
system from toll fraud.

Extensions
In the world of telecommunications, the word extension usually refers to a numeric
identifier given to a line that rings a particular phone. In Asterisk, however, an extension
is far more powerful, as it defines a unique series of steps (each step containing an
application) that Asterisk will take that call through. Within each context, we can define
as many (or few) extensions as required. When a particular extension is triggered (by
an incoming call or by digits being dialed on a channel), Asterisk will follow the steps
defined for that extension. It is the extensions, therefore, that specify what happens to
calls as they make their way through the dialplan. Although extensions can certainly
be used to specify phone extensions in the traditional sense (i.e., extension 153 will

Dialplan Syntax | 121

cause the SIP telephone set on John’s desk to ring), in an Asterisk dialplan, they can be
used for much more.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name (or number) of the extension. When dealing with tradi-
tional telephone systems, we tend to think of extensions as the numbers you would
dial to make another phone ring. In Asterisk, you get a whole lot more; for example,
extension names can be any combination of numbers and letters. Over the course of
this chapter and the next, we’ll use both numeric and alphanumeric extensions.

Assigning names to extensions may seem like a revolutionary concept,
but when you realize that many VoIP transports support (or even ac-
tively encourage) dialing by name or email address instead of only
dialing by number, it makes perfect sense. This is one of the features
that makes Asterisk so flexible and powerful.

A complete extension is composed of three components:

• The name (or number) of the extension

• The priority (each extension can include multiple steps; the step number is called
the “priority”)

• The application (or command) that performs some action on the call

These three components are separated by commas, like this:

exten => name,priority,application()

Here’s a simple example of what a real extension might look like:

exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is
Answer(). Now, let’s move ahead and explain priorities and applications.

Priorities
Each extension can have multiple steps, called priorities. Each priority is numbered
sequentially, starting with 1, and executes one specific application. As an example, the
following extension would answer the phone (in priority number 1), and then hang it
up (in priority number 2):

exten => 123,1,Answer()
exten => 123,2,Hangup()

122 | Chapter 5: Dialplan Basics

Don’t worry if you don’t understand what Answer() and Hangup() are—we’ll cover
them shortly. The key point to remember here is that for a particular extension, Asterisk
follows the priorities in order.

Unnumbered priorities

In older releases of Asterisk, the numbering of priorities caused a lot of problems.
Imagine having an extension that had 15 priorities, and then needing to add something
at step 2. All of the subsequent priorities would have to be manually renumbered.
Asterisk does not handle missing steps or misnumbered priorities, and debugging these
types of errors was pointless and frustrating.

Beginning with version 1.2, Asterisk addressed this problem. It introduced the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority named
n, it takes the number of the previous priority and adds 1. This makes it easier to make
changes to your dialplan, as you don’t have to keep renumbering all your steps. For
example, your dialplan might look something like this:

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Internally, Asterisk will calculate the next priority number every time it encounters an
n.† You should note, however, that you must always specify priority number 1. If you
accidentally put an n instead of 1 for the first priority, you’ll find that the extension will
not be available.

Priority labels

Starting with Asterisk version 1.2 and higher, common practice is to assign text labels
to priorities. This is to ensure that you can refer to a priority by something other than
its number, which probably isn’t known, given that dialplans now generally use un-
numbered priorities. To assign a text label to a priority, simply add the label inside
parentheses after the priority, like this:

exten => 123,n(label),application()

A very common mistake when writing labels is to insert a comma be-
tween the n and the (, like this:

exten => 123,n,(label),application() ;<-- THIS IS NOT GOING TO WORK

This mistake will break that part of your dialplan, and you will get an
error that the application cannot be found.

† Asterisk permits simple arithmetic within the priority, such as n+200 or the priority s (for same), but their
usage is considered to be an advanced topic. Please note that extension s and priority s are two distinct
concepts.

Dialplan Syntax | 123

In the next chapter, we’ll cover how to jump between different priorities based on
dialplan logic. You’ll be seeing a lot more of priority labels, and you will be using them
often in your dialplans.

Applications
Applications are the workhorses of the dialplan. Each application performs a specific
action on the current channel, such as playing a sound, accepting touch-tone input,
dialing a channel, hanging up the call, and so forth. In the previous example, you were
introduced to two simple applications: Answer() and Hangup(). You’ll learn more about
how these work momentarily.

Some applications, such as Answer()and Hangup(), need no other instructions to do their
jobs. Other applications require additional information. These pieces of information,
called arguments, can be passed on to the applications to affect how they perform their
actions. To pass arguments to an application, place them between the parentheses that
follow the application name, separated by commas.

Occasionally, you may also see the pipe character (|) being used as a
separator between arguments, instead of a comma. Feel free to use
whichever you prefer. For the examples in this book, we will be using
the comma to separate arguments to an application, as the authors pre-
fer the look of this syntax. You should be aware, however, that when
Asterisk parses the dialplan, it converts any commas in the application
arguments to pipes.

As we build our first dialplan in the next section, you’ll learn to use applications (and
their associated arguments) to your advantage.

A Simple Dialplan
Now we’re ready to create our first dialplan. We’ll start with a very simple example.
We are going to instruct Asterisk to answer a call, play a sound file, and hang up. We’ll
use this simple example to point out the most important dialplan fundamentals.

For the examples in this chapter to work correctly, we’re assuming that at least one
channel (either Zap, SIP, or IAX2) has been created and configured (as described in the
previous chapter), and that all calls coming into that channel enter the dialplan at the
[incoming] context. If you have been creative with any previous examples, you may
need to make adjustments to fit your particular channel names.

124 | Chapter 5: Dialplan Basics

The s Extension
Because of the technology we are using in our channels, we need to cover one more
thing before we get started with our dialplan. We need to explain extension s. When
calls enter a context without a specific destination extension (for example, a ringing
FXO line), they are passed to the s extension. (The s stands for “start,” as this is where
a call will start if no extension information was passed with the call.)

Since this is exactly what we need for our dialplan, let’s begin to fill in the pieces. We
will be performing three actions on the call (answer it, play a sound file, and hang it
up), so our extension called s will need three priorities. We’ll place the three priorities
below [incoming], because we have decided that all incoming calls should start in this
context.‡

[incoming]
exten => s,1,application()
exten => s,n,application()
exten => s,n,application()

Now all we need to do is fill in the applications, and we’ve created our first dialplan.

Note that we could have numbered each priority as shown below, but
this is no longer the preferred method, as it makes it harder to make
changes to the dialplan at a later time:

[incoming]
exten => s,1,application()
exten => s,2,application()
exten => s,3,application()

The Answer(), Playback(), and Hangup() Applications
If we’re going to answer the call, play a sound file, and then hang up, we’d better learn
how to do just that. The Answer() application is used to answer a channel that is ringing.
This does the initial setup for the channel that receives the incoming call. (A few ap-
plications don’t require that you answer the channel first, but properly answering the
channel before performing any other actions is a very good habit.) As we mentioned
earlier, Answer() takes no arguments.

The Playback() application is used for playing a previously recorded sound file over a
channel. When using the Playback() application, input from the user is simply ignored.

‡ There is nothing special about any context name. We could have named this context
[stuff_that_comes_in], and as long as that was the context assigned in the channel definition in sip.conf,
iax.conf, zaptel.conf, et al., the channel would enter the dialplan in that context. Having said that, it is strongly
recommended that you give your contexts names that help you to understand their purpose. Some good
context names might include [incoming], [local_calls], [long_distance], [sip_telephones], [user_services],
[experimental], [remote_locations], and so forth. Always remember that a context determines how a channel
enters the dialplan, so name accordingly.

A Simple Dialplan | 125

Asterisk comes with many professionally recorded sound files, which
should be found in the default sounds directory (usual-
ly /var/lib/asterisk/sounds/). When you compile Asterisk, you can choose
to install various sets of sample sounds that have been recorded in a
variety of languages and file formats. We’ll be using these files in many
of our examples. Several of the files in our examples come from the Extra
Sound Package, so please take the time to install it (see Chapter 3). You
can also have your own sound prompts recorded in the same voices as
the stock prompts by visiting http://thevoice.digium.com/.

To use Playback(), specify a filename (without a file extension) as the argument. For
example, Playback(filename) would play the sound file called filename.gsm, assuming
it was located in the default sounds directory. Note that you can include the full path
to the file if you want, like this:

Playback(/home/john/sounds/filename)

The previous example would play filename.gsm from the /home/john/sounds/ directory.
You can also use relative paths from the Asterisk sounds directory as follows:

Playback(custom/filename)

This example would play filename.gsm from the custom/ subdirectory of the default
sounds directory (probably /var/lib/asterisk/sounds/custom/filename.gsm). Note that if
the specified directory contains more than one file with that filename but with different
file extensions, Asterisk automatically plays the best file.§

The Hangup() application does exactly as its name implies: it hangs up the active chan-
nel. You should use this application at the end of a context when you want to end the
current call to ensure that callers don’t continue on in the dialplan in a way you might
not have anticipated. The Hangup() application takes no arguments.

Our First Dialplan
Now that we have designed our extension, let’s put together all the pieces to create our
first dialplan. As is typical in many technology books (especially computer program-
ming books), our first example will be called “Hello World!”

In the first priority of our extension, we’ll answer the call. In the second, we’ll play a
sound file named hello-world.gsm, and in the third we’ll hang up the call. Here’s what
the dialplan looks like:

§ Asterisk selects the best file based on translation cost―that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
show translation at the Asterisk command-line interface. The numbers shown represent how many
milliseconds it takes Asterisk to transcode one second of audio. We’ll cover more about the different audio
formats (known as codecs) in Chapter 8.

126 | Chapter 5: Dialplan Basics

http://thevoice.digium.com/

[incoming]
exten => s,1,Answer()
exten => s,n,Playback(hello-world)
exten => s,n,Hangup()

If you have a channel or two configured, go ahead and try it out!‖ Simply create a file
called extensions.conf, (probably in /etc/asterisk) and insert the four lines of dialplan
code we just designed. If it doesn’t work, check the Asterisk console for error messages,
and make sure your channels are assigned to the [incoming] context.

Even though this example is very short and simple, it emphasizes the core concepts of
contexts, extensions, priorities, and applications. If you can get this to work, you have
the fundamental knowledge on which all dialplans are built.

Let’s build upon our example. After all, a phone system that simply plays a sound file
and then hangs up the channel isn’t that useful!

Building an Interactive Dialplan
The dialplan we just built was static; it will always perform the same actions on every
call. We are going to start adding some logic to our dialplan so that it will perform
different actions based on input from the user. To do this, we’re going to need to
introduce a few more applications.

The Background(), WaitExten(), and Goto() Applications
One of the most important keys to building interactive Asterisk dialplans is the Back
ground()# application. Like Playback(), it plays a recorded sound file. Unlike
Playback(), however, when the caller presses a key (or series of keys) on her telephone
keypad, it interrupts the playback and goes to the extension that corresponds with the
pressed digit(s). If a caller presses 5, for example, Asterisk will stop playing the sound
prompt and send control of the call to the first priority of extension 5.

The most common use of the Background() application is to create voice menus (often
called auto-attendants or phone trees). Many companies use voice menus to direct call-
ers to the proper extensions, thus relieving their receptionists from having to answer
every single call.

‖ In fact, if you don’t have any channels configured, now is the time to do so. There is a real satisfaction that
comes from passing your first call into an Asterisk system that you built from scratch. People get this funny
grin on their face as they realize that they have just created a telephone system. This pleasure can be yours
as well, so please, don’t go any further until you have made this little dialplan work.

It should be noted that some people expect that Background(), due to its name, would continue in the dialplan
while the sound is being played, but its name refers to the fact that it is playing a sound in the background,
while waiting for DTMF in the foreground.

Building an Interactive Dialplan | 127

Background() has the same syntax as Playback():

exten => 123,1,Answer()
exten => 123,n,Background(main-menu)

In earlier versions of Asterisk, if the Background() application finished playing the sound
prompt and there were no more priorities in the current extension, Asterisk would sit
and wait for input from the caller. Asterisk no longer does this by default. If you want
Asterisk to wait for input from the caller after the sound prompt has finished playing,
you can call the WaitExten() application. The WaitExten() application waits for the
caller to enter DTMF digits, and is frequently called directly after the Background()
application, like this:

exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()

If you’d like the WaitExten() application to wait a specific number of seconds for a
response (instead of using the default timeout), simply pass the number of seconds as
the first argument to WaitExten(), like this:

exten => 123,n,WaitExten(5)

Both Background() and WaitExten() allow the caller to enter DTMF digits. Asterisk then
attempts to find an extension in the current context that matches the digits that the
caller entered. If Asterisk finds an unambiguous match, it will send the call to that
extension. Let’s demonstrate by adding a few lines to our example:

exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()

exten => 2,1,Playback(digits/2)

exten => 3,1,Playback(digits/3)

exten => 4,1,Playback(digits/4)

If you call into extension 123 in the example above, it will play a sound prompt that
says “main menu.” It will then wait for you to enter either 2, 3, or 4. If you press one
of those digits, Asterisk will read that digit back to you. You’ll also find that if you enter
a different digit (such as 5), it won’t give you what you expected.

It is also possible that Asterisk will find an ambiguous match. This can be easily ex-
plained if we add an extension named 1 to the previous example:

exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()

exten => 1,1,Playback(digits/1)

exten => 2,1,Playback(digits/2)

128 | Chapter 5: Dialplan Basics

exten => 3,1,Playback(digits/3)

exten => 4,1,Playback(digits/4)

Dial extension 123, and then at the main menu prompt dial 1. Why doesn’t Asterisk
immediately read back the number one to you? It’s because the digit 1 is ambiguous;
Asterisk doesn’t know whether you’re trying to go to extension 1 or extension 123. It
waits a few seconds to see if you’re going to dial another digit (such as the 2 in extension
123). If you don’t dial any more digits, Asterisk will eventually time out and send the
call to extension 1. (We’ll learn how to choose our own timeout values in Chapter 6.)

Before going on, let’s review what we’ve done so far. When users call into our dialplan,
they will hear a greeting. If they press 1, they will hear the number one, and if they press
2, they will hear the number two, and so on. While that’s a good start, let’s embellish
it a little. We’ll use the Goto() application to make the dialplan repeat the greeting after
playing back the number.

As its name implies, the Goto() application is used to send the call to another part of
the dialplan. The syntax for the Goto() application requires us to pass the destination
context, extension, and priority on as arguments to the application, like this:

exten => 123,n,Goto(context,extension,priority)

Now, let’s use the Goto() application in our dialplan:

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)

exten => 1,1,Playback(digits/1)
exten => 1,n,Goto(incoming,123,1)

exten => 2,1,Playback(digits/2)
exten => 2,n,Goto(incoming,123,1)

These two new lines (highlighted in bold) will send control of the call back to the 123
extension after playing back the selected number.

If you look up the details of the Goto() application, you’ll find that you
can actually pass either one, two, or three arguments to the application.
If you pass a single argument, Asterisk will assume it’s the destination
priority in the current extension. If you pass two arguments, Asterisk
will treat them as the extension and priority to go to in the current
context.

In this example, we’ve passed all three arguments for the sake of clarity,
but passing just the extension and priority would have had the same
effect.

Building an Interactive Dialplan | 129

Handling Invalid Entries and Timeouts
Now that our first voice menu is starting to come together, let’s add some additional
special extensions. First, we need an extension for invalid entries; when a caller presses
an invalid entry (e.g., pressing 9 in the above example), the call is sent to the i extension.
Second, we need an extension to handle situations when the caller doesn’t give input
in time (the default timeout is 10 seconds). Calls will be sent to the t extension if the
caller takes too long to press a digit after WaitExten() has been called. Here is what our
dialplan will look like after we’ve added these two extensions:

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Playback(digits/1)
exten => 1,n,Goto(incoming,123,1)

exten => 2,1,Playback(digits/2)
exten => 2,n,Goto(incoming,123,1)

exten => 3,1,Playback(digits/3)
exten => 3,n,Goto(incoming,123,1)

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

Using the i and t extensions makes our dialplan a little more robust and user-friendly.
That being said, it is still quite limited, because outside callers have no way of con-
necting to a live person. To do that, we’ll need to learn about another application, called
Dial().

Using the Dial() Application
One of Asterisk’s most valuable features is its ability to connect different callers to each
other. This is especially useful when callers are using different methods of communi-
cation. For example, caller A might be communicating over the traditional analog
telephone network, while user B might be sitting in a café halfway around the world
and speaking on an IP telephone. Luckily, Asterisk takes most of the hard work out of
connecting and translating between disparate networks. All you have to do is learn how
to use the Dial() application.

The syntax of the Dial() application is a little more complex than that of the other
applications we’ve used so far, but don’t let that scare you off. Dial() takes up to four
arguments. The first is the destination you’re attempting to call, which (in its simplest
form) is made up of a technology (or transport) across which to make the call, a forward

130 | Chapter 5: Dialplan Basics

slash, and the remote endpoint or resource. Common technology types include Zap
(for analog and T1/E1/J1 channels), SIP, and IAX2. For example, let’s assume that we
want to call a Zap endpoint identified by Zap/1, which is an FXS channel with an analog
phone plugged into it. The technology is Zap, and the resource is 1. Similarly, a call to
a SIP device (as defined in sip.conf) might have a destination of SIP/Jane, and a call to
an IAX device (defined in iax.conf) might have a destination of IAX2/Fred. If we wanted
Asterisk to ring the Zap/1 channel when extension 123 is reached in the dialplan, we’d
add the following extension:

exten => 123,1,Dial(Zap/1)

We can also dial multiple channels at the same time, by concatenating the destinations
with an ampersand (&), like this:

exten => 123,1,Dial(Zap/1&Zap/2&SIP/Jane)

The Dial() application will ring the specified destinations simultaneously, and bridge
the inbound call with whichever destination channel answers the call first. If the Dial
() application can’t contact any of the destinations, Asterisk will set a variable called
DIALSTATUS with the reason that it couldn’t dial the destinations, and continue on with
the next priority in the extension.*

The Dial() application also allows you to connect to a remote VoIP endpoint not pre-
viously defined in one of the channel configuration files. The full syntax for this type
of connection is:

Dial(technology/user[:password]@remote_host[:port][/remote_extension])

As an example, you can dial into a demonstration server at Digium using the IAX2
protocol by using the following extension:

exten => 500,1,Dial(IAX2/guest@misery.digium.com/s)

The full syntax for the Dial() application is slightly different when dealing with Zap
channels, as shown:

Dial(Zap/[gGrR]channel_or_group[/remote_extension])

For example, here is how you would dial 1-800-555-1212 on Zap channel number 4.

exten => 501,1,Dial(Zap/4/18005551212)

The second argument to the Dial() application is a timeout, specified in seconds. If a
timeout is given, Dial() will attempt to call the destination(s) for that number of sec-
onds before giving up and moving on to the next priority in the extension. If no timeout
is specified, Dial() will continue to dial the called channel(s) until someone answers
or the caller hangs up. Let’s add a timeout of 10 seconds to our extension:

exten => 123,1,Dial(Zap/1,10)

* Don’t worry, we’ll cover variables (in “Using Variables”) and show you how to have your dialplan make
decisions based on the value of this DIALSTATUS variable.

Building an Interactive Dialplan | 131

If the call is answered before the timeout, the channels are bridged and the dialplan is
done. If the destination simply does not answer, is busy, or is otherwise unavailable,
Asterisk will set a variable called DIALSTATUS and then continue on with the next priority
in the extension.

Let’s put what we’ve learned so far into another example:

exten => 123,1,Dial(Zap/1,10)
exten => 123,n,Playback(vm-nobodyavail)
exten => 123,n,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call goes
unanswered.

The third argument to Dial() is an option string. It may contain one or more characters
that modify the behavior of the Dial() application. While the list of possible options
is too long to cover here, one of the most popular options is the m option. If you place
the letter m as the third argument, the calling party will hear hold music instead of
ringing while the destination channel is being called (assuming, of course, that music
on hold has been configured correctly). To add the m option to our last example, we
simply change the first line:

exten => 123,1,Dial(Zap/1,10,m)
exten => 123,n,Playback(vm-nobodyavail)
exten => 123,n,Hangup()

Since the extensions numbered 1 and 2 in our dialplan are somewhat useless now that
we know how to use the Dial() application, let’s replace them with new extensions
that will allow outside callers to reach John and Jane:

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Dial(Zap/1,10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()

exten => 2,1,Dial(SIP/Jane,10)
exten => 2,n,Playback(vm-nobodyavail)
exten => 2,n,Hangup()

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

The fourth and final argument to the Dial() application is a URL. If the destination
channel supports receiving a URL at the time of the call, the specified URL will be sent
(for example, if you have an IP telephone that supports receiving a URL, it will appear

132 | Chapter 5: Dialplan Basics

on the phone’s display; likewise, if you’re using a soft phone, the URL might pop up
on your computer screen). This argument is very rarely used.

Note that the second, third, and fourth arguments may be left blank. For example, if
you want to specify an option but not a timeout, simply leave the timeout argument
blank, like this:

exten => 1,1,Dial(Zap/1,,m)

Adding a Context for Internal Calls
In our examples thus far, we have limited ourselves to a single context, but it is probably
fair to assume that almost all Asterisk installations will have more than one context in
their dialplans. As we mentioned at the beginning of this chapter, one important func-
tion of contexts is to separate privileges (such as making long-distance calls or calling
certain extensions) for different classes of callers. In our next example, we’ll add to our
dialplan by creating two internal phone extensions, and we’ll set up the ability for these
two extensions to call each other. To accomplish this, we’ll create a new context called
[employees].

As in previous examples, we’ve assumed that an FXS analog channel
(Zap/1, in this case) has already been configured, and that your
zapata.conf file is configured so that any calls originated by Zap/1 begin
in the [employees] context. For a few examples at the end of the chapter,
we’ll also assume that an FXO Zap channel has been configured as Zap/
4, with calls coming in on this channel being sent to the [incoming]
context.

We’ve also assumed you have at least one SIP channel (named SIP/
Jane) that is configured to originate in the [employees] context. We’ve
done this to introduce you to using other types of channels.

If you don’t have hardware for the channels listed above (such as Zap/
4), or if you’re using hardware with different channel names (e.g., not
SIP/Jane), just change the examples to match your particular system
configuration.

Our dialplan now looks like this:

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Dial(Zap/1,10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()

exten => 2,1,Dial(SIP/Jane,10)
exten => 2,n,Playback(vm-nobodyavail)

Building an Interactive Dialplan | 133

exten => 2,n,Hangup()

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

[employees]
exten => 101,1,Dial(Zap/1)

exten => 102,1,Dial(SIP/Jane)

In this example, we have added two new extensions to the [employees] context. This
way, the person using channel Zap/1 can pick up the phone and dial the person at
channel SIP/Jane by dialing 102. By that same token, the phone registered as SIP/
Jane can dial Zap/1 by dialing 101.

We’ve arbitrarily decided to use extensions 101 and 102 for our examples, but feel free
to use whatever numbering convention you wish for your extensions. You should also
be aware that you’re not limited to three-digit extensions; you can use as few or as many
digits as you like. (Well, almost. Extensions must be shorter than 80 characters long,
and you shouldn’t use single-character extensions for your own use, as they’re re-
served.) Don’t forget that you can use names as well, like so:

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Dial(Zap/1,10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()

exten => 2,1,Dial(SIP/Jane,10)
exten => 2,n,Playback(vm-nobodyavail)
exten => 2,n,Hangup()

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

[employees]
exten => 101,1,Dial(Zap/1)
exten => john,1,Dial(Zap/1)

exten => 102,1,Dial(SIP/Jane)
exten => jane,1,Dial(SIP/Jane)

It certainly wouldn’t hurt to add named extensions if you think your users might be
dialed via a VoIP protocol such as SIP that supports dialing by name. You can also see

134 | Chapter 5: Dialplan Basics

that it is possible to have different extensions in the dialplan ring the same endpoint.
For example, you could have extension 200 ring SIP/George, and then have extension
201 play a prompt of some kind and then ring SIP/George.

Now that our internal callers can call each other, we’re well on our way toward having
a complete dialplan. Next, we’ll see how we can make our dialplan more scalable and
easier to modify in the future.

Using Variables
Variables can be used in an Asterisk dialplan to help reduce typing, add clarity, or add
additional logic to a dialplan. If you have some computer programming experience,
you probably already understand what a variable is. If not, don’t worry; we’ll explain
what variables are and how they are used.

You can think of a variable as a container that can hold one value at a time. So, for
example, we might create a variable called JOHN and assign it the value of Zap/1. This
way, when we’re writing our dialplan, we can refer to John’s channel by name, instead
of remembering that John is using the channel named Zap/1.

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable, such as JOHN. If, on the other hand, you want to reference
its value, you must type a dollar sign, an opening curly brace, the name of the variable,
and a closing curly brace. Here’s how we’d reference the variable inside the Dial()
application:

exten => 555,1,Dial(${JOHN})

In our dialplan, whenever we write ${JOHN}, Asterisk will automatically replace it with
whatever value has been assigned to the variable named JOHN.

Note that variable names are case-sensitive. A variable named JOHN is
different than a variable named John. For readability’s sake, all the var-
iable names in the examples will be written in uppercase. You should
also be aware that any variables set by Asterisk will be uppercase as well.
Some variables, such as CHANNEL or EXTEN are reserved by Asterisk. You
should not attempt to set these variables.

There are three types of variables we can use in our dialplan: global variables, channel
variables, and environment variables. Let’s take a moment to look at each type.

Global variables

As their name implies, global variables apply to all extensions in all contexts. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan and
several hundred references to the Zap/1 channel. Now imagine you had to go through

Building an Interactive Dialplan | 135

your dialplan and change all of those references to Zap/2. It would be a long and error-
prone process, to say the least.

On the other hand, if you had defined a global variable with the value Zap/1 at the
beginning of your dialplan and then referenced that instead, you would have to change
only one line.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. They can also be defined programmatically, using the GLOBAL()
dialplan function.† Here is an example of how both methods look inside of a dialplan.
The first shows the setting of a global variable named JOHN with a value of Zap/1. This
variable is set at the time Asterisk parses the dialplan. The second example shows how
a global variable can be set in the dialplan. In this case, the variable named George is
being assigned the value of SIP/George when extension 124 is dialed in the [employees]
context:

[globals]
JOHN=Zap/1

[employees]
exten => 124,1,Set(GLOBAL(GEORGE)=SIP/George)

Channel variables

A channel variable is a variable that is associated only with a particular call. Unlike
global variables, channel variables are defined only for the duration of the current call
and are available only to the channels participating in that call.

There are many predefined channel variables available for use within the dialplan,
which are explained in the channelvariables.txt file in the doc subdirectory of the As-
terisk source. Channel variables are set via the Set() application:

exten => 125,1,Set(MAGICNUMBER=42)

We’ll cover many uses for channel variables in Chapter 6.

Environment variables

Environment variables are a way of accessing Unix environment variables from within
Asterisk. These are referenced using the ENV() dialplan function. The syntax looks like
${ENV(var)}, where var is the Unix environment variable you wish to reference. Envi-
ronment variables aren’t commonly used in Asterisk dialplans, but they are available
should you need them.

Adding variables to our dialplan

Now that we’ve learned about variables, let’s put them to work in our dialplan. We’ll
add global variables for two people, John and Jane:

† Don’t worry! We’ll cover dialplan functions in the “Dialplan Functions” section.

136 | Chapter 5: Dialplan Basics

[globals]
JOHN=Zap/1
JANE=SIP/Jane

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Dial(${JOHN},10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()

exten => 2,1,Dial(${JANE},10)
exten => 2,n,Playback(vm-nobodyavail)
exten => 2,n,Hangup()

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

[employees]

exten => 101,1,Dial(${JOHN})
exten => john,1,Dial(${JOHN})

exten => 102,1,Dial(${JANE})
exten => jane,1,Dial(${JANE})

Pattern Matching
If we want to be able to allow people to dial through Asterisk and have Asterisk connect
the caller to an outside resource, we need a way to match on any possible phone number
that the caller might dial. Can you imagine how tedious it would be to manually write
a dialplan with an extension for every possible number you could dial? Luckily, Asterisk
has just the thing for situations like this: pattern matching. Pattern matching allows you
to create one extension in your dialplan that matches many different numbers.

Pattern-matching syntax

When using pattern matching, certain letters and symbols represent what we are trying
to match. Patterns always start with an underscore (_). This tells Asterisk that we’re
matching on a pattern, and not on an explicit extension name. (This means, of course,
that you should never start your extension names with an underscore.)

If you forget the underscore on the front of your pattern, Asterisk will
think it’s just a named extension and won’t do any pattern matching.
This is one of the most common mistakes people make when starting
to learn Asterisk.

Building an Interactive Dialplan | 137

After the underscore, you can use one or more of the following characters.

X
Matches any single digit from 0 to 9.

Z
Matches any single digit from 1 to 9.

N
Matches any single digit from 2 to 9.

[15-7]
Matches a single digit from the range of digits specified. In this case, the pattern
matches a single 1, 5, 6, or 7.

. (period)
Wildcard match; matches one or more characters, no matter what they are.

If you’re not careful, wildcard matches can make your dialplans do
things you’re not expecting (like matching built-in extensions such
as i or h). You should use the wildcard match in a pattern only after
you’ve matched as many other digits as possible. For example, the
following pattern match should probably never be used:

_.

In fact, Asterisk will warn you if you try to use it. Instead, use this
one, if at all possible:

_X.

! (bang)
Wildcard match; matches zero or more characters, no matter what they are.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => _NXX,1,Playback(auth-thankyou)

In this example, the pattern matches any three-digit extension from 200 through 999
(the N matches any digit between 2 and 9, and each X matches a digit between 0 and 9).
That is to say, if a caller dialed any three-digit extension between 200 and 999 in this
context, he would hear the sound file auth-thankyou.gsm.

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one (going from left to right). Say you had defined the following two patterns, and a
caller dialed 555-1212:

exten => _555XXXX,1,Playback(digits/1)
exten => _55512XX,1,Playback(digits/2)

In this case the second extension would be selected, because it is more specific.

138 | Chapter 5: Dialplan Basics

Pattern-matching examples

Before we go on, let’s look at a few more pattern-matching examples. In each one, see
if you can tell what the pattern would match before reading the explanation. We’ll start
with an easy one:

_NXXXXXX

This pattern would match any seven-digit number, as long as the first digit was two or
higher. This pattern would be compatible with any North American Numbering Plan
local seven-digit number. In areas with 10-digit dialing, that pattern would look like
this:

_NXXNXXXXXX

Note that neither of these two patterns would handle long distance calls. We’ll cover
those shortly.

The NANP and Toll Fraud
The North American Number Plan (NANP) is a shared telephone numbering scheme
used by 19 countries in North America and the Caribbean. Countries within NANP
share country code 1.

In the United States and Canada, telecom regulations are similar (and sensible) enough
that you can place a long-distance call to most numbers in country code 1 and expect
to pay a reasonable toll. What many people don’t realize, however, is that 19 countries,
many of which have very different telecom regulations, share the NANP. (More infor-
mation can be found at http://www.nanpa.com.)

One popular scam using the NANP tries to trick naive North Americans into calling
expensive per-minute toll numbers in a Caribbean country; the callers believe that since
they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their standard
national long-distance rate for the call. Since the country in question may have regu-
lations that allow for this form of extortion, the caller is ultimately held responsible for
the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809,
for example) and remove the restrictions only on an as-needed basis.

Let’s try another:

_1NXXNXXXXXX

This one is slightly more difficult. This would match the number 1, followed by an area
code between 200 and 999, then any 7-digit number. In the NANP calling area, you
would use this pattern to match any long-distance number.‡

Now for an even trickier example:

_011.

Building an Interactive Dialplan | 139

http://www.nanpa.com

If that one left you scratching your head, look at it again. Did you notice the period on
the end? This pattern matches any number that starts with 011 and has at least one
more digit. In the NANP, this indicates an international phone number. (We’ll be using
these patterns in the next section to add outbound dialing capabilities to our dialplan.)

Using the ${EXTEN} channel variable

We know what you’re thinking… You’re sitting there asking yourself, “So what happens
if I want to use pattern matching, but I need to know which digits were actually dialed?”
Luckily, Asterisk has just the answer. Whenever you dial an extension, Asterisk sets
the ${EXTEN} channel variable to the digits that were dialed. We can use an application
called SayDigits() to test it out:

exten => _XXX,1,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit ex-
tension you dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits off
the front of the extension. This is accomplished by using the syntax ${EXTEN:x}, where
x is where you want the returned string to start, from left to right. For example, if the
value of EXTEN is 95551212, ${EXTEN:1} equals 5551212. Let’s take a look at another
example:

exten => _XXX,1,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would start at the second digit, and thus
read back only the last two digits of the dialed extension.

More Advanced Digit Manipulation
The ${EXTEN} variable properly has the syntax ${EXTEN:x:y}, where x is the starting
position, and y is the number of digits to return. Given the following dial string:

94169671111

we can extract the following digit strings using the ${EXTEN:x:y} construct:

${EXTEN:1:3} would contain 416.

${EXTEN:4:7} would contain 9671111.

${EXTEN:-4:4} would start four digits from the end, and return four digits, giving us
1111.

‡ If you grew up in North America, you may believe that the 1 you dial before a long distance call is “the long
distance code.” This is incorrect. The number 1 is in fact the international country code for all countries in
NANP. Keep this in mind if you ever send your phone number to someone in another country. They may
not know what your country code is, and thus be unable to call you with just your area code and phone
number. Your full phone number with country code should be printed as +1 NPA NXX XXXX (where NPA
is your area code)―e.g., +1 416 555 1212.

140 | Chapter 5: Dialplan Basics

${EXTEN:1} would give us everything after the first digit, 4169671111 (if the number of
digits to return is left blank, it will return the entire remaining string).

This is a very powerful construct, but most of these variations are not very common in
normal use. For the most part, you will be using ${EXTEN:1} to strip off your external
access code.

Enabling Outbound Dialing
Now that we’ve introduced pattern matching, we can go about the process of allowing
users to make outbound calls. The first thing we’ll do is add a variable to the
[globals] context to define which channel will be used for outbound calls:

[globals]
JOHN=Zap/1
JANE=SIP/Jane
OUTBOUNDTRUNK=Zap/4

Next, we will add contexts to our dialplan for outbound dialing.

You may be asking yourself at this point, “Why do we need separate contexts for out-
bound calls?” This is so that we can regulate and control which callers have permission
to make outbound calls, and which types of outbound calls they are allowed to make.

To begin, let’s create a context for local calls. To be consistent with most traditional
phone switches, we’ll put a 9 on the front of our patterns, so that users have to dial 9
before calling an outside number:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,n,Congestion()
exten => _9NXXXXXX,n,Hangup()

Note that dialing 9 doesn’t actually give you an outside line, unlike with
many traditional PBX systems. Once you dial 9 on an analog line, the
dial tone will stop. If you’d like the dial tone to continue even after
dialing 9, add the following line (right after your context definition):

ignorepat => 9

This directive tells Asterisk to continue to provide a dial tone on an
analog line, even after the caller has dialed the indicated pattern. This
will not work with VoIP telephones, as they usually don’t send digits to
the system as they are input; they are sent to Asterisk all at once. Luckily,
most of the popular VoIP telephones can be configured to emulate the
same functionality.

Let’s review what we’ve just done. We’ve added a global variable called OUTBOUND
TRUNK, which simply defines the channel we are using for outbound calls.§ We’ve also
added a context for local outbound calls. In priority 1, we take the dialed extension,

Building an Interactive Dialplan | 141

strip off the 9 with the ${EXTEN:1} syntax, and then attempt to dial that number on the
channel signified by the variable OUTBOUNDTRUNK. If the call is successful, the caller is
bridged with the outbound channel. If the call is unsuccessful (because either the chan-
nel is busy or the number can’t be dialed for some reason), the Congestion() application
is called, which plays a “fast busy signal” (congestion tone) to let the caller know that
the call was unsuccessful.

Before we go any further, let’s make sure our dialplan allows outbound emergency
numbers:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,n,Congestion()
exten => _9NXXXXXX,n,Hangup()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911) ; So that folks who dial “9”
 ; first will also get through

Again, we’re assuming for the sake of these examples that we’re inside the United States
or Canada. If you’re outside of this area, please replace 911 with the emergency services
number in your particular location. This is something you never want to forget to put
in your dialplan!

Next, let’s add a context for long-distance calls:

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,n,Playtones(congestion)
exten => _91NXXNXXXXXX,n,Hangup()

Now that we have these two new contexts, how do we allow internal users to take
advantage of them? We need a way for contexts to be able to use the functionality
contained in other contexts.

Includes
Asterisk has a feature that enables us to use the extensions from one context within
another context via the include directive. This is used to control access to different
sections of the dialplan. We’ll use the include functionality to allow users in our
[employees] context the ability to make outbound phone calls. But first, let’s cover the
syntax.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

§ The advantage of this is that if one day we decide to send all of our calls through some other channel, we
have to edit the channel name assigned to the variable OUTBOUNDTRUNK only in the [globals] context, instead
of having to manually edit every reference to the channel in our dialplan.

142 | Chapter 5: Dialplan Basics

When we include other contexts within our current context, we have to be mindful of
the order in which we are including them. Asterisk will first try to match the dialed
extension in the current context. If unsuccessful, it will then try the first included con-
text (including any contexts included in that context), and then continue to the other
included contexts in the order in which they were included.

As it sits, our current dialplan has two contexts for outbound calls, but there’s no way
for people in the [employees] context to use them. Let’s remedy that by including the
two outbound contexts in the [employees] context, like this:

[globals]
JOHN=Zap/1
JANE=SIP/Jane
OUTBOUNDTRUNK=Zap/4

[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person)
exten => 123,n,WaitExten()

exten => 1,1,Dial(${JOHN},10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()

exten => 2,1,Dial(${JANE},10)
exten => 2,n,Playback(vm-nobodyavail)
exten => 2,n,Hangup()

exten => i,1,Playback(pbx-invalid)
exten => i,n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
exten => t,n,Hangup()

[employees]
include => outbound-local
include => outbound-long-distance

exten => 101,1,Dial(${JOHN})
exten => john,1,Dial(${JOHN})
exten => 102,1,Dial(${JANE})
exten => jane,1,Dial(${JANE})

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,n,Congestion()
exten => _9NXXXXXX,n,Hangup()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

Building an Interactive Dialplan | 143

exten => _91NXXNXXXXXX,n,Playtones(congestion)
exten => _91NXXNXXXXXX,n,Hangup()

These two include statements make it possible for callers in the [employees] context
to make outbound calls. We should also note that for security’s sake you should always
make sure that your [inbound] context never allows outbound dialing. (If by chance it
did, people could dial into your system and then make outbound toll calls that would
be charged to you!)

Conclusion
And there you have it—a basic but functional dialplan. It’s not exactly fully featured,
but we’ve covered all of the fundamentals. In the following chapters, we’ll continue to
add features to this foundation.

If parts of this dialplan don’t make sense, you may want to go back and re-read a section
or two before continuing on to the next chapter. It’s imperative that you understand
these principles and how to apply them, as the next chapters build on this information.

144 | Chapter 5: Dialplan Basics

CHAPTER 6

More Dialplan Concepts

For a list of all the ways technology has failed to improve
the quality of life, please press three.

—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, but you know there’s more to come.
If you don’t have the last chapter sorted out yet, please go back and give it another read.
We’re about to get into more advanced topics.

Expressions and Variable Manipulation
As we begin our dive into the deeper aspects of dialplans, it is time to introduce you to
a few tools that will greatly add to the power you can exercise in your dialplan. These
constructs add incredible intelligence to your dialplan by enabling it to make decisions
based on different criteria you want to define. Put on your thinking cap, and let’s get
started.

Basic Expressions
Expressions are combinations of variables, operators, and values that you string to-
gether to produce a result. An expression can test values, alter strings, or perform
mathematical calculations. Let’s say we have a variable called COUNT. In plain English,
two expressions using that variable might be “COUNT plus 1” and “COUNT divided by 2.”
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square bracket
and end with a closing square bracket, as shown here:

$[expression]

Thus, we would write the above two examples like this:

$[${COUNT} + 1]
$[${COUNT} / 2]

145

When Asterisk encounters an expression in a dialplan, it replaces the entire expression
with the resulting value. It is important to note that this takes place after variable sub-
stitution. To demonstrate, let’s look at the following code:*

exten => 321,1,Set(COUNT=3)
exten => 321,n,Set(NEWCOUNT=$[${COUNT} + 1])
exten => 321,n,SayNumber(${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one application—Set()—is involved, but three things ac-
tually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expression
effectively becomes this:

exten => 321,n,Set(NEWCOUNT=$[3 + 1])

2. Asterisk evaluates the expression, adding 1 to 3, and replaces it with its computed
value of 4:

exten => 321,n,Set(NEWCOUNT=4)

3. The value 4 is assigned to the NEWCOUNT variable by the Set() application.

The third priority simply invokes the SayNumber() application, which speaks the current
value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

Operators
When you create an Asterisk dialplan, you’re really writing code in a specialized script-
ing language. This means that the Asterisk dialplan—like any programming language
—recognizes symbols called operators that allow you to manipulate variables. Let’s
look at the types of operators that are available in Asterisk:

Boolean operators
These operators evaluate the “truth” of a statement. In computing terms, that es-
sentially refers to whether the statement is something or nothing (nonzero or zero,
true or false, on or off, and so on). The Boolean operators are:

expr1 | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns the
evaluation of expr2.

* Remember that when you reference a variable you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around the variable name.

146 | Chapter 6: More Dialplan Concepts

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expressions
are true (i.e., neither expression evaluates to an empty string or zero). Other-
wise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2
These operators return the results of an integer comparison if both arguments
are integers; otherwise, they return the results of a string comparison. The
result of each comparison is 1 if the specified relation is true, or 0 if the relation
is false. (If you are doing string comparisons, they will be done in a manner
that’s consistent with the current local settings of your operating system.)

Mathematical operators
Want to perform a calculation? You’ll want one of these:

expr1 {+, -} expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator
You can also use the regular expression operator in Asterisk:

expr1 : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.† The regular expression is anchored to the beginning of the string
with an implicit ^.‡

If the match succeeds and the pattern contains at least one regular expression
subexpression—\(... \)—the string corresponding to \1 is returned; other-
wise, the matching operator returns the number of characters matched. If the
match fails and the pattern contains a regular expression subexpression, the
null string is returned; otherwise, 0 is returned.

In Asterisk version 1.0 the parser was quite simple, so it required that you put at least
one space between the operator and any other values. Consequently, the following
might not have worked as expected:

exten => 123,1,Set(TEST=$[2+1])

† For more on regular expressions, grab a copy of the ultimate reference, Jeffrey E.F. Friedl’s
Mastering Regular Expressions (O’Reilly) or visit http://www.regular-expressions.info.

‡ If you don’t know what a ^ has to do with regular expressions, you simply must obtain a copy of
Mastering Regular Expressions. It will change your life!

Expressions and Variable Manipulation | 147

http://www.regular-expressions.info

This would have assigned the variable TEST to the string “2+1”, instead of the value 3.
In order to remedy that, we would put spaces around the operator like so:

exten => 234,1,Set(TEST=$[2 + 1])

This is no longer necessary in Asterisk 1.2 or 1.4 as the expression parser has been made
more forgiving in these types of scenarios, however, for readability’s sake, we still rec-
ommend the spaces around your operators.

To concatenate text onto the beginning or end of a variable, simply place them together
in an expression, like this:

exten => 234,1,Set(NEWTEST=$[blah${TEST}])

Dialplan Functions
Dialplan functions allow you to add more power to your expressions; you can think of
them as intelligent variables. Dialplan functions allow you to calculate string lengths,
dates and times, MD5 checksums, and so on, all from within a dialplan expression.

Syntax
Dialplan functions have the following basic syntax:

FUNCTION_NAME(argument)

Much like variables, you reference a function’s name as above, but you reference a
function’s value with the addition of a dollar sign, an opening curly brace, and a closing
curly brace:

${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:

${FUNCTION_NAME(${FUNCTION_NAME(argument)})}
 ^ ^ ^ ^ ^^^^
 1 2 3 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the above example, we have labeled the
opening parentheses and curly braces with numbers and their corresponding closing
counterparts with the same numbers.

Examples of Dialplan Functions
Functions are often used in conjunction with the Set() application to either get or set
the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument. Let’s calculate the string length of
a variable and read back the length to the caller:

148 | Chapter 6: More Dialplan Concepts

exten => 123,1,Set(TEST=example)
exten => 123,n,SayNumber(${LEN(${TEST})})

The above example would evaluate the string example as having seven characters, assign
the number of characters to the variable length, and then speak the number to the user
with the SayNumber() application.

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one of
three arguments: absolute, digit, and response. To set the digit timeout with the
TIMEOUT() function, we could use the Set() application, like so:

exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value
to a variable, we assign a value to a function without the use of the ${ } encapsulation.

A complete list of available functions can be found by typing core show functions at
the Asterisk command-line interface. You can also look them up in Appendix F.

Conditional Branching
Now that you’ve learned a bit about expressions and functions, it’s time to put them
to use. By using expressions and functions, you can add even more advanced logic to
your dialplan. To allow your dialplan to make decisions, you’ll use
conditional branching. Let’s take a closer look.

The GotoIf() Application
The key to conditional branching is the GotoIf() application. GotoIf() evaluates an
expression and sends the caller to a specific destination based on whether the expres-
sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:

GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to destination1. If the expression
evaluates to false, the caller is sent to the second destination. So, what is true and what
is false? An empty string and the number 0 evaluate as false. Anything else evaluates as
true.

The destinations can each be one of the following:

• A priority label within the same extension, such as weasels

• An extension and a priority label within the same context, such as 123,weasels

• A context, extension, and priority label, such as incoming,123,weasels

Conditional Branching | 149

Either of the destinations may be omitted, but not both. If the omitted destination is
to be followed, Asterisk simply goes on to the next priority in the current extension.

Let’s use GotoIf() in an example:

exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?weasels:iguanas)
exten => 345,n(weasels),Playback(weasels-eaten-phonesys)
exten => 345,n,Hangup()
exten => 345,n(iguanas),Playback(office-iguanas)
exten => 345,n,Hangup()

You will notice that we have used the Hangup() application following
each Playback() application. This is done so that when we jump to the
weasels label, the call stops before execution gets to the office-
iguanas sound file. It is becoming increasingly common to see exten-
sions broken up in to multiple components (protected from each other
by the Hangup() command), each one acting as steps executed following
a GotoIf().

Providing Only a False Conditional Path
If we wanted to, we could have crafted the preceding example like this:

exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?:iguanas) ; we don't have the weasels label anymore,
; but this will still work
exten => 345,n,Playback(weasels-eaten-phonesys)
exten => 345,n,Hangup()
exten => 345,n(iguanas),Playback(office-iguanas)
exten => 345,n,Hangup()

There is nothing between the ? and the :, so if the statement evaluates to true, execution
of the dialplan will continue at the next step. Since that is what we want, a label is not
needed.

We don’t really recommend doing this, because this is hard to read, but you will see
dialplans like this, so it’s good to be aware that this syntax is totally correct.

Typically when you have this type of layout where you end up wanting to limit Asterisk
from falling through to the next priority after you’ve performed that jump, it’s probably
better to jump to separate extensions instead of priority labels. If anything, it makes it
a bit more clear when reading the dialplan. We could rewrite the previous bit of dialplan
like this:

exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?weasels,1:iguanas,1); now we're going to
; extension,priority
exten => weasels,1,Playback(weasels-eaten-phonesys); this is NOT a label.
; It is a different extension
exten => weasels,n,Hangup()

150 | Chapter 6: More Dialplan Concepts

exten => iguanas,1,Playback(office-iguanas)
exten => iguanas,n,Hangup()

By changing the value assigned to TEST in the first line, you should be able to have your
Asterisk server play a different greeting.

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 10 and then hang up:

exten => 123,1,Set(COUNT=10)
exten => 123,n(start),GotoIf($[${COUNT} > 0]?:goodbye)
exten => 123,n,SayNumber(${COUNT})
exten => 123,n,Set(COUNT=$[${COUNT} - 1])
exten => 123,n,Goto(start)
exten => 123,n(goodbye),Hangup()

Let’s analyze this example. In the first priority, we set the variable COUNT to 10. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority. (Don’t
forget that if we omit a destination in the GotoIf() application, control goes to the next
priority.) From there we speak the number, subtract 1 from COUNT, and go back to
priority label start. If COUNT is less than or equal to 0, control goes to priority label
goodbye, and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-girl-
friend logic. If the Caller ID number of the incoming call matches the phone number
of the recipient’s ex-girlfriend, Asterisk gives a different message than it ordinarily
would to any other caller. While somewhat simple and primitive, it’s a good example
for learning about conditional branching within the Asterisk dialplan.

This example uses the CALLERID function, which allows us to retrieve the Caller ID
information on the inbound call. Let’s assume for the sake of this example that the
victim’s phone number is 888-555-1212:

exten => 123,1,GotoIf($[${CALLERID(num)} = 8885551212]?reject:allow)
exten => 123,n(allow),Dial(Zap/4)
exten => 123,n,Hangup()
exten => 123,n(reject),Playback(abandon-all-hope)
exten => 123,n,Hangup()

In priority 1, we call the GotoIf() application. It tells Asterisk to go to priority label
reject if the Caller ID number matches 8885551212, and otherwise to go to priority label
allow (we could have simply omitted the label name, causing the GotoIf() to fall
through). If the Caller ID number matches, control of the call goes to priority label
reject, which plays back an uninspiring message to the undesired caller. Otherwise,
the call attempts to dial the recipient on channel Zap/4.

Time-Based Conditional Branching with GotoIfTime()
Another way to use conditional branching in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do, GotoIf

Conditional Branching | 151

Time() looks at the current system time and uses that to decide whether or not to follow
a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting before
and after normal business hours.

The syntax for the GotoIfTime() application looks like this:

GotoIfTime(times,days_of_week,days_of_month,months?label)

In short, GotoIfTime() sends the call to the specified label if the current date and time
match the criteria specified by times, days_of_week, days_of_month, and months. Let’s
look at each argument in more detail:

times
This is a list of one or more time ranges, in a 24-hour format. As an example, 9:00
A.M. through 5:00 P.M. would be specified as 09:00-17:00. The day starts at 0:00
and ends at 23:59.

It is worth noting that times will properly wrap around. So if you
wish to specify the times your office is closed, you might write
18:00-9:00 in the times parameter, and it will perform as expected.
Note that this technique works as well for the other components
of GotoIfTime. For example, you can write sat-sun to specify the
weekend days.

days_of_week
This is a list of one or more days of the week. The days should be specified as mon,
tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be expressed as
mon-fri. Tuesday and Thursday would be expressed as tue&thu.

Note that you can specify a combination of ranges and single days,
as in: sun-mon&wed&fri-sat, or, more simply: wed&fri-mon.

days_of_month
This is a list of the numerical days of the month. Days are specified by the numbers
1 through 31. The 7th through the 12th would be expressed as 7-12, and the 15th

and 30th of the month would be written as 15&30.

months
This is a list of one or more months of the year. The months should be written as
jan-apr for a range, and separated with ampersands when wanting to include non-
sequencial months, such as jan&mar&jun. You can also combine them like so:
jan-apr&jun&oct-dec.

152 | Chapter 6: More Dialplan Concepts

If you wish to match on all possible values for any of these arguments, simply put an
* in for that argument.

The label argument can be any of the following:

• A priority label within the same extension, such as time_has_passed

• An extension and a priority within the same context, such as 123,time_has_passed

• A context, extension, and priority, such as incoming,123,time_has_passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The following
example would match from 9:00 A.M. to 5:59 P.M., on Monday through Friday, on
any day of the month, in any month of the year:

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s
extension in the context named open. If the call is made outside of the specified times,
it will be sent to the next priority of the current extension. This allows you to easily
branch on multiple times, as shown in the next example (note that you should always
put your most specific time matches before the least specific ones):

; If it's any hour of the day, on any day of the week,
; during the fourth day of the month, in the month of July,
; we're closed
exten => s,1,GotoIfTime(*,*,4,jul?open,s,1)

; During business hours, send calls to the open context
exten => s,n,GotoIfTime(09:00-17:59|mon-fri|*|*?open,s,1)
exten => s,n,GotoIfTime(09:00-11:59|sat|*|*?open,s,1)

; Otherwise, we're closed
exten => s,n,Goto(closed,s,1)

If you run into the situation where you ask the question, “But I specified
17:58 and it’s now 17:59. Why is it still doing the same thing?” it should
be noted that the granularity of the GotoIfTime() application is only to
a two-minute period. So if you specify 18:00 as the ending time of a
period, the system will continue to perform the same way for an addi-
tional minute, until 18:01:59.

Voicemail
One of the most popular (or, arguably, unpopular) features of any modern telephone
system is voicemail. Naturally, Asterisk has a reasonably flexible voicemail system.
Some of the features of Asterisk’s voicemail system include:

• Unlimited password-protected voicemail boxes, each containing mailbox folders
for organizing voicemail

• Different greetings for busy and unavailable states

Voicemail | 153

• Default and custom greetings

• The ability to associate phones with more than one mailbox and mailboxes with
more than one phone

• Email notification of voicemail, with the voicemail optionally attached as a sound
file§

• Voicemail forwarding and broadcasts

• Message-waiting indicator (flashing light or stuttered dial tone) on many types of
phones

• Company directory of employees, based on voicemail boxes

And that’s just the tip of the iceberg! In this section, we’ll introduce you to the funda-
mentals of a typical voicemail setup.

The voicemail configuration is defined in the configuration file called voicemail.conf.
This file contains an assortment of settings that you can use to customize the voicemail
system to your needs. Covering all of the available options in voicemail.conf would be
beyond the scope of this chapter, but the sample configuration file is well documented
and quite easy to follow. For now, look near the bottom of the file, where voicemail
contexts and voicemail boxes are defined.

Just as dialplan contexts keep different parts of your dialplan separate, voicemail con-
texts allow you to define different sets of mailboxes that are separate from one another.
This allows you to host voicemail for several different companies or offices on the same
server. Voicemail contexts are defined in the same way as dialplan contexts, with square
brackets surrounding the name of the context. For our examples, we’ll be using the
[default] voicemail context.

Creating Mailboxes
Inside each voicemail context, we define different mailboxes. The syntax for defining
a mailbox is:

mailbox => password,name[,email[,pager_email[,options]]]

Let’s explain what each part of the mailbox definition does:

mailbox
This is the mailbox number. It usually corresponds with the extension number of
the associated set.

password
This is the numeric password that the mailbox owner will use to access her voice-
mail. If the user changes her password, the system will update this field in the
voicemail.conf file.

§ No, you really don’t have to pay for this—and yes, it really does work.

154 | Chapter 6: More Dialplan Concepts

name
This is the name of the mailbox owner. The company directory uses the text in this
field to allow callers to spell usernames.

email
This is the email address of the mailbox owner. Asterisk can send voicemail noti-
fications (including the voicemail message itself) to the specified email box.

pager_email
This is the email address of the mailbox owner’s pager or cell phone. Asterisk can
send a short voicemail notification message to the specified email address.

options
This field is a list of options that sets the mailbox owner’s time zone and overrides
the global voicemail settings. There are nine valid options: attach, serveremail, tz,
saycid, review, operator, callback, dialout, and exitcontext. These options
should be in option = value pairs, separated by the pipe character (|). The tz op-
tion sets the user’s time zone to a time zone previously defined in the [zonemes
sages] section of voicemail.conf, and the other eight options override the global
voicemail settings with the same names.

A typical mailbox definition might look something like this:

101 => 1234,Joe Public,jpublic@somedomain.com,jpublic@pagergateway.net,
tz=central|attach=yes

Continuing with our dialplan from the last chapter, let’s set up voicemail boxes for
John and Jane. We’ll give John a password of 1234 and Jane a password of 4444 (re-
member, these go in voicemail.conf, not in extensions.conf):

[default]
101 => 1234,John Doe,john@asteriskdocs.org,jdoe@pagergateway.tld
102 => 4444,Jane Doe,jane@asteriskdocs.org,jane@pagergateway.tld

Adding Voicemail to the Dialplan
Now that we’ve created mailboxes for Jane and John, let’s allow callers to leave mes-
sages for them if they don’t answer the phone. To do this, we’ll use the VoiceMail()
application.

The VoiceMail() application sends the caller to the specified mailbox, so that he can
leave a message. The mailbox should be specified as mailbox @ context, where con-
text is the name of the voicemail context. The option letters b or u can be added to
request the type of greeting. If the letter b is used, the caller will hear the mailbox owner’s
busy message. If the letter u is used, the caller will hear the mailbox owner’s
unavailable message (if one exists).

Let’s use this in our sample dialplan. Previously, we had a line like this in our
[internal] context, which allowed us to call John:

exten => 101,1,Dial(${JOHN})

Voicemail | 155

Next, let’s add an unavailable message that the caller will be played if John doesn’t
answer the phone within 10 seconds. Remember, the second argument to the Dial()
application is a timeout. If the call is not answered before the timeout expires, the call
is sent to the next priority. Let’s add a 10-second timeout, and a priority to send the
caller to voicemail if John doesn’t answer in time:

exten => 101,1,Dial(${JOHN},10)
exten => 101,n,VoiceMail(101@default,u)

Now, let’s change it so that if John is busy (on another call), it’ll send us to his voicemail,
where we’ll hear his busy message. To do this, we will make use of the ${DIALSTATUS}
variable which contains one of several status values (see core show application dial
at the Asterisk console for a listing of all the possible values):

exten => 101,1,Dial(${JOHN},10)
exten => 101,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => 101,n(unavail),Voicemail(101@default,u)
exten => 101,n,Hangup()
exten => 101,n(busy),VoiceMail(101@default,b)
exten => 101,n,Hangup()

Now callers will get John’s voicemail (with the appropriate greeting) if John is either
busy or unavailable. A slight problem remains, however, in that John has no way of
retrieving his messages. Let’s remedy that.

Accessing Voicemail
Users can retrieve their voicemail messages, change their voicemail options, and record
their voicemail greetings by using the VoiceMailMain() application. In its typical form,
VoiceMailMain() is called without any arguments. Let’s add extension 700 to the
[internal] context of our dialplan so that internal users can dial it to access their voi-
cemail messages:

exten => 700,1,VoiceMailMain()

Creating a Dial-by-Name Directory
One last feature of the Asterisk voicemail system we should cover is the dial-by-name
directory. This is created with the Directory() application. This application uses the
names defined in the mailboxes in voicemail.conf to present the caller with a dial-by-
name directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read the
names, the optional dialplan context in which to dial the user, and an option string
(which is also optional). By default, Directory() searches for the user by last name, but
passing the f option forces it to search by first name instead. Let’s add two dial-by-
name directories to the [incoming] context of our sample dialplan, so that callers can
search by either first or last name:

156 | Chapter 6: More Dialplan Concepts

exten => 8,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming)

If callers press 8, they’ll get a directory by first name. If they dial 9, they’ll get the
directory by last name.

Macros
Macros‖ are a very useful construct designed to avoid repetition in the dialplan. They
also help in making changes to the dialplan. To illustrate this point, let’s look at our
sample dialplan again. If you remember the changes we made for voicemail, we ended
up with the following for John’s extension:

exten => 101,1,Dial(${JOHN},10)
exten => 101,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => 101,n(unavail),Voicemail(101@default,u)
exten => 101,n,Hangup()
exten => 101,n(busy),VoiceMail(101@default,b)
exten => 101,n,Hangup()

Now imagine you have a hundred users on your Asterisk system—setting up the ex-
tensions would involve a lot of copying and pasting. Then imagine that you need to
make a change to the way your extensions work. That would involve a lot of editing,
and you’d be almost certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all
of the phone extensions refer to that macro. All you need to change is the macro, and
everything in the dialplan that references that macro will change as well.

If you’re familiar with computer programming, you’ll recognize that
macros are similar to subroutines in many modern programming lan-
guages. If you’re not familiar with computer programming, don’t worry
—we’ll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let’s move right along.

‖ Although Macro seems like a general-purpose dialplan subroutine, it has a stack overflow problem that means
you should not try to nest Macro calls more than five levels deep. As of this writing, we do not know whether
the Macro application will be patched for 1.4, or if it will be rewritten for future versions. If you plan to do a
lot of macros within macros (and call complex functions within them), you may run into stability problems.
You will know you have a problem with just one test call, so if your dialplan tests out, you’re good to go. We
also recommend that you take a look at the Gosub and Return applications, as a lot of macro functionality can
be implemented without actually using Macro(). Also, please note that we are not suggesting that you don’t
use Macro(). It is fantastic and works very well; it just doesn’t nest efficiently.

Macros | 157

Defining Macros
Let’s take the dialplan logic we used above to set up voicemail for John and turn it into
a macro. Then we’ll use the macro to give John and Jane (and the rest of their coworkers)
the same functionality.

Macro definitions look a lot like contexts. (In fact, you could argue that they really are
small, limited contexts.) You define a macro by placing macro- and the name of your
macro in square brackets, like this:

[macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts.
The commands within the macro are built almost identically to anything else in the
dialplan; the only limiting factor is that macros use only the s extension. Let’s add our
voicemail logic to the macro, changing the extension to s as we go:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => s,n(unavail),Voicemail(101@default,u)
exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(101@default,b)
exten => s,n,Hangup()

That’s a start, but it’s not perfect, as it’s still specific to John and his mailbox number.
To make the macro generic so that it will work not only for John but also for all of his
coworkers, we’ll take advantage of another property of macros: arguments. But first,
let’s see how we call macros in our dialplan.

Calling Macros from the Dialplan
To use a macro in our dialplan, we use the Macro() application. This application calls
the specified macro and passes it any arguments. For example, to call our voicemail
macro from our dialplan, we can do the following:

exten => 101,1,Macro(voicemail)

The Macro() application also defines several special variables for our use. They include:

${MACRO_CONTEXT}
The original context in which the macro was called.

${MACRO_EXTEN}
The original extension in which the macro was called.

${MACRO_PRIORITY}
The original priority in which the macro was called.

${ARG n }
The nth argument passed to the macro. For example, the first argument would be
${ARG1}, the second ${ARG2}, and so on.

158 | Chapter 6: More Dialplan Concepts

As we explained earlier, the way we initially defined our macro was hardcoded for John,
instead of being generic. Let’s change our macro to use ${MACRO_EXTEN} instead of 101
for the mailbox number. That way, if we call the macro from extension 101 the voice-
mail messages will go to mailbox 101, and if we call the macro from extension 102
messages will go to mailbox 102, and so on:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => s,n(unavail),Voicemail(${MACRO_EXTEN}@default,u)
exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(${MACRO_EXTEN}@default,b)
exten => s,n,Hangup()

Using Arguments in Macros
Okay, now we’re getting closer to having the macro the way we want it, but we still
have one thing left to change; we need to pass in the channel to dial, as it’s currently
still hardcoded for ${JOHN} (remember that we defined the variable JOHN as the channel
to call when we want to reach John). Let’s pass in the channel as an argument, and
then our first macro will be complete:

[macro-voicemail]
exten => s,1,Dial(${ARG1},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => s,n(unavail),Voicemail(${MCARO_EXTEN}@default,u)
exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(${MCARO_EXTEN}@default,b)
exten => s,n,Hangup()

Now that our macro is done, we can use it in our dialplan. Here’s how we can call our
macro to provide voicemail to John, Jane, and Jack:

exten => 101,1,Macro(voicemail,${JOHN})
exten => 102,1,Macro(voicemail,${JANE})
exten => 103,1,Macro(voicemail,${JACK})

With 50 or more users, this dialplan will still look neat and organized; we’ll simply
have one line per user, referencing a macro that can be as complicated as required. We
could even have a few different macros for various user types, such as executives,
courtesy_phones, call_center_agents, analog_sets, sales_department, and so on.

A more advanced version of the macro might look something like this:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
exten => s,n,Goto(s-${DIALSTATUS},1)
exten => s-NOANSWER,1,Voicemail(${MACRO_EXTEN},u)
exten => s-NOANSWER,n,Goto(incoming,s,1)
exten => s-BUSY,1,Voicemail(${MACRO_EXTEN},b)
exten => s-BUSY,n,Goto(incoming,s,1)
exten => _s-.,1,Goto(s-NOANSWER,1)

Macros | 159

This macro depends on a nice side effect of the Dial() application: when you use the
Dial() application, it sets the DIALSTATUS variable to indicate whether the call was suc-
cessful or not. In this case, we’re handling the NOANSWER and BUSY cases, and treating all
other result codes as a NOANSWER.

Using the Asterisk Database (AstDB)
Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values called the Asterisk database
(AstDB). The AstDB provides a simple way to store data for use within your dialplan.

For those of you with experience using relational databases such as
PostgreSQL or MySQL, the Asterisk database is not a traditional rela-
tional database. It is a Berkeley DB Version 1 database. There are several
ways to store data from Asterisk in a relational database. Check out
Chapter 12 for a more about relational databases.

The Asterisk database stores its data in groupings called families, with values identified
by keys. Within a family, a key may be used only once. For example, if we had a family
called test, we could store only one value with a key called count. Each stored value
must be associated with a family.

Storing Data in the AstDB
To store a new value in the Asterisk database, we use the Set() application,# but instead
of using it to set a channel variable, we use it to set an AstDB variable. For example, to
assign the count key in the test family with the value of 1, write the following:

exten => 456,1,Set(DB(test/count)=1)

If a key named count already exists in the test family, its value will be overwritten with
the new value. You can also store values from the Asterisk command line, by running
the command database put family key value. For our example, you would type data
base put test count 1.

Retrieving Data from the AstDB
To retrieve a value from the Asterisk database and assign it to a variable, we use the
Set() application again. Let’s retrieve the value of count (again, from the test family),
assign it to a variable called COUNT, and then speak the value to the caller:

Previous versions of Asterisk had applications called DBput() and DBget() that were used to set values in and
retrieve values from the AstDB. If you’re using an old version of Asterisk, you’ll want to use those applications
instead.

160 | Chapter 6: More Dialplan Concepts

exten => 456,1,Set(DB(test/count)=1)
exten => 456,n,Set(COUNT=${DB(test/count)})
exten => 456,n,SayNumber(${COUNT})

You may also check the value of a given key from the Asterisk command line by running
the command database get family key. To view the entire contents of the AstDB, use
the database show command.

Deleting Data from the AstDB
There are two ways to delete data from the Asterisk database. To delete a key, you can
use the DB_DELETE() application. It takes the path to the key as its arguments, like this:

; deletes the key and returns its value in one step
exten => 457,1,Verbose(0, The value was ${DB_DELETE(test/count)})

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument―the name of the key family―to delete.
To delete the entire test family, do the following:

exten => 457,1,DBdeltree(test)

To delete keys and key families from the AstDB via the command-line interface, use
the database del key and database deltree family commands, respectively.

Using the AstDB in the Dialplan
There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll show two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (meaning that it survives sys-
tem reboots). In the second example, we’ll use the BLACKLIST() function to evaluate
whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count key)
from the database and assign it to a variable named COUNT. If the key doesn’t exist, DB
() will return NULL (no value). In order to verify if a value exists in the database or
not, we will introduce the ISNULL() function that will verify whether a value was re-
turned, and if not, we will initialize the AstDB with the Set() application, where we
will set the value in the database to 1. The next priority will send us back to priority 1.
This will happen the very first time we dial this extension:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()

Next, we’ll say the current value of COUNT, and then increment COUNT:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)

Using the Asterisk Database (AstDB) | 161

exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1])

Now that we’ve incremented COUNT, let’s put the new value back into the database.
Remember that storing a value for an existing key overwrites the previous value:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1])
exten => 678,n,Set(DB(test/count)=${COUNT})

Finally, we’ll loop back to the first priority. This way, the application will continue
counting:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1]
exten => 678,n,Set(DB(test/count)=${COUNT})
exten => 678,n,Goto(1)

Go ahead and try this example. Listen to it count for a while, and then hang up. When
you dial this extension again, it should continue counting from where it left off. The
value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we’ll create dialplan logic around the BLACKLIST() function, which
checks to see if the current Caller ID number exists in the blacklist. (The blacklist is
simply a family called blacklist in the AstDB.) If BLACKLIST() finds the number in the
blacklist, it returns the value 1, otherwise it will return 0. We can use these values in
combination with a GotoIf() to control whether the call will execute the Dial()
application:

exten => 124,1,GotoIf($[${BLACKLIST()]?blocked,1)
exten => 124,n,Dial(${JOHN})

exten => blocked,1,Playback(privacy-you-are-blacklisted)
exten => blocked,n,Playback(vm-goodbye)
exten => blocked,n,Hangup()

To add a number to the blacklist, run the database put blacklist number 1 command
from the Asterisk command-line interface.

162 | Chapter 6: More Dialplan Concepts

Handy Asterisk Features
Now that we’ve gone over some more of the basics, let’s look at a few popular functions
that have been incorporated into Asterisk.

Zapateller()
Zapateller() is a simple Asterisk application that plays a special information tone at
the beginning of a call, which causes auto-dialers (usually used by telemarketers) to
think that the line has been disconnected. Not only will they hang up, but their systems
will flag your number as out of service, which could help you avoid all kinds of tele-
marketing calls. To use this functionality within your dialplan, simply call the
Zapateller() application.

We’ll also use the optional nocallerid option so that the tone will be played only when
there is no Caller ID information on the incoming call. For example, you might use
Zapateller() in the s extension of your [incoming] context, like this:

[incomimg]
exten => s,1,Zapateller(nocallerid)
exten => s,n,Playback(enter-ext-of-person)

Call Parking
Another handy feature is called call parking. Call parking allows you to place a call on
hold in a “parking lot,” so that it can be taken off hold from another extension. Pa-
rameters for call parking (such as the extensions to use, the number of spaces, and so
on) are all controlled within the features.conf configuration file. The [general] section
of the features.conf file contains four settings related to call parking:

parkext
This is the parking lot extension. Transfer a call to this extension, and the system
will tell you which parking position the call is in. By default, the parking extension
is 700.

parkpos
This option defines the number of parking slots. For example, setting it to
701-720 creates 20 parking positions, numbered 701 through 720.

context
This is the name of the parking context. To be able to park calls, you must include
this context.

parkingtime
If set, this option controls how long (in seconds) a call can stay in the parking lot.
If the call isn’t picked up within the specified time, the extension that parked the
call will be called back.

Handy Asterisk Features | 163

You must restart Asterisk after editing features.conf, as the file is read
only on startup. Running the reload command will not cause the
features.conf file to be read.

Also note that because the user needs to be able to transfer the calls to the parking lot
extension, you should make sure you’re using the t and/or T options to the Dial()
application.

So, let’s create a simple dialplan to show off call parking:

[incoming]
include => parkedcalls

exten => 103,1,Dial(SIP/Bob,,tT)
exten => 104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials
extension 103 to reach Bob. After a while, Bob transfers the call to extension 700, which
tells him that the call from Alice has been parked in position 701. Bob then dials Charlie
at extension 104, and tells him that Alice is at extension 701. Charlie then dials exten-
sion 701 and begins to talk to Alice. This is a simple and effective way of allowing callers
to be transferred between users.

The t and T arguments to Dial() are not needed on all channel types.
For example, many SIP phones implement this via a softkey or hardkey
and utilize SIP signaling.

Conferencing with MeetMe()
Last but not least, let’s cover setting up an audio conference bridge with the MeetMe()
application.* This application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

• The ability to create password-protected conferences

• Conference administration (mute conference, lock conference, kick participants)

• The option of muting all but one participant (useful for company announcements,
broadcasts, etc.)

• Static or dynamic conference creation

Let’s walk through setting up a basic conference room. The configuration options for
the MeetMe conferencing system are found in meetme.conf. Inside the configuration
file, you define conference rooms and optional numeric passwords. (If a password is

* In the world of legacy PBXes, this type of functionality is very expensive. Either you have to pay big bucks
for a dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

164 | Chapter 6: More Dialplan Concepts

defined here, it will be required to enter all conferences using that room.) For our
example, let’s set up a conference room at extension 600. First, we’ll set up the con-
ference room in meetme.conf. We’ll call it 600, and we won’t assign a password at this
time:

[rooms]
conf => 600

Now that the configuration file is complete, we’ll need to restart Asterisk so that it can
reread the meetme.conf file. Next, we’ll add support for the conference room to our
dialplan with the MeetMe() application. MeetMe() takes three arguments: the name of
the conference room (as defined in meetme.conf), a set of options, and the password
the user must enter to join this conference. Let’s set up a simple conference using room
600, the i option (which announces when people enter and exit the conference), and a
password of 54321:

exten => 600,1,MeetMe(600,i,54321)

That’s all there is to it! When callers enter extension 600, they will be prompted for the
password. If they correctly enter 54321, they will be added to the conference. See Ap-
pendix B for a list of all the options supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application
counts the number of users in a particular conference room. It takes up to two
arguments: the conference room in which to count the number of participants, and
optionally a variable name to assign the count to. If the variable name is not passed as
the second argument, the count is read to the caller:

exten => 601,1,Playback(conf-thereare)
exten => 601,n,MeetMeCount(600)
exten => 601,n,Playback(conf-peopleinconf)

If you pass a variable as the second argument to MeetMeCount(), the count is assigned
to the variable, and playback of the count is skipped. You might use this to limit the
number of participants, like this:

; limit the conference room to 10 participants
exten => 600,1,MeetMeCount(600,CONFCOUNT)
exten => 600,n,GotoIf($[${CONFCOUNT} <= 10]?meetme:conf_full,1)
exten => 600,n(meetme),MeetMe(600,i,54321)

exten => conf_full,1,Playback(conf-full)

Isn’t Asterisk fun?

Conclusion
In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you the seeds from which you can explore the
creation of your own dialplans. As with the previous chapter, we invite you to go back
and reread any sections that require clarification.

Conclusion | 165

The following chapters take us away from Asterisk for a bit, in order to talk about some
of the technologies that all telephone systems use. We’ll be referring to Asterisk a lot,
but much of what we want to discuss are things that are common to many telecom
systems.

166 | Chapter 6: More Dialplan Concepts

CHAPTER 7

Understanding Telephony

Utility is when you have one telephone, luxury is when
you have two, opulence is when you have three—and

paradise is when you have none.

—Doug Larson

We’re now going to take a break from Asterisk for a chapter or two, because we want
to spend some time discussing the technologies with which your Asterisk system will
need to interface. In this chapter, we are going to talk about some of the technologies
of the traditional telephone network—especially those that people most commonly
want to connect to Asterisk. (We’ll discuss Voice over IP in the next chapter.)

While tomes could be written about the technologies in use in telecom networks, the
material in this chapter was chosen based on our experiences in the community, which
helped us to define the specific items that might be most useful. Although this knowl-
edge may not be strictly required in order to configure your Asterisk system, it will be
of great benefit when interconnecting to systems (and talking with people) from the
world of traditional telecommunications.

Analog Telephony
The purpose of the Public Switched Telephone Network (PSTN) is to establish and
maintain audio connections between two endpoints in order to carry speech.

Although humans can perceive sound vibrations in the range of 20–20,000 Hz,* most
of the sounds we make when speaking tend to be in the range of 250–3,000 Hz. Since
the purpose of the telephone network is to transmit the sounds of people speaking, it

* If you want to play around with what different frequencies look like on an oscilloscope, grab a copy of Sound
Frequency Analyzer, from Reliable Software. It’s a really simple and fun way to visualize what sounds “look”
like. The spectrograph gives a good picture of the complex harmonics our voices can generate, as well as an
appreciation for the background sounds that always surround us. You should also try the delightfully
annoying NCH Tone Generator, from NCH Swift Sound.

167

was designed with a bandwidth of somewhere in the range of 300–3,500 Hz. This
limited bandwidth means that some sound quality will be lost (as anyone who’s had
to listen to music on hold can attest to), especially in the higher frequencies.

Parts of an Analog Telephone
An analog phone is composed of five parts: the ringer, the dial pad, the hybrid (or
network), and the hook switch and handset (both of which are considered parts of the
hybrid). The ringer, the dial pad, and the hybrid can operate completely independently
of one another.

Ringer

When the central office (CO) wants to signal an incoming call, it will connect an al-
ternating current (AC) signal of roughly 90 volts to your circuit. This will cause the bell
in your telephone to produce a ringing sound. (In electronic telephones, this ringer may
be a small electronic warbler rather than a bell. Ultimately, a ringer can be anything
that is capable of reacting to the ringing voltage; for example, strobe lights are often
employed in noisy environments such as factories.)

Ringing voltage can be hazardous. Be very careful to take precautions
when working with an in-service telephone line.

Many people confuse the AC voltage that triggers the ringer with the direct current
(DC) voltage that powers the phone. Remember that a ringer needs an alternating cur-
rent in order to oscillate (just as a church bell won’t ring if you don’t supply the
movement), and you’ve got it.

In North America, the number of ringers you can connect to your line is dependent on
the Ringer Equivalence Number (REN) of your various devices. (The REN must be
listed on each device.) The total REN for all devices connected to your line cannot
exceed 5.0. An REN of 1.0 is equivalent to an old-fashioned analog set with an elec-
tromechanical ringer. Some electronic phones have an REN of 0.3 or even less. If you
connect too many devices that require too much current, you will find that none of
them will be able to ring.

Dial pad

When you place a telephone call, you need some way of letting the network know the
address of the party you wish to reach. The dial pad is the portion of the phone that
provides this functionality. In the early days of the PSTN, dial pads were in fact rotary
devices that used pulses to indicate digits. This was a rather slow process, so the tele-
phone companies eventually introduced touch-tone dialing. With touch-tone—also

168 | Chapter 7: Understanding Telephony

known as Dual-Tone Multi Frequency (DTMF)—dialing, the dial pad consists of 12
buttons. Each button has two frequencies assigned to it (see Table 7-1).

Table 7-1. DTMF digits

 1209 Hz 1336 Hz 1477 Hz 1633 Hz a

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

a Notice that this column contains letters that are not typically present as keys on a telephone dial pad. They are part of the DTMF standard
nonetheless, and any proper telephone contains the electronics required to create them, even if it doesn’t contain the buttons themselves.
(These buttons actually do exist on some telephones, which are mostly used in military and government applications.)

When you press a button on your dial pad, the two corresponding frequencies are
transmitted down the line. The far end can interpret these frequencies and note which
digit was pressed.

Hybrid (or network)

The hybrid is a type of transformer that handles the need to combine the signals trans-
mitted and received across a single pair of wires in the PSTN and two pairs of wires in
the handset. One of the functions the hybrid performs is regulating sidetone, which is
the amount of your transmitted signal that is returned to your earpiece; its purpose is
to provide a more natural-sounding conversation. Too much sidetone, and your voice
will sound too loud; too little, and you’ll think the line has gone dead.

This device signals the state of the telephone circuit to the CO.
When you pick up your telephone, the hook switch closes the loop between you and
the CO, which is seen as a request for a dial tone. When you hang up, the hook switch
opens the circuit, which indicates that the call has ended.†

The hook switch can also be used for signaling purposes. Some electronic analog
phones have a button labeled Link that causes an event called a flash. You can perform
a flash manually by depressing the hook switch for a duration of between 200 and 1,200
milliseconds. If you leave it down for longer than that, the carrier may assume you’ve
hung up. The purpose of the Link button is to handle this timing for you. If you’ve ever
used call waiting or three-way calling on an analog line, you have performed a hook
switch flash for the purpose of signaling the network.

Hook switch (or switch hook).

† When referring to the state of an analog circuit, people often speak in terms of “off-hook” and “on-hook.”
When your line is “off-hook,” your telephone is “on” a call. If your phone is “on-hook,” the telephone is
essentially “off,” or idle.

Analog Telephony | 169

The handset is composed of the transmitter and receiver. It performs the con-
version between the sound energy humans use and the electrical energy the telephone
network uses.

Tip and Ring
In an analog telephone circuit, there are two wires. In North America, these wires are
referred to as Tip and Ring.‡ This terminology comes from the days when telephone
calls were connected by live operators sitting at cord boards. The plugs that they used
had two contacts―one located at the tip of the plug and the other connected to the ring
around the middle (Figure 7-1).

The Tip lead is the positive polarity wire. In North America, this wire is typically green
and provides the return path. The Ring wire is the negative polarity wire. In North
America, this wire is normally red. For modern Cat 5 and 6 cables, the Tip is usually
the white wire, and Ring is the coloured wire. When your telephone is on-hook, this
wire will have a potential of –48V DC with respect to Tip. Off-hook, this voltage drops
to roughly –7V DC.

Digital Telephony
Analog telephony is almost dead.

In the PSTN, the famous Last Mile is the final remaining piece of the telephone network
still using technology pioneered well over a hundred years ago.§

One of the primary challenges when transmitting analog signals is that all sorts of things
can interfere with those signals, causing low volume, static, and all manner of other
undesired effects. Instead of trying to preserve an analog waveform over distances that
may span thousands of miles, why not simply measure the characteristics of the original

Handset.

‡ They may have other names elsewhere in the world (such as “A” and “B”).

§ “The Last Mile” is a term that was originally used to describe the only portion of the PSTN that had not been
converted to fiber optics: the connection between the central office and the customer. The Last Mile is more
than that, however, as it also has significance as a valuable asset of the traditional phone companies; they
own a connection into your home. The Last Mile is becoming more and more difficult to describe in technical
terms, as there are now so many ways to connect the network to the customer. As a thing of strategic value
to telecom, cable, and other utilities, its importance is obvious.

Ring Tip

Figure 7-1. Tip and Ring

170 | Chapter 7: Understanding Telephony

sound and send that information to the far end? The original waveform wouldn’t get
there, but all the information needed to reconstruct it would.

This is the principle of all digital audio (including telephony): sample the characteristics
of the source waveform, store the measured information, and send that data to the far
end. Then, at the far end, use the transmitted information to generate a completely new
audio signal that has the same characteristics as the original. The reproduction is so
good that the human ear can’t tell the difference.

The principle advantage of digital audio is that the sampled data can be mathematically
checked for errors all along the route to its destination, ensuring that a perfect duplicate
of the original arrives at the far end. Distance no longer affects quality, and interference
can be detected and eliminated.

Pulse-Code Modulation
There are several ways to digitally encode audio, but the most common method (and
the one used in telephony systems) is known as Pulse-Code Modulation (PCM). To
illustrate how this works, let’s go through a few examples.

Digitally encoding an analog waveform

The principle of PCM is that the amplitude‖of the analog waveform is sampled at spe-
cific intervals so that it can later be re-created. The amount of detail that is captured is
dependent both on the bit resolution of each sample and on how frequently the samples
are taken. A higher bit resolution and a higher sampling rate will provide greater ac-
curacy, but more bandwidth will be required to transmit this more detailed informa-
tion.

To get a better idea of how PCM works, consider the waveform displayed in Figure 7-2.

To digitally encode the wave, it must be sampled on a regular basis, and the amplitude
of the wave at each moment in time must be measured. The process of slicing up a
waveform into moments in time and measuring the energy at each moment is called
quantization, or sampling.

The samples will need to be taken frequently enough and will need to capture enough
information to ensure that the far end can re-create a sufficiently similar waveform. To
achieve a more accurate sample, more bits will be required. To explain this concept,
we will start with a very low resolution, using four bits to represent our amplitude. This
will make it easier to visualize both the quantization process itself and the effect that
resolution has on quality.

‖ Amplitude is essentially the power or strength of the signal. If you have ever held a skipping rope or garden
hose and given it a whip, you have seen the resultant wave. The taller the wave, the greater the amplitude.

Digital Telephony | 171

Figure 7-3 shows the information that will be captured when we sample our sine wave
at four-bit resolution.

At each time interval, we measure the amplitude of the wave and record the corre-
sponding intensity—in other words, we sample it. You will notice that the four-bit
resolution limits our accuracy. The first sample has to be rounded to 0011, and the next
quantization yields a sample of 0101. Then comes 0100, followed by 1001, 1011, and so
forth. In total, we have 14 samples (in reality, several thousand samples must be taken
per second).

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

Figure 7-2. A simple sinusoidal (sine) wave

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

Figure 7-3. Sampling our sine wave using four bits

172 | Chapter 7: Understanding Telephony

If we string together all the values, we can send them to the other side as:

0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010

On the wire, this code might look something like Figure 7-4.

When the far end’s digital-to-analog (D/A) converter receives this signal, it can use the
information to plot the samples, as shown in Figure 7-5.

From this information, the waveform can be reconstructed (see Figure 7-6).

As you can see if you compare Figure 7-2 with Figure 7-6, this reconstruction of the
waveform is not very accurate. This was done intentionally, to demonstrate an impor-
tant point: the quality of the digitally encoded waveform is affected by the resolution
and rate at which it is sampled. At too low a sampling rate, and with too low a sample
resolution, the audio quality will not be acceptable.

Increasing the sampling resolution and rate

Let’s take another look at our original waveform, this time using five bits to define our
quantization intervals (Figure 7-7).

0 0

1 1

0

1

0

1

0

1

0 0

1

0 0

1 1

0

1 1 1

0

1 1 1

0

1

0 0 0 0

1

0

1

0

1

0

1

0

1

0 0 0 0

1 1

0 0

1 1

0 0

1

0

1

0

Figure 7-4. PCM encoded waveform

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

Figure 7-5. Plotted PCM signal

Digital Telephony | 173

In reality, there is no such thing as five-bit PCM. In the telephone net-
work, PCM samples are encoded using eight bits.#

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

Figure 7-6. Delineated signal

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

Figure 7-7. The same waveform, on a higher-resolution overlay

Other digital audio methods may employ 16 bits or more.

174 | Chapter 7: Understanding Telephony

We’ll also double our sampling frequency. The points plotted this time are shown in
Figure 7-8.

We now have twice the number of samples, at twice the resolution. Here they are:

00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111
10100 10001 00010 00111 01001 01010 01001 00111 00000 11000 11010 11010
11001 11000 10110 10001

When received at the other end, that information can now be plotted as shown in
Figure 7-9.

From this information, the waveform shown in Figure 7-10 can then be generated.

As you can see, the resultant waveform is a far more accurate representation of the
original. However, you can also see that there is still room for improvement.

Note that 40 bits were required to encode the waveform at 4-bit reso-
lution, while 156 bits were needed to send the same waveform using 5-
bit resolution (and also doubling the sampling rate). The point is, there
is a tradeoff: the higher the quality of audio you wish to encode, the
more bits required to do it, and the more bits you wish to send (in real
time, naturally), the more bandwidth you will need to consume.

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

Figure 7-8. The same waveform at double the resolution

Digital Telephony | 175

Nyquist’s Theorem

So how much sampling is enough? That very same question was considered in the 1920s
by an electrical engineer (and AT&T/Bell employee) named Harry Nyquist. Nyquist’s
Theorem states: “When sampling a signal, the sampling frequency must be greater than
twice the bandwidth of the input signal in order to be able to reconstruct the original
perfectly from the sampled version.”*

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

Figure 7-9. Five-bit plotted PCM signal

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

Figure 7-10. Waveform delineated from five-bit PCM

176 | Chapter 7: Understanding Telephony

In essence, what this means is that to accurately encode an analog signal you have to
sample it twice as often as the total bandwidth you wish to reproduce. Since the tele-
phone network will not carry frequencies below 300 Hz and above 4,000 Hz, a sampling
frequency of 8,000 samples per second will be sufficient to reproduce any frequency
within the bandwidth of an analog telephone. Keep that 8,000 samples per second in
mind; we’re going to talk about it more later.

Logarithmic companding

So, we’ve gone over the basics of quantization, and we’ve discussed the fact that more
quantization intervals (i.e., a higher sampling rate) give better quality but also require
more bandwidth. Lastly, we’ve discussed the minimum sample rate needed to accu-
rately measure the range of frequencies we wish to be able to transmit (in the case of
the telephone, it’s 8,000 Hz). This is all starting to add up to a fair bit of data being
sent on the wire, so we’re going to want to talk about companding.

Companding is a method of improving the dynamic range of a sampling method without
losing important accuracy. It works by quantizing higher amplitudes in a much coarser
fashion than lower amplitudes. In other words, if you yell into your phone, you will
not be sampled as cleanly as you will be when speaking normally. Yelling is also not
good for your blood pressure, so it’s best to avoid it.

Two companding methods are commonly employed: μlaw† in North America, and
alaw in the rest of the world. They operate on the same principles but are otherwise
not compatible with each other.

Companding divides the waveform into cords, each of which has several steps. Quan-
tization involves matching the measured amplitude to an appropriate step within a
cord. The value of the band and cord numbers (as well as the sign—positive or negative)
becomes the signal. The following diagrams will give you a visual idea of what com-
panding does. They are not based on any standard, but rather were made up for the
purpose of illustration (again, in the telephone network, companding will be done at
an eight-bit, not five-bit, resolution).

Figure 7-11 illustrates five-bit companding. As you can see, amplitudes near the zero-
crossing point will be sampled far more accurately than higher amplitudes (either
positive or negative). However, since the human ear, the transmitter, and the receiver
will also tend to distort loud signals, this isn’t really a problem.

* Nyquist published two papers, “Certain Factors Affecting Telegraph Speed” (1924) and “Certain Topics in
Telegraph Transmission Theory” (1928), in which he postulated what became known as Nyquist’s Theorem.
Proven in 1949 by Claude Shannon (“Communication in the Presence of Noise”), it is also referred to as the
Nyquist-Shannon sampling theorem.

† μlaw is often referred to as “ulaw” because, let’s face it, how many of us have μ keys on our keyboards? μ is
in fact the Greek letter Mu; thus, you will also see μlaw written (more correctly) as “Mu-law.” When spoken,
it is correct to confidently say “Mew-law,” but if folks look at you strangely, and you’re feeling generous, you
can help them out and tell them it’s “ulaw.” Many people just don’t appreciate trivia.

Digital Telephony | 177

A quantized sample might look like Figure 7-12. It yields the following bit stream:

00000 10011 10100 10101 01101 00001 00011 11010 00010 00001 01000 10011
10100 10100 00101 00100 00101 10101 10011 10001 00011 00001 00000 10100
10010 10101 01101 10100 00101 11010 00100 00000 01000

Aliasing

If you’ve ever watched the wheels on a wagon turn backward in an old Western movie,
you’ve seen the effects of aliasing. The frame rate of the movie cannot keep up with the
rotational frequency of the spokes, and a false rotation is perceived.

10

00

11

00

11

00

10
11

00

11

00

10

00

01

10

11

10

01

00

00

01

10

11

0

1

Sign-bit Cord-bit Step-bit

Low accuracy

Reduced accuracy

Accurate

Highly accurate

Highly accurate

Accurate

Reduced accuracy

Low accuracy

11

01

10

01

10
01

01
00
01
10
11

01
10

01

11

11

Am
pl

it
ud

e

Samples

Figure 7-11. Five-bit companding

178 | Chapter 7: Understanding Telephony

In a digital audio system (which the modern PSTN arguably is), aliasing always occurs
if frequencies that are greater than one-half the sampling rate are presented to the an-
alog-to-digital (A/D) converter. In PSTN, that includes any audio frequencies above
4,000 Hz (half the sampling rate of 8,000 Hz). This problem is easily corrected by
passing the audio through a low-pass filter‡ before presenting it to the A/D converter.§

10

00

11

00

11

00

10
11

00

11

00

10

00

01

10

11

10

01

00

00

01

10

11

0

1

Sign-bit Cord-bit Step-bit

Low accuracy

Reduced accuracy

Accurate

Highly accurate

Highly accurate

Accurate

Reduced accuracy

Low accuracy

11

01

10

01

10
01

01
00
01
10
11

01
10

01

11

11

Am
pl

it
ud

e

Samples

Figure 7-12. Quantized and companded at 5-bit resolution

‡ A low-pass filter, as its name implies, allows through only frequencies that are lower than its cut-off frequency.
Other types of filters are high-pass filters (which remove low frequencies) and band-pass filters (which filter
out both high and low frequencies).

Digital Telephony | 179

The Digital Circuit-Switched Telephone Network
For over a hundred years, telephone networks were exclusively circuit-switched. What
this meant was that for every telephone call made, a dedicated connection was estab-
lished between the two endpoints, with a fixed amount of bandwidth allocated to that
circuit. Creating such a network was costly, and where distance was concerned, using
that network was costly as well. Although we are all predicting the end of the circuit-
switched network, many people still use it every day, and it really does work rather well.

Circuit Types
In the PSTN, there are many different sizes of circuits serving the various needs of the
network. Between the central office and a subscriber, one or more analog circuits, or a
few dozen channels delivered over a digital circuit, generally suffice. Between PSTN
offices (and with larger customers), fiber-optic circuits are generally used.

The humble DS-0―the foundation of it all

Since the standard method of digitizing a telephone call is to record an 8-bit sample
8,000 times per second, we can see that a PCM-encoded telephone circuit will need a
bandwidth of eight times 8,000 bits per second, or 64,000 bps. This 64 Kbps channel
is referred to as a DS-0 (that’s “Dee-Ess-Zero”). The DS-0 is the fundamental building
block of all digital telecommunications circuits.

Even the ubiquitous analog circuit is sampled into a DS-0 as soon as possible. Some-
times this happens where your circuit terminates at the central office, and sometimes
well before.‖

T-carrier circuits

The venerable T1 is one of the more recognized digital telephony terms. A T1 is a digital
circuit consisting of 24 DS-0s multiplexed together into a 1.544 Mbps bitstream.# This
bit stream is properly defined as a DS-1. Voice is encoded on a T1 using the μlaw
companding algorithm.

§ If you ever have to do audio recordings for a system, you might want to take advantage of the band-pass filter
that is built into most telephone sets. Doing a recording using even high-end recording equipment can pick
up all kinds of background noise that you don’t even hear until you downsample, at which point the
background noise produces aliasing (which can sound like all kinds of weird things). Conversely, the phone
records in the correct format already, so the noise never enters the audio stream. Having said all that, no
matter what you use to do recordings, avoid environments that have a lot of background noise. Typical offices
can be a lot noisier than you’d think, as HVAC equipment can produce noise that we don’t even realize is there.

‖ Digital telephone sets (including IP sets) do the analog-to-digital conversion right at the point where the
handset plugs into the phone, so the DS-0 is created right at the phone set.

The 24 DS-0s use 1.536 Mbps, and the remaining .008 Mbps is used by framing bits.

180 | Chapter 7: Understanding Telephony

The European version of the T1 was developed by the European Con-
ference of Postal and Telecommunications Administrations* (CEPT),
and was first referred to as a CEPT-1. It is now called an E1.

The E1 is comprised of 32 DS-0s, but the method of PCM encoding is
different: E1s use alaw companding. This means that connecting be-
tween an E1-based network and a T1-based network will always require
a transcoding step. Note that an E1, although it has 32 channels, is also
considered a DS-1. It is likely that E1 is far more widely deployed, as it
is used everywhere in the world except North American and Japan.

The various other T-carriers (T2, T3, and T4) are multiples of the T1, each based on
the humble DS-0. Table 7-2 illustrates the relationships between the different T-carrier
circuits.

Table 7-2. T-carrier circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

T1 24 DS-0s 24 1.544 Mbps

T2 4 T1s 96 6.312 Mbps

T3 7 T2s 672 44.736 Mbps

T4 6 T3s 4,032 274.176 Mbps

At densities above T3, it is very uncommon to see a T-carrier circuit. For these speeds,
optical carrier (OC) circuits may be used.

SONET and OC circuits

The Synchronous Optical Network (SONET) was developed out of a desire to take the
T-carrier system to the next technological level: fiber optics. SONET is based on the
bandwidth of a T3 (44.736 Mbps), with a slight overhead making it 51.84 Mbps. This
is referred to as an OC-1 or STS-1. As Table 7-3 shows, all higher-speed OC circuits
are multiples of this base rate.

Table 7-3. OC circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

OC-1 1 DS-3 (plus overhead) 672 51.840 Mbps

OC-3 3 DS-3s 2,016 155.520 Mbps

OC-12 12 DS-3s 8,064 622.080 Mbps

OC-48 48 DS-3s 32,256 2488.320 Mbps

OC-192 192 DS-3s 129,024 9953.280 Mbps

* Conférence Européenne des Administrations des Postes et des Télécommunications.

The Digital Circuit-Switched Telephone Network | 181

SONET was created in an effort to standardize optical circuits, but due to its high cost,
coupled with the value offered by many newer schemes, such as Dense Wave Division
Multiplexing (DWDM), there is some controversy surrounding its future.

Digital Signaling Protocols
As with any circuit, it is not enough for the circuits used in the PSTN to just carry (voice)
data between endpoints. Mechanisms must also be provided to pass information about
the state of the channel between each endpoint. (Disconnect and answer supervision
are two examples of basic signaling that might need to take place; Caller ID is an ex-
ample of a more complex form of signaling.)

Channel Associated Signaling (CAS)

Also known as robbed-bit signaling, CAS is what you will use to transmit voice on a
T1 when ISDN is not available. Rather than taking advantage of the power of the digital
circuit, CAS simulates analog channels. CAS works by stealing bits from the audio
stream for signaling purposes. Although the effect on audio quality is not really no-
ticeable, the lack of a powerful signaling channel limits your flexibility.

When configuring a CAS T1, the signaling options at each end must match. E&M (Ear
& Mouth or recEive & transMit) signaling is generally preferred, as it offers the best
supervision. Having said that, in an Asterisk environment the most likely reason for
you to use CAS would be for a channel bank, which means you are most likely going
to have to use FXS signaling.

CAS is very rarely used on PSTN circuits anymore, due to the superiority of ISDN-PRI.
One of the limitations of CAS is that it does not allow the dynamic assignment of
channels to different functions. Also, Caller ID information (which may not even be
supported) has to be sent as part of the audio stream. CAS is commonly used on the
T1 link in channel banks.

ISDN

The Integrated Services Digital Network (ISDN) has been around for more than 20
years. Because it separates the channels that carry the traffic (the bearer channels, or
B-channels) from the channel that carries the signaling information (the D-channel),
ISDN allows for the delivery of a much richer set of features than CAS. In the beginning,
ISDN promised to deliver much the same sort of functionality that the Internet has
given us, including advanced capabilities for voice, video, and data transfer.

Unfortunately, rather than ratifying a standard and sticking to it, the respective tele-
communications manufacturers all decided to add their own tweaks to the protocol,
in the belief that their versions were superior and would eventually dominate the mar-
ket. As a result, getting two ISDN-compliant systems to connect to each other was often
a painful and expensive task. The carriers who had to implement and support this

182 | Chapter 7: Understanding Telephony

expensive technology, in turn, priced it so that it was not rapidly adopted. Currently,
ISDN is rarely used for much more than basic trunking—in fact, the acronym ISDN
has become a joke in the industry: “It Still Does Nothing.”

Having said that, ISDN has become quite popular for trunking, and it is now (mostly)
standards-compliant. If you have a PBX with more than a dozen lines connected to the
PSTN, there’s a very good chance that you’ll be running an ISDN-PRI (Primary Rate
Interface) circuit. Also, in places where DSL and cable access to the Internet are not
available (or are too expensive), an ISDN-BRI (Basic Rate Interface) circuit might pro-
vide you with an affordable 128 Kbps connection. In much of North America, the use
of BRI for Internet connectivity has been deprecated in favor of DSL and cable modems
(and it is never used for voice), but in many European countries it has almost totally
replaced analog circuits.

Basic Rate Interface (or Basic Rate Access) is the flavor of ISDN, and is
designed to service small endpoints such as workstations.

The BRI flavor of the ISDN specification is often referred to simply as “ISDN,” but this
can be a source of confusion, as ISDN is a protocol, not a type of circuit (not to mention
that PRI circuits are also correctly referred to as ISDN!).

A Basic Rate ISDN circuit consists of two 64 Kbps B-channels controlled by a 16-Kbps
D-channel, for a total of 144 Kbps.

Basic Rate ISDN has been a source of much confusion during its life, due to problems
with standards compliance, technical complexity, and poor documentation. Still, many
European telecos have widely implemented ISDN-BRI, and thus it is more popular in
Europe than in North America.

The Primary Rate Interface (or Primary Rate Access) flavor of ISDN is used
to provide ISDN service over larger network connections. A Primary Rate ISDN circuit
uses a single DS-0 channel as a signaling link (the D-channel); the remaining channels
serve as B-channels.

In North America, Primary Rate ISDN is commonly carried on one or more T1 circuits.
Since a T1 has 24 channels, a North American PRI circuit typically consists of 23 B-
channels and 1 D-channel. For this reason, PRI is often referred to as 23B+D.†

In Europe, a 32-channel E1 circuit is used, so a Primary Rate ISDN cir-
cuit is referred to as 30B+D (the final channel is used for
synchronization).

ISDN-BRI/BRA.

ISDN-PRI/PRA.

† PRI is actually quite a bit more flexible than that, as it is possible to span a single PRI circuit across multiple
T1 spans. This can give rise, for example, to a 47B+D circuit (where a single D-channel serves two T1s) or a
46B+2D circuit (where primary and backup D-channels serve a pair of T1s). You will sometimes see PRI
described as nB+nD, because the number of B- and D-channels is, in fact, quite variable. For this reason, you
should never refer to a T1 carrying PRI as “a PRI.” For all you know, the PRI circuit spans multiple T1s, as
is common in larger PBX deployments.

The Digital Circuit-Switched Telephone Network | 183

Primary Rate ISDN is very popular, due to its technical benefits and generally compet-
itive pricing at higher densities. If you believe you will require more than a dozen or so
PSTN lines, you should look into Primary Rate ISDN pricing.

From a technical perspective, ISDN-PRI is always preferable to CAS.

Signaling System 7

Signaling System 7 (SS7) is the signaling system used by carriers. It is conceptually
similar to ISDN, and it is instrumental in providing a mechanism for the carriers to
transmit the additional information ISDN endpoints typically need to pass. However,
the technology of SS7 is different from that of ISDN; one big difference is that SS7 runs
on a completely separate network from the actual trunks that carry the calls.

SS7 support in Asterisk is on the horizon, as there is much interest in making Asterisk
compatible with the carrier networks. An open source version of SS7 (http://
www.openss7.org) exists, but work is still needed for full SS7 compliance, and as of this
writing it is not known whether this version will be integrated with Asterisk. Another
promising source of SS7 support comes from Sangoma Technologies, which offers SS7
functionality in many of its products.

It should be noted that adding support for SS7 in Asterisk is not going to be as simple
as writing a proper driver. Connecting equipment to an SS7 network will not be possible
without that equipment having passed extremely rigorous certification processes. Even
then, it seems doubtful that any traditional carrier is going to be in a hurry to allow
such a thing to happen, mostly for strategic and political reasons.

Packet-Switched Networks
In the mid-1990s, network performance improved to the point where it became possible
to send a stream of media information in real time across a network connection. Because
the media stream is chopped up into segments, which are then wrapped in an address-
ing envelope, such connections are referred to as packet-based. The challenge, of course,
is to send a flood of these packets between two endpoints, ensuring that the packets
arrive in the same order in which they were sent, in less than 150 milliseconds, with
none lost. This is the essence of Voice over IP.

Conclusion
This chapter has explored the technologies currently in use in the PSTN. In the next
chapter, we will discuss protocols for VoIP: the carrying of telephone connections
across IP-based networks. These protocols define different mechanisms for carrying
telephone conversations, but their significance is far greater than just that. Bringing the
telephone network into the data network will finally erase the line between telephones
and computers, which holds the promise of a revolutionary evolution in the way we
communicate.

184 | Chapter 7: Understanding Telephony

http://www.openss7.org
http://www.openss7.org

CHAPTER 8

Protocols for VoIP

The Internet is a telephone system that’s gotten uppity.

—Clifford Stoll

The telecommunications industry spans over 100 years, and Asterisk integrates most
—if not all—of the major technologies that it has made use of over the last century. To
make the most out of Asterisk, you need not be a professional in all areas, but under-
standing the differences between the various codecs and protocols will give you a
greater appreciation and understanding of the system as a whole.

This chapter explains Voice over IP and what makes VoIP networks different from the
traditional circuit-switched voice networks that were the topic of the last chapter. We
will explore the need for VoIP protocols, outlining the history and potential future of
each. We’ll also look at security considerations and these protocols’ abilities to work
within topologies such as Network Address Translation (NAT). The following VoIP
protocols will be discussed (some more briefly than others):

• IAX

• SIP

• H.323

• MGCP

• Skinny/SCCP

• UNISTIM

Codecs are the means by which analog voice can be converted to a digital signal and
carried across the Internet. Bandwidth at any location is finite, and the number of
simultaneous conversations any particular connection can carry is directly related to
the type of codec implemented. In this chapter, we’ll also explore the differences be-
tween the following codecs in regards to bandwidth requirements (compression level)
and quality:

185

• G.711

• G.726

• G.729A

• GSM

• iLBC

• Speex

• MP3

We will then conclude the chapter with a discussion of how voice traffic can be routed
reliably, what causes echo and how to deal with it, and how Asterisk controls the au-
thentication of inbound and outbound calls.

The Need for VoIP Protocols
The basic premise of VoIP is the packetization* of audio streams for transport over
Internet Protocol-based networks. The challenges to accomplishing this relate to the
manner in which humans communicate. Not only must the signal arrive in essentially
the same form that it was transmitted in, but it needs to do so in less than 150 milli-
seconds. If packets are lost or delayed, there will be degradation to the quality of the
communications experience, meaning that two people will have difficulty in carrying
on a conversation.

The transport protocols that collectively are called “the Internet” were not originally
designed with real-time streaming of media in mind. Endpoints were expected to re-
solve missing packets by waiting longer for them to arrive, requesting retransmission,
or, in some cases, considering the information to be gone for good and simply carrying
on without it. In a typical voice conversation, these mechanisms will not serve. Our
conversations do not adapt well to the loss of letters or words, nor to any appreciable
delay between transmittal and receipt.

The traditional PSTN was designed specifically for the purpose of voice transmission,
and it is perfectly suited to the task from a technical standpoint. From a flexibility
standpoint, however, its flaws are obvious to even people with a very limited under-
standing of the technology. VoIP holds the promise of incorporating voice communi-
cations into all of the other protocols we carry on our networks, but due to the special
demands of a voice conversation, special skills are needed to design, build, and maintain
these networks.

The problem with packet-based voice transmission stems from the fact that the way in
which we speak is totally incompatible with the way in which IP transports data.

* This word hasn’t quite made it into the dictionary, but it is a term that is becoming more and more common.
It refers to the process of chopping a steady stream of information into discrete chunks (or packets), suitable
for delivery independently of one another.

186 | Chapter 8: Protocols for VoIP

Speaking and listening consist of the relaying of a stream of audio, whereas the Internet
protocols are designed to chop everything up, encapsulate the bits of information into
thousands of packages, and then deliver each package in whatever way possible to the
far end. Clearly, some way of dealing with this is required.

VoIP Protocols
The mechanism for carrying a VoIP connection generally involves a series of signaling
transactions between the endpoints (and gateways in between), culminating into two
persistent media streams (one for each direction) that carry the actual conversation.
There are several protocols in existence to handle this. In this section, we will discuss
some of those that are important to VoIP in general and to Asterisk specifically.

IAX (The “Inter-Asterisk eXchange” Protocol)
If you claim to be one of the folks in the know when it comes to Asterisk, your test will
come when you have to pronounce the name of this protocol. It would seem that you
should say “eye-ay-ex”, but this hardly rolls off the tongue very well.† Fortunately, the
proper pronunciation is in fact “eeks.”‡ IAX is an open protocol, meaning that anyone
can download and develop for it, but it is not yet a standard of any kind.§

It is expected that IAX2 will become an IETF protocol soon. IAX2 is currently in draft
status with the IETF, and it is widely expected to become an official protocol in a few
years’ time.

In Asterisk, IAX is supported by the chan_iax2.so module.

History

The IAX protocol was developed by Digium for the purpose of communicating with
other Asterisk servers (hence the Inter-Asterisk eXchange protocol). It is very important
to note that IAX is not at all limited to Asterisk. The standard is open for anyone to
use, and it is supported by many other open source telecom projects, as well as by
several hardware vendors. IAX is a transport protocol (much like SIP) that uses a single
UDP port (4569) for both the channel signaling and media streams. As discussed later
in this chapter, this makes it easier to manage when behind NATed firewalls.

IAX also has the unique ability to trunk multiple sessions into one dataflow, which can
be a tremendous bandwidth advantage when sending a lot of simultaneous channels
to a remote box. Trunking allows multiple media streams to be represented with a

† It sounds like the name of a Dutch football team.

‡ Go ahead. Say it. Now that sounds much better, doesn’t it?

§ Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say “IAX”
or “IAX2,” it is expected that you are talking about the same version.

VoIP Protocols | 187

single datagram header, that will lower the overhead associated with individual
channels. This helps to lower latency and reduce the processing power and bandwidth
required, allowing the protocol to scale much more easily with a large number of active
channels between endpoints. If you have a large quantity of IP calls to pass between
two endpoints, you should take a close look at IAX trunking.

Future

Since IAX was optimized for voice, it has received some criticism for not better sup-
porting video—but in fact, IAX holds the potential to carry pretty much any media
stream desired. Because it is an open protocol, future media types are certain to be
incorporated as the community desires them.

Security considerations

IAX includes the ability to authenticate in three ways: plain text, MD5 hashing, and
RSA key exchange. This, of course, does nothing to encrypt the media path or headers
between endpoints. Many solutions include using a Virtual Private Network (VPN)
appliance or software to encrypt the stream in another layer of technology, which re-
quires the endpoints to pre-establish a method of having these tunnels configured and
operational. However, IAX is now also able to encrypt the streams between endpoints
with dynamic key exchange at call setup (using the configuration option encryp
tion=aes128), allowing the use of automatic key rollover.

IAX and NAT

The IAX2 protocol was deliberately designed to work from behind devices performing
NAT. The use of a single UDP port for both signaling and transmission of media also
keeps the number of holes required in your firewall to a minimum. These considerations
have helped make IAX one of the easiest protocols (if not the easiest) to implement in
secure networks.

SIP
The Session Initiation Protocol (SIP) has taken the telecommunications industry by
storm. SIP has pretty much dethroned the once-mighty H.323 as the VoIP protocol of
choice—certainly at the endpoints of the network. The premise of SIP is that each end
of a connection is a peer; the protocol negotiates capabilities between them. What
makes SIP compelling is that it is a relatively simple protocol, with a syntax similar to
that of other familiar protocols such as HTTP and SMTP. SIP is supported in Asterisk
with the chan_sip.so module.‖

History

SIP was originally submitted to the Internet Engineering Task Force (IETF) in February
of 1996 as “draft-ietf-mmusic-sip-00.” The initial draft looked nothing like the SIP we

188 | Chapter 8: Protocols for VoIP

know today and contained only a single request type: a call setup request. In March of
1999, after 11 revisions, SIP RFC 2543 was born.

At first, SIP was all but ignored, as H.323 was considered the protocol of choice for
VoIP transport negotiation. However, as the buzz grew, SIP began to gain popularity,
and while there may be a lot of different factors that accelerated its growth, we’d like
to think that a large part of its success is due to its freely available specification.

SIP is an application-layer signaling protocol that uses the well-known port 5060 for
communications. SIP can be transported with either the UDP or TCP transport-layer
protocols. Asterisk does not currently have a TCP implementation for transporting SIP
messages, but it is possible that future versions may support it (and patches to the code
base are gladly accepted). SIP is used to “establish, modify, and terminate multimedia
sessions such as Internet telephony calls.”#

SIP does not transport media between endpoints.

RTP is used to transmit media (i.e., voice) between endpoints. RTP uses high-num-
bered, unprivileged ports in Asterisk (10,000 through 20,000, by default).

A common topology to illustrate SIP and RTP, commonly referred to as the “SIP tra-
pezoid,” is shown in Figure 8-1. When Alice wants to call Bob, Alice’s phone contacts
her proxy server, and the proxy tries to find Bob (often connecting through his proxy).
Once the phones have started the call, they communicate directly with each other (if
possible), so that the data doesn’t have to tie up the resources of the proxy.

SIP was not the first, and is not the only, VoIP protocol in use today (others include H.
323, MGCP, IAX, and so on), but currently it seems to have the most momentum with
hardware vendors. The advantages of the SIP protocol lie in its wide acceptance and
architectural flexibility (and, we used to say, simplicity!).

‖ Having just called SIP simple, it should be noted that it is by no means lightweight. It has been said that if
one were to read all of the IETF RFCs that are relevant to SIP, one would have more than 3,000 pages of
reading to do. SIP is quickly earning a reputation for being far too bloated, but that does nothing to lessen
its popularity.

RFC 3261, SIP: Session Initiation Protocol, p. 9, Section 2.

SIP signaling

RTP media

Figure 8-1. The SIP trapezoid

VoIP Protocols | 189

Future

SIP has earned its place as the protocol that justified VoIP. All new user and enterprise
products are expected to support SIP, and any existing products will now be a tough
sell unless a migration path to SIP is offered. SIP is widely expected to deliver far more
than VoIP capabilities, including the ability to transmit video, music, and any type of
real-time multimedia. While its use as a ubiquitous general-purpose media transport
mechanism seems doubtful, SIP is unarguably poised to deliver the majority of new
voice applications for the next few years.

Security considerations

SIP uses a challenge/response system to authenticate users. An initial INVITE is sent to
the proxy with which the end device wishes to communicate. The proxy then sends
back a 407 Proxy Authorization Request message, which contains a random set of
characters referred to as a nonce. This nonce is used along with the password to generate
an MD5 hash, which is then sent back in the subsequent INVITE. Assuming the MD5
hash matches the one that the proxy generated, the client is then authenticated.

Denial of Service (DoS) attacks are probably the most common type of attack on VoIP
communications. A DoS attack can occur when a large number of invalid INVITE re-
quests are sent to a proxy server in an attempt to overwhelm the system. These attacks
are relatively simple to implement, and their effects on the users of the system are
immediate. SIP has several methods of minimizing the effects of DoS attacks, but ulti-
mately they are impossible to prevent.

SIP implements a scheme to guarantee that a secure, encrypted transport mechanism
(namely Transport Layer Security, or TLS) is used to establish communication between
the caller and the domain of the callee. Beyond that, the request is sent securely to the
end device, based upon the local security policies of the network. Note that the en-
cryption of the media (that is, the RTP stream) is beyond the scope of SIP itself and
must be dealt with separately.

More information regarding SIP security considerations, including registration hijack-
ing, server impersonation, and session teardown, can be found in Section 26 of SIP RFC
3261.

SIP and NAT

Probably the biggest technical hurdle SIP has to conquer is the challenge of carrying
out transactions across a NAT layer. Because SIP encapsulates addressing information
in its data frames, and NAT happens at a lower network layer, the addressing infor-
mation is not automatically modified and, thus, the media streams will not have the
correct addressing information needed to complete the connection when NAT is in
place. In addition to this, the firewalls normally integrated with NAT will not consider
the incoming media stream to be part of the SIP transaction, and will block the con-
nection. Newer firewalls and Session Border Controllers are SIP-aware, but this is still

190 | Chapter 8: Protocols for VoIP

considered a shortcoming in this protocol, and it causes no end of trouble to network
professionals needing to connect SIP endpoints using existing network infrastructure.

H.323
This International Telecommunication Union (ITU) protocol was originally designed
to provide an IP transport mechanism for video conferencing. It has become the stand-
ard in IP-based video-conferencing equipment, and it briefly enjoyed fame as a VoIP
protocol as well. While there is much heated debate over whether SIP or H.323 (or
IAX) will dominate the VoIP protocol world, in Asterisk, H.323 has largely been dep-
recated in favor of IAX and SIP. H.323 has not enjoyed much success among users and
enterprises, although it might still be the most widely used VoIP protocol among car-
riers.

The three versions of H.323 supported in Asterisk are handled by the modules
chan_h323.so (supplied with Asterisk), chan_oh323.so (available as a free add-on), and
chan_ooh323.so (supplied in asterisk-addons).

You have probably used H.323 without even knowing it—Microsoft’s
NetMeeting client is arguably the most widely deployed H.323 client.

History

H.323 was developed by the ITU in May of 1996 as a means to transmit voice, video,
data, and fax communications across an IP-based network while maintaining connec-
tivity with the PSTN. Since that time, H.323 has gone through several versions and
annexes (which add functionality to the protocol), allowing it to operate in pure VoIP
networks and more widely distributed networks.

Future

The future of H.323 is a subject of debate. If the media is any measure, it doesn’t look
good for H.323; it hardly ever gets mentioned (certainly not with the regularity of SIP).
H.323 is often regarded as technically superior to SIP, but, as with so many other tech-
nologies, that sort of thing is seldom the deciding factor in whether technology enjoys
success. One of the factors that makes H.323 unpopular is its complexity—although
many argue that the once-simple SIP is starting to suffer from the same problem.

H.323 still carries by far the majority of worldwide carrier VoIP traffic, but as people
become less and less dependent on traditional carriers for their telecom needs, the
future of H.323 becomes more difficult to predict with any certainty. While H.323 may
not be the protocol of choice for new implementations, we can certainly expect to have
to deal with H.323 interoperability issues for some time to come.

VoIP Protocols | 191

Security considerations

H.323 is a relatively secure protocol and does not require many security considerations
beyond those that are common to any network communicating with the Internet. Since
H.323 uses the RTP protocol for media communications, it does not natively support
encrypted media paths. The use of a VPN or other encrypted tunnel between endpoints
is the most common way of securely encapsulating communications. Of course, this
has the disadvantage of requiring the establishment of these secure tunnels between
endpoints, which may not always be convenient (or even possible). As VoIP becomes
used more often to communicate with financial institutions such as banks, we’re likely
to require extensions to the most commonly used VoIP protocols to natively support
strong encryption methods.

H.323 and NAT

The H.323 standard uses the Internet Engineering Task Force (IETF) RTP protocol to
transport media between endpoints. Because of this, H.323 has the same issues as SIP
when dealing with network topologies involving NAT. The easiest method is to simply
forward the appropriate ports through your NAT device to the internal client.

To receive calls, you will always need to forward TCP port 1720 to the client. In addi-
tion, you will need to forward the UDP ports for the RTP media and RTCP control
streams (see the manual for your device for the port range it requires). Older clients,
such as Microsoft NetMeeting, will also require TCP ports forwarded for H.245 tun-
neling (again, see your client’s manual for the port number range).

If you have a number of clients behind the NAT device, you will need to use a
gatekeeper running in proxy mode. The gatekeeper will require an interface attached
to the private IP subnet and the public Internet. Your H.323 client on the private IP
subnet will then register to the gatekeeper, which will proxy calls on the clients’ behalf.
Note that any external clients that wish to call you will also be required to register with
the proxy server.

At this time, Asterisk can’t act as an H.323 gatekeeper. You’ll have to use a separate
application, such as the open source OpenH323 Gatekeeper (http://www.gnugk.org).

MGCP
The Media Gateway Control Protocol (MGCP) also comes to us from the IETF. While
MGCP deployment is more widespread than one might think, it is quickly losing
ground to protocols such as SIP and IAX. Still, Asterisk loves protocols, so naturally it
has rudimentary support for it.

MGCP is defined in RFC 3435.* It was designed to make the end devices (such as
phones) as simple as possible, and have all the call logic and processing handled by

* RFC 3435 obsoletes RFC 2705.

192 | Chapter 8: Protocols for VoIP

http://www.gnugk.org

media gateways and call agents. Unlike SIP, MGCP uses a centralized model. MGCP
phones cannot directly call other MGCP phones; they must always go through some
type of controller.

Asterisk supports MGCP through the chan_mgcp.so module, and the endpoints are
defined in the configuration file mgcp.conf. Since Asterisk provides only basic call agent
services, it cannot emulate an MGCP phone (to register to another MGCP controller
as a user agent, for example).

If you have some MGCP phones lying around, you will be able to use them with As-
terisk. If you are planning to put MGCP phones into production on an Asterisk system,
keep in mind that the community has moved on to more popular protocols, and you
will therefore need to budget your software support needs accordingly. If possible (for
example, with Cisco phones), you should upgrade MGCP phones to SIP.

Proprietary Protocols
Finally, let’s take a look at two proprietary protocols that are supported in Asterisk.

Skinny/SCCP

The Skinny Client Control Protocol (SCCP) is proprietary to Cisco VoIP equipment. It
is the default protocol for endpoints on a Cisco Call Manager PBX.† Skinny is supported
in Asterisk, but if you are connecting Cisco phones to Asterisk, it is generally recom-
mended that you obtain SIP images for any phones that support it and connect via SIP
instead.

UNISTIM

Support for Nortel’s proprietary VoIP protocol, UNISTIM, means that Asterisk is the
first PBX in history to natively support proprietary IP terminals from the two biggest
players in VoIP—Nortel and Cisco. UNISTIM support is totally experimental, and does
not work well enough to put into production, but the fact that somebody took the
trouble to do this demonstrates the power of the Asterisk platform.

Codecs
Codecs are generally understood to be various mathematical models used to digitally
encode (and compress) analog audio information. Many of these models take into ac-
count the human brain’s ability to form an impression from incomplete information.
We’ve all seen optical illusions; likewise, voice-compression algorithms take advantage
of our tendency to interpret what we believe we should hear, rather than what we

† Cisco has recently announced that it will be migrating toward SIP in its future products.

Codecs | 193

actually hear.‡ The purpose of the various encoding algorithms is to strike a balance
between efficiency and quality.§

Originally, the term codec referred to a COder/DECoder: a device that converts between
analog and digital. Now, the term seems to relate more to COmpression/
DECompression.

Before we dig into the individual codecs, take a look at Table 8-1—it’s a quick reference
that you may want to refer back to.

Table 8-1. Codec quick reference

Codec Data bitrate (Kbps) License required?

G.711 64 Kbps No

G.726 16, 24, 32, or 40 Kbps No

G.729A 8 Kbps Yes (no for passthrough)

GSM 13 Kbps No

iLBC 13.3 Kbps (30-ms frames) or 15.2 Kbps (20-ms frames) No

Speex Variable (between 2.15 and 22.4 Kbps) No

G.711
G.711 is the fundamental codec of the PSTN. In fact, if someone refers to PCM (dis-
cussed in the previous chapter) with respect to a telephone network, you are allowed
to think of G.711. Two companding methods are used: μlaw in North America and
alaw in the rest of the world. Either one delivers an 8-bit word transmitted 8,000 times
per second. If you do the math, you will see that this requires 64,000 bits to be trans-
mitted per second.

Many people will tell you that G.711 is an uncompressed codec. This is not exactly
true, as companding is considered a form of compression. What is true is that G.711
is the base codec from which all of the others are derived.

G.711 imposes minimal (almost zero) load on the CPU.

‡ “Aoccdrnig to rsereach at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht frist and lsat ltteres are in the rghit pclae. The rset can be a toatl mses and you
can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by istlef, but the wrod as a
wlohe.” (The source of this quote is unknown―see http://www.bisso.com/ujg_archives/000228.html.) We do
the same thing with sound―if there is enough information, our brain can fill in the gaps.

§ On an audio CD, quality is far more important than saving bandwidth, so the audio is quantized at 16 bits
(times 2, as it’s stereo), with a sampling rate of 44,100 Hz. Considering that the CD was invented in the late
1970s, this was quite impressive stuff back then. The telephone network does not require this level of quality
(and needs to optimize bandwidth), so telephone signals are encoded using 8 bits, at a sampling frequency
of 8,000 Hz.

194 | Chapter 8: Protocols for VoIP

http://www.bisso.com/ujg_archives/000228.html

G.726
This codec has been around for some time (it used to be G.721, which is now obsolete),
and it is one of the original compressed codecs. It is also known as Adaptive Differential
Pulse-Code Modulation (ADPCM), and it can run at several bitrates. The most com-
mon rates are 16 Kbps, 24 Kbps, and 32 Kbps. As of this writing, Asterisk currently
supports only the ADPCM-32 rate, which is far and away the most popular rate for this
codec.

G.726 offers quality nearly identical to G.711, but it uses only half the bandwidth. This
is possible because rather than sending the result of the quantization measurement, it
sends only enough information to describe the difference between the current sample
and the previous one. G.726 fell from favor in the 1990s due to its inability to carry
modem and fax signals, but because of its bandwidth/CPU performance ratio it is now
making a comeback. G.726 is especially attractive because it does not require a lot of
computational work from the system.

G.729A
Considering how little bandwidth it uses, G.729A delivers impressive sound quality. It
does this through the use of Conjugate-Structure Algebraic-Code-Excited Linear Pre-
diction (CS-ACELP).‖ Because of patents, you can’t use G729A without paying a
licensing fee; however, it is extremely popular and is, thus, well supported on many
different phones and systems.

To achieve its impressive compression ratio, this codec requires an equally impressive
amount of effort from the CPU. In an Asterisk system, the use of heavily compressed
codecs will quickly bog down the CPU.

G.729A uses 8 Kbps of bandwidth.

GSM
GSM is the darling codec of Asterisk. This codec does not come encumbered with a
licensing requirement the way that G.729A does, and it offers outstanding performance
with respect to the demand it places on the CPU. The sound quality is generally con-
sidered to be of a lesser grade than that produced by G.729A, but much of this comes
down to personal opinion; be sure to try it out. GSM operates at 13 Kbps.

‖ CELP is a popular method of compressing speech. By mathematically modeling the various ways humans
make sounds, a codebook of sounds can be built. Rather than sending an actual sampled sound, a code
corresponding to the sound is determined. CELP codecs take this information (which by itself would produce
a very robot-like sound) and attempt to add the personality back in. (Of course, there is much more to it than
that.) Jason Woodward’s Speech Coding page (http://www-mobile.ecs.soton.ac.uk/speech_codecs/) is a source
of helpful information for the non-mathematically inclined. This is fairly heavy stuff, though, so wear your
thinking cap.

Codecs | 195

http://www-mobile.ecs.soton.ac.uk/speech_codecs/

iLBC
The Internet Low Bitrate Codec (iLBC) provides an attractive mix of low bandwidth
usage and quality, and it is especially well suited to sustaining reasonable quality on
lossy network links.

Naturally, Asterisk supports it (and support elsewhere is growing), but it is not as
popular as the ITU codecs and, thus, may not be compatible with common IP tele-
phones and commercial VoIP systems. IETF RFCs 3951 and 3952 have been published
in support of iLBC, and iLBC is on the IETF standards track.

Because iLBC uses complex algorithms to achieve its high levels of compression, it has
a fairly high CPU cost in Asterisk.

While you are allowed to use iLBC without paying royalty fees, the holder of the iLBC
patent, Global IP Sound (GIPS), wants to know whenever you use it in a commercial
application. The way you do that is by downloading and printing a copy of the iLBC
license, signing it, and returning it to GIPS. If you want to read about iLBC and its
license, you can do so at http://www.ilbcfreeware.org.

iLBC operates at 13.3 Kbps (30 ms frames) and 15.2 Kbps (20 ms frames).

Speex
Speex is a variable bitrate (VBR) codec, which means that it is able to dynamically
modify its bitrate to respond to changing network conditions. It is offered in both
narrowband and wideband versions, depending on whether you want telephone quality
or better.

Speex is a totally free codec, licensed under the Xiph.org variant of the BSD license.

An Internet draft for Speex is available, and more information about Speex can be found
at its home page (http://www.speex.org).

Speex can operate at anywhere from 2.15 to 22.4 Kbps, due to its variable bitrate.

MP3
Sure thing, MP3 is a codec. Specifically, it’s the Moving Picture Experts Group Audio
Layer 3 Encoding Standard.# With a name like that, it’s no wonder we call it MP3! In
Asterisk, the MP3 codec is typically used for Music on Hold (MoH). MP3 is not a
telephony codec, as it is optimized for music, not voice; nevertheless, it’s very popular
with VoIP telephony systems as a method of delivering Music on Hold.

If you want to learn all about MPEG audio, do a web search for Davis Pan’s paper titled “A Tutorial on
MPEG/Audio Compression.”

196 | Chapter 8: Protocols for VoIP

http://www.ilbcfreeware.org
http://www.speex.org

Be aware that music cannot usually be broadcast without a license.
Many people assume that there is no legal problem with connecting a
radio station or CD as a Music on Hold source, but this is very rarely
true.

Quality of Service
Quality of Service, or QoS as it’s more popularly termed, refers to the challenge of
delivering a time-sensitive stream of data across a network that was designed to deliver
data in an ad hoc, best-effort sort of way. Although there is no hard rule, it is generally
accepted that if you can deliver the sound produced by the speaker to the listener’s ear
within 150 milliseconds, a normal flow of conversation is possible. When delay exceeds
300 milliseconds, it becomes difficult to avoid interrupting each other. Beyond 500
milliseconds, normal conversation becomes increasingly awkward and frustrating.

In addition to getting it there on time, it is also essential to ensure that the transmitted
information arrives intact. Too many lost packets will prevent the far end from com-
pletely reproducing the sampled audio, and gaps in the data will be heard as static or,
in severe cases, entire missed words or sentences. Even packet loss of 5 percent can
severely impede a VoIP network.

TCP, UDP, and SCTP
If you’re going to send data on an IP-based network, it will be transported using one
of the three transport protocols discussed here.

Transmission Control Protocol

The Transmission Control Protocol (TCP) is almost never used for VoIP, for while it
does have mechanisms in place to ensure delivery, it is not inherently in any hurry to
do so. Unless you have an extremely low-latency interconnection between the two
endpoints, TCP will tend to cause more problems than it solves.

The purpose of TCP is to guarantee the delivery of packets. In order to do this, several
mechanisms are implemented, such as packet numbering (for reconstructing blocks of
data), delivery acknowledgment, and re-requesting lost packets. In the world of VoIP,
getting the packets to the endpoint quickly is paramount—but 20 years of cellular
telephony has trained us to tolerate a few lost packets.*

* The order of arrival is important in voice communication, because the audio will be processed and sent to
the caller ASAP. However, with a jitter buffer the order of arrival isn’t as important, as it provides a small
window of time in which the packets can be reordered before being passed on to the caller.

Quality of Service | 197

TCP’s high processing overhead, state management, and acknowledgment of arrival
work well for transmitting large amounts of data, but they simply aren’t efficient
enough for real-time media communications.

User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not offer any sort of delivery
guarantee. Packets are placed on the wire as quickly as possible and released into the
world to find their way to their final destinations, with no word back as to whether
they got there or not. Since UDP itself does not offer any kind of guarantee that the
data will arrive,† it achieves its efficiency by spending very little effort on what it is
transporting.

TCP is a more “socially responsible” protocol because the bandwidth
is more evenly distributed to clients connecting to a server. As the per-
centage of UDP traffic increases, it is possible that a network could
become overwhelmed.

Stream Control Transmission Protocol

Approved by the IETF as a proposed standard in RFC 2960, SCTP is a relatively new
transport protocol. From the ground up, it was designed to address the shortcomings
of both TCP and UDP, especially as related to the types of services that used to be
delivered over circuit-switched telephony networks.

Some of the goals of SCTP were:

• Better congestion-avoidance techniques (specifically, avoiding Denial of Service
attacks)

• Strict sequencing of data delivery

• Lower latency for improved real-time transmissions

By overcoming the major shortcomings of TCP and UDP, the SCTP developers hoped
to create a robust protocol for the transmission of SS7 and other types of PSTN signaling
over an IP-based network.

Differentiated Service
Differentiated service, or DiffServ, is not so much a QoS mechanism as a method by
which traffic can be flagged and given specific treatment. Obviously, DiffServ can help
to provide QoS by allowing certain types of packets to take precedence over others.

† Keep in mind that the upper-layer protocols or applications can implement their own packet-
acknowledgment systems.

198 | Chapter 8: Protocols for VoIP

While this will certainly increase the chance of a VoIP packet passing quickly through
each link, it does not guarantee anything.

Guaranteed Service
The ultimate guarantee of QoS is provided by the PSTN. For each conversation, a 64
Kbps channel is completely dedicated to the call; the bandwidth is guaranteed. Simi-
larly, protocols that offer guaranteed service can ensure that a required amount of
bandwidth is dedicated to the connection being served. As with any packetized net-
working technology, these mechanisms generally operate best when traffic is below
maximum levels. When a connection approaches its limits, it is next to impossible to
eliminate degradation.

MPLS

Multiprotocol Label Switching (MPLS) is a method for engineering network traffic
patterns independent of layer-3 routing tables. The protocol works by assigning short
labels (MPLS frames) to network packets, which routers then use to forward the packets
to the MPLS egress router, and ultimately to their final destinations. Traditionally,
routers make an independent forwarding decision based on an IP table lookup at each
hop in the network. In an MPLS network, this lookup is performed only once, when
the packet enters the MPLS cloud at the ingress router. The packet is then assigned to
a stream, referred to as a Label Switched Path (LSP), and identified by a label. The label
is used as a lookup index in the MPLS forwarding table, and the packet traverses the
LSP independent of layer-3 routing decisions. This allows the administrators of large
networks to fine-tune routing decisions and make the best use of network resources.
Additionally, information can be associated with a label to prioritize packet forwarding.

RSVP

MPLS contains no method to dynamically establish LSPs, but you can use the Reser-
vation Protocol (RSVP) with MPLS. RSVP is a signaling protocol used to simplify the
establishment of LSPs and to report problems to the MPLS ingress router. The advant-
age of using RSVP in conjunction with MPLS is the reduction in administrative
overhead. If you don’t use RSVP with MPLS, you’ll have to go to every single router
and configure the labels and each path manually. Using RSVP makes the network more
dynamic by distributing control of labels to the routers. This enables the network to
become more responsive to changing conditions, because it can be set up to change the
paths based on certain conditions, such as a certain path going down (perhaps due to
a faulty router). The configuration within the router will then be able to use RSVP to
distribute new labels to the routers in the MPLS network, with no (or minimal) human
intervention.

Quality of Service | 199

Best Effort
The simplest, least expensive approach to QoS is not to provide it at all—the “best
effort” method. While this might sound like a bad idea, it can in fact work very well.
Any VoIP call that traverses the public Internet is almost certain to be best-effort, as
QoS mechanisms are not yet common in this environment.

Echo
You may not realize it, but echo has been a problem in the PSTN for as long as there
have been telephones. You probably haven’t often experienced it, because the telecom
industry has spent large sums of money designing expensive echo cancellation devices.
Also, when the endpoints are physically close—e.g., when you phone your neighbor
down the street—the delay is so minimal that anything you transmit will be returned
back so quickly that it will be indistinguishable from the sidetone‡ normally occurring
in your telephone. So the fact of the matter is that there is echo on your local calls much
of the time, but you cannot perceive it with a regular telephone because it happens
almost instantaneously. It may be helpful to understand this if you consider that when
you stand in a room and speak, everything you say echos back to you off of the walls
and ceiling (and possibly floor if it’s not carpeted), but does not cause any problems
because it happens so fast you do not perceive a delay.

The reason that VoIP telephone systems such as Asterisk can experience echo is that
the addition of a VoIP telephone introduces a slight delay. It takes a few milliseconds
for the packets to travel from your phone and the server (and vice versa). Suddenly
there is an appreciable delay, which allows you to perceive the echo that was always
there, but never had a delay before.

Why Echo Occurs
Before we discuss measures to deal with echo, let’s first take a look at why echo occurs
in the analog world.

If you hear echo, it’s not your phone that’s causing the problem; it’s the far end of the
circuit. Conversely, echo heard on the far end is being generated at your end. Echo can
be caused by the fact that an analog local loop circuit has to transmit and receive on
the same pair of wires. If this circuit is not electrically balanced, or if a low-quality
telephone is connected to the end of the circuit, signals it receives can be reflected back,
becoming part of the return transmission. When this reflected circuit gets back to you,
you will hear the words you spoke just moments before. Humans will perceive an echo

‡ As discussed in Chapter 7, sidetone is a function in your telephone that returns part of what you say back to
your own ear, to provide a more natural-sounding conversation.

200 | Chapter 8: Protocols for VoIP

beyond a certain amount of delay (possibly as low as 20 milliseconds for some people).
This echo will become annoying as the delay increases.

In a cheap telephone, it is possible for echo to be generated in the body of the handset.
This is why some cheap IP phones can cause echo even when the entire end-to-end
connection does not contain an analog circuit.§ In the VoIP world, echo is usually
introduced either by an analog circuit somewhere in the connection, or by a cheap
endpoint reflecting back some of the signal (e.g., feedback through a hands-free or
poorly designed handset or headset). The greater the latency on the network, the more
annoying this echo can be.

Managing Echo on Zaptel Channels
In the zconfig.h configuration file, you can choose from one of several echo-canceller
algorithms, with the default being MARK2. Experiment with the various echo cancel-
lers on your network to determine the best one for your environment. Asterisk also has
an option in the zconfig.h file to make the echo cancellation more aggressive. You can
enable it by uncommenting the following line:

#define AGGRESSIVE_SUPPRESSOR

Note that aggressive echo cancellation can create a walkie-talkie, half-duplex effect. It
should be enabled only if all other methods of reducing echo have failed.

Enable echo cancellation for Zaptel interfaces in the zapata.conf file. The default con-
figuration enables echo cancellation with echocancel=yes. echocancelwhenbridged=yes
will enable echo cancellation for TDM bridged calls. While bridged calls should not
require echo cancellation, this may improve call quality.

When echo cancellation is enabled, the echo canceller learns of echo on the line by
listening for it for the duration of the call. Consequently, echo may be heard at the
beginning of a call and eventually lessen after a period of time. To avoid this situation,
you can employ a method called echo training, which will mute the line briefly at the
beginning of a call, and then send a tone from which the amount of echo on the line
can be determined. This allows Asterisk to deal with the echo more quickly. Echo
training can be enabled with echotraining=yes.

Hardware Echo Cancellation
The most effective way to handle echo cancellation is not in software. If you are plan-
ning on deploying a good quality system, spend the extra money and purchase cards
for the system that have onboard hardware echo cancellation. These cards are some-
what more expensive, but they quickly pay for themselves in terms of reduced load on
the CPU, as well as reduced load on you due to less user complaints.

§ Actually, the handset in any phone, be it traditional or VoIP, is an analog connection.

Echo | 201

Asterisk and VoIP
It should come as no surprise that Asterisk loves to talk VoIP. But in order to do so,
Asterisk needs to know which function it is to perform: that of client, server, or both.
One of the most complex and often confusing concepts in Asterisk is the naming
scheme of inbound and outbound authentication.

Users and Peers and Friends—Oh My!
Connections that authenticate to us, or that we authenticate, are defined in the
iax.conf and sip.conf files as users and peers. Connections that do both may be defined
as friends. When determining which way the authentication is occurring, it is always
important to view the direction of the channels from Asterisk’s viewpoint, as connec-
tions are being accepted and created by the Asterisk server.

Users

A connection defined as a user is any system/user/endpoint that we allow to connect
to us. Keep in mind that a user definition does not provide a method with which to call
that user; the user type is used simply to create a channel for incoming calls.‖ A user
definition will require a context name to be defined to indicate where the incoming
authenticated call will enter the dialplan (in extensions.conf).

Peers

A connection defined as a peer type is an outgoing connection. Think of it this way:
users place calls to us, while we place calls to our peers. Since peers do not place calls
to us, a peer definition does not typically require the configuration of a context name.
However, there is one exception: if calls that originate from your system are returned
to your system in a loopback, the incoming calls (which originate from a SIP proxy,
not a user agent) will be matched on the peer definition. The default context should
handle these incoming calls appropriately, although it’s preferable for contexts to be
defined for them on a per-peer basis.#

In order to know where to send a call to a host, we must know its location in relation
to the Internet (that is, its IP address). The location of a peer may be defined either
statically or dynamically. A dynamic peer is configured with host=dynamic under the
peer definition heading. Because the IP address of a dynamic peer may change

‖ In SIP, this is not always the case. If the endpoint is a SIP proxy service (as opposed to a user agent), Asterisk
will authenticate based on the peer definition, matching the IP address and port in the Contact field of the
SIP header against the hostname (and port, if specified) defined for the peer (if the port is not specified, the
one defined in the [general] section will be used). See the discussion of the SIP insecure option in
Appendix A for more on this subject.

For more information on this topic, see the discussion of the SIP context option in Appendix A.

202 | Chapter 8: Protocols for VoIP

constantly, it must register with the Asterisk box to let it know what its IP address is,
so calls can successfully be routed to it. If the remote end is another Asterisk box, the
use of a register statement is required, as discussed below.

Friends

Defining a type as a friend is a shortcut for defining it as both a user and a peer.
However, connections that are both a user and a peer aren’t always defined this way,
because defining each direction of call creation individually (using both a user and a
peer definition) allows more granularity and control over the individual connections.

Figure 8-2 shows the flow of authentication control in relation to Asterisk.

register Statements
A register statement is a way of telling a remote peer where your Asterisk box is in
relation to the Internet. Asterisk uses register statements to authenticate to remote
providers when you are employing a dynamic IP address, or when the provider does
not have your IP address on record. There are situations when a register statement is
not required, but to demonstrate when a register statement is required, let’s look at
an example.

Say you have a remote peer that is providing DID services to you. When someone calls
the number +1-800-555-1212, the call goes over the physical PSTN network to your
service provider and into its Asterisk server, possibly over its T1 connection. This call
is then routed to your Asterisk server via the Internet.

Asterisk User

Asterisk Peer

Asterisk Friend

Figure 8-2. Call origination relationships of users, peers, and friends to Asterisk

Asterisk and VoIP | 203

Your service provider will have a definition in either its sip.conf or iax.conf configuration
file (depending on whether you are connecting with the SIP or IAX protocol, respec-
tively) for your Asterisk server. If you receive calls only from this provider, you would
define them as a user (if it was another Asterisk system, you might be defined in its
system as a peer).

Now let’s say that your box is on your home Internet connection, with a dynamic IP
address. Your service provider has a static IP address (or perhaps a fully qualified do-
main name), which you place in your configuration file. Since you have a dynamic
address, your service provider specifies host=dynamic in its configuration file. In order
to know where to route your +1-800-555-1212 call, your service provider needs to know
where you are located in relation to the Internet. This is where the register statement
comes into use.

The register statement is a way of authenticating and telling your peer where you are.
In the [general] section of your configuration file, you place a statement similar to this:

register => username:secret@my_remote_peer

You can verify a successful register with the use of the iax2 show registry and sip show
registry commands at the Asterisk console.

VoIP Security
In this book we can barely scratch the surface of the complex matter of VoIP security;
therefore before we dig in, we want to steer you in the direction of the VoIP Security
Alliance (http://www.voipsa.org). This fantastic resource contains an excellent mailing
list, white papers, howtos, and a general compendium of all matters relating to VoIP
security. Just as email has been abused by the selfish and criminal, so too will voice.
The fine folks at VoIPSA are doing what they can to ensure that we address these
challenges now, before they become an epidemic. In the realm of books on the subject,
we recommend the most excellent Hacking Exposed VoIP by David Endler and Mark
Collier (McGraw-Hill Osborne Media). If you are responsible for deploying any VoIP
system, you need to be aware of this stuff.

Spam over Internet Telephony (SPIT)
We don’t want to think about this, but we know it’s coming. The simple fact is that
there are people in this world who lack certain social skills, and, coupled with a kind
of mindless greed, these folks think nothing of flooding the Internet with massive vol-
umes of email. These same types of characters will similarly think little of doing the
same with voice. We already know what it’s like to get flooded with telemarketing calls;
try to imagine what happens when it costs the telemarketer almost nothing to send
voice spam. Regulation has not stopped email spam, and it will probably not stop voice
spam, so it will be up to us to prevent it.

204 | Chapter 8: Protocols for VoIP

http://www.voipsa.org

Encrypting Audio with Secure RTP
If you can sniff the packets coming out of an Asterisk system, you can extract the audio
from the RTP streams. This data can be fed offline to a speech processing system, which
can listen for keywords such as “credit card number” or “PIN”, and present that data
to someone who has an interest in it. The stream can also be evaluated to see if there
are DTMF tones embedded in it, which is dangerous because many services ask for
password and credit card information input via the dialpad. In business, strategic in-
formation could also be gleaned from being able to capture and evaluate audio.

Using Secure RTP can combat this problem by encrypting the RTP streams; however,
Asterisk does not support SRTP as of this writing. Work is under way to provide SRTP
support (a patch exists in the trunk release, but it is not known as of this writing whether
this will be back-ported to 1.4).

Spoofing
In the traditional telephone network, it is very difficult to successfully adopt someone
else’s identity. Your activities can (and will) be traced back to you, and the authorities
will quickly put an end to the fun. In the world of IP, it is much easier to remain
anonymous. As such, it is no stretch to imagine that hordes of enterprising criminals
will only be too happy to make calls to your credit card company or bank, pretending
to be you. If a trusted mechanism is not discovered to combat spoofing, we will quickly
learn that we cannot trust VoIP calls.

What Can Be Done?
The first thing to keep in mind when considering security on a VoIP system is that VoIP
is based on network protocols, and needs be evaluated from that perspective. This is
not to say that traditional telecom security should be ignored, but we need to pay
attention to the underlying network.

Basic network security

One of the most effective things that can be done is to secure access to the voice network.
The use of firewalls and VLANs are examples of how this can be achieved. By default,
the voice network should be accessible only to those things that have a need. For ex-
ample, if you do not have any softphones in use, do not allow client PCs access to the
voice network.

Unless there is a need to have voice and data on the same
network, there may be some value in keeping them separate (this can have other benefits
as well, such as simplifying QoS configurations). It is not unheard of to build the in-
ternal voice network on a totally separate LAN, using existing CAT3 cabling and
terminating on inexpensive network switches. It can be less expensive too.

Segregating voice and data traffic.

VoIP Security | 205

Placing your VoIP system in a DMZ can provide an additional layer of protection
for your LAN, while still allowing connectivity for relevant applications. Should your
VoIP system be compromised, it will be much more difficult to use it to launch an attack
on the rest of your network, since it is not trusted. Regardless of whether you deploy
within a DMZ, any abnormal traffic coming out of the system should be suspect.

Hardening your Asterisk server is critical. Not only are there perform-
ance benefits to doing this (running nonessential processes can eat up valuable CPU
and RAM), the elimination of anything not required will reduce the chance that an
exploited vulnerability in the operating system can be used to gain access and launch
an attack on other parts of your network.

Running Asterisk as non-root is an essential part of system hardening. See Chap-
ter 11 for more information.

Encryption

Even though Asterisk does not yet fully support SRTP, it is still possible to encrypt VoIP
traffic. For example, between sites a VPN could be employed. Consideration should
be given to the performance cost of this, but in general this can be a very effective way
to secure VoIP traffic and it is relatively simple to implement.

Physical security

Physical security should not be ignored. All terminating equipment (such as switches,
routers, and the PBX itself) should be secured in an environment that can only be
accessed by authorized persons. At the user end (such as under desks), it can be more
difficult to deliver physical security, but if the network responds only to devices that it
is familiar with (such as restricting DHCP to devices whose MAC is known), unau-
thorized intrusion can be mitigated somewhat.

Conclusion
If you listen to the buzz in the telecom industry, you might think that VoIP is the future
of telephony. But to Asterisk, VoIP is more a case of “been there, done that.” For As-
terisk, the future of telephony is much more exciting. We’ll take a look at that vision a
bit later, in Chapter 15. In the next chapter, we are going to delve into one of the more
revolutionary and powerful concepts of Asterisk: AGI, the Asterisk Gateway Interface.

DMZ.

Server hardening.

206 | Chapter 8: Protocols for VoIP

CHAPTER 9

The Asterisk Gateway Interface (AGI)

Even he, to whom most things that most people would
think were pretty smart were pretty dumb, thought it

was pretty smart.

—Douglas Adams, The Salmon of Doubt

The Asterisk Gateway Interface, or AGI, provides a standard interface by which external
programs may control the Asterisk dialplan. Usually, AGI scripts are used to do ad-
vanced logic, communicate with relational databases (such as PostgreSQL or MySQL),
and access other external resources. Turning over control of the dialplan to an external
AGI script enables Asterisk to easily perform tasks that would otherwise be difficult or
impossible.

This chapter covers the fundamentals of AGI communication. It will not teach you how
to be a programmer—rather, we’ll assume that you’re already a competent program-
mer, so that we can show you how to write AGI programs. If you don’t know how to
do computer programming, this chapter probably isn’t for you, and you should skip
ahead to the next chapter.

Over the course of this chapter, we’ll write a sample AGI program in each of the Perl,
PHP, and Python programming languages. Note, however, that because Asterisk pro-
vides a standard interface for AGI scripts, these scripts can be written in almost any
modern programming language. We’ve chosen to highlight Perl, PHP, and Python be-
cause they’re the languages most commonly used for AGI programming.

Fundamentals of AGI Communication
Instead of releasing an API for programming, AGI scripts communicate with Asterisk
over communications channels (file handles, in programming parlance) known as
STDIN, STDOUT, and STDERR. Most computer programmers will recognize these channels,
but just in case you’re not familiar with them, we’ll cover them here.

207

What Are STDIN, STDOUT, and STDERR?
STDIN , STDOUT , and STDERR are channels by which programs in Unix-like environments
receive information from and send information to external programs. STDIN, or
standard input, is the information that is sent to the program, either from the keyboard
or from another program. In our case, information coming from Asterisk itself comes
in on the program’s STDIN file handle. STDOUT, or standard output, is the file handle that
the AGI script uses to pass information back to Asterisk. Finally, the AGI script can
use the STDERR (standard error) file handle to write error messages to the Asterisk
console.

Let’s sum up these three communications concepts:

• An AGI script reads from STDIN to get information from Asterisk.

• An AGI script writes data to STDOUT to send information to Asterisk.

• An AGI script may write data to STDERR to send debug information to the Asterisk
console.

At this time, writing to STDERR from within your AGI script writes the
information only to the first Asterisk console—that is, the first Asterisk
console started with the -c parameters.

This is rather unfortunate, and will hopefully be remedied soon by the
Asterisk developers.

If you’re using the safe_asterisk program to start Asterisk (which you
probably are), it starts a remote console on TTY9. (Try pressing Ctrl-
Alt-F9, and see if you get an Asterisk command-line interface.) This
means that all of the AGI debug information will print on only that
remote console. You may want to disable this console in safe_asterisk
to allow you to see the debug information in another console. (You may
also want to disable that console for security reasons, as you might not
want just anyone to be able to walk up to your Asterisk server and have
access to a console without any kind of authentication.)

The Standard Pattern of AGI Communication
The communication between Asterisk and an AGI script follows a predefined pattern.
Let’s enumerate the steps, and then we’ll walk through one of the sample AGI scripts
that come with Asterisk.

When an AGI script starts, Asterisk sends a list of variables and their values to the AGI
script. The variables might look something like this:

agi_request: test.py
agi_channel: Zap/1-1
agi_language: en
agi_callerid:
agi_context: default

208 | Chapter 9: The Asterisk Gateway Interface (AGI)

agi_extension: 123
agi_priority: 2

After sending these variables, Asterisk sends a blank line. This is the signal that Asterisk
is done sending the variables, and it is time for the AGI script to control the dialplan.

At this point, the AGI script sends commands to Asterisk by writing to STDOUT. After
the script sends each command, Asterisk sends a response that the AGI script should
read. These actions (sending commands to Asterisk and reading the responses) can
continue for the duration of the AGI script.

You may be asking yourself what commands you can use from within your AGI script.
Good question—we’ll cover the basic commands shortly.*

Calling an AGI Script from the Dialplan
In order to work properly, your AGI script must be executable. To use an AGI script
inside your dialplan, simply call the AGI() application, with the name of the AGI script
as the argument, like this:

exten => 123,1,Answer()
exten => 123,2,AGI(agi-test.agi)

AGI scripts often reside in the AGI directory (usually located
in /var/lib/asterisk/agi-bin), but you can specify the complete path to the AGI script.

AGI(), EAGI(), DeadAGI(), and FastAGI()
In addition to the AGI() application, there are several other AGI applications suited to
different circumstances. While they won’t be covered in this chapter, they should be
quite simple to figure out once you understand the basics of AGI scripting.

The EAGI() (enhanced AGI) application acts just like AGI() but allows your AGI script
to read the inbound audio stream on file descriptor number three.

The DeadAGI() application is also just like AGI(), but it works correctly on a channel
that is dead (i.e., a channel that has been hung up). As this implies, the regular AGI()
application doesn’t work on dead channels.

The FastAGI() application allows the AGI script to be called across the network, so that
multiple Asterisk servers can call AGI scripts from a central location.

In this chapter, we’ll first cover the sample agi-test.agi script that comes with Asterisk
(which was written in Perl), then write a weather report AGI program in PHP, and finish
up by writing an AGI program in Python to play a math game.

* To get a list of available AGI commands, type show agi at the Asterisk command-line interface. You can also
refer to Appendix C for an AGI command reference.

Fundamentals of AGI Communication | 209

Writing AGI Scripts in Perl
Asterisk comes with a sample AGI script called agi-test.agi. Let’s step through the file
while we cover the core concepts of AGI programming. While this particular script is
written in Perl, please remember that your own AGI programs may be written in almost
any programming language. Just to prove it, we’re going to cover AGI programming in
a couple of other languages later in the chapter.

Let’s get started! We’ll look at each section of the code in turn, and describe what it
does:

#!/usr/bin/perl

This line tells the system that this particular script is written in Perl, so it should use
the Perl interpreter to execute the script. If you’ve done much Linux or Unix scripting,
this line should be familiar to you. This line assumes, of course, that your Perl binary
is located in the /usr/bin/ directory. Change this to match the location of your Perl
interpreter.

use strict;

use strict tells Perl to act, well, strict about possible programming errors, such as
undeclared variables. While not absolutely necessary, enabling this will help you avoid
common programming pitfalls.

$|=1;

This line tells Perl not to buffer its output—in other words, that it should write any
data immediately, instead of waiting for a block of data before outputting it. You’ll see
this as a recurring theme throughout the chapter.

Set up some variables
my %AGI; my $tests = 0; my $fail = 0; my $pass = 0;

You should always use unbuffered output when writing AGI scripts.
Otherwise, your AGI may not work as expected, because Asterisk may
be waiting for the output of your program, while your program thinks
it has sent the output to Asterisk and is waiting for a response.

Here, we set up four variables. The first is a hash called AGI, which is used to store the
variables that Asterisk passes to our script at the beginning of the AGI session. The next
three are scalar values, used to count the total number of tests, the number of failed
tests, and the number of passed tests, respectively.

while(<STDIN>) {
 chomp;
 last unless length($_);
 if (/^agi_(\w+)\:\s+(.*)$/) {
 $AGI{$1} = $2;
 }
}

210 | Chapter 9: The Asterisk Gateway Interface (AGI)

As we explained earlier, Asterisk sends a group of variables to the AGI program at
startup. This loop simply takes all of these variables and stores them in the hash named
AGI. They can be used later in the program or simply ignored, but they should always
be read from STDIN before continuing on with the logic of the program.

print STDERR "AGI Environment Dump:\n";
foreach my $i (sort keys %AGI) {
 print STDERR " -- $i = $AGI{$i}\n";
}

This loop simply writes each of the values that we stored in the AGI hash to STDERR. This
is useful for debugging the AGI script, as STDERR is printed to the Asterisk console.†

sub checkresult {
 my ($res) = @_;
 my $retval;
 $tests++;
 chomp $res;
 if ($res =~ /^200/) {
 $res =~ /result=(-?\d+)/;
 if (!length($1)) {
 print STDERR "FAIL ($res)\n";
 $fail++;
 } else {
 print STDERR "PASS ($1)\n";
 $pass++;
 }
 } else {
 print STDERR "FAIL (unexpected result '$res')\n";
 $fail++;
 }

This subroutine reads in the result of an AGI command from Asterisk and decodes the
result to determine whether the command passes or fails.

Now that the preliminaries are out of the way, we can get to the core logic of the AGI
script:

print STDERR "1. Testing 'sendfile'...";
print "STREAM FILE beep \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This first test shows how to use the STREAM FILE command. The STREAM FILE command
tells Asterisk to play a sound file to the caller, just as the Background() application does.
In this case, we’re telling Asterisk to play a file called beep.gsm.‡

† Actually, to the first spawned Asterisk console (i.e., the first instance of Asterisk called with the -c option).
If safe_asterisk was used to start Asterisk, the first Asterisk console will be on TTY9, which means that you
will not be able to view AGI errors remotely.

‡ Asterisk automatically selects the best format, based on translation cost and availability, so the file extension
is never used in the function.

Writing AGI Scripts in Perl | 211

You will notice that the second argument is passed by putting in a set of double quotes,
escaped by backslashes. Without the double quotes to indicate the second argument,
this command does not work correctly.

You must pass all required arguments to the AGI commands. If you want
to skip a required argument, you must send empty quotes (properly
escaped in your particular programming language), as shown above. If
you don’t pass the required number of arguments, your AGI script will
not work.

You should also make sure you pass a line feed (the \n on the end of the
print statement) at the end of the command.

After sending the STREAM FILE command, this test reads the result from STDIN and calls
the checkresult subroutine to determine if Asterisk was able to play the file. The STREAM
FILE command takes three arguments, two of which are required:

• The name of the sound file to play back

• The digits that may interrupt the playback

• The position at which to start playing the sound, specified in number of samples
(optional)

In short, this test told Asterisk to play back the file named beep.gsm, and then it checked
the result to make sure the command was successfully executed by Asterisk.

print STDERR "2. Testing 'sendtext'...";
print "SEND TEXT \"hello world\"\n";
my $result = <STDIN>;
&checkresult($result);

This test shows us how to call the SEND TEXT command, which is similar to the
SendText() application. This command will send the specified text to the caller, if the
caller’s channel type supports the sending of text.

The SEND TEXT command takes one argument: the text to send to the channel. If the
text contains spaces (as in the previous code block), the argument should be encapsu-
lated with quotes, so that Asterisk will know that the entire text string is a single
argument to the command. Again, notice that the quotation marks are escaped, as they
must be sent to Asterisk, not used to terminate the string in Perl.

print STDERR "3. Testing 'sendimage'...";
print "SEND IMAGE asterisk-image\n";
my $result = <STDIN>;
&checkresult($result);

This test calls the SEND IMAGE command, which is similar to the SendImage() application.
Its single argument is the name of an image file to send to the caller. As with the SEND
TEXT command, this command works only if the calling channel supports the receiving
images.

212 | Chapter 9: The Asterisk Gateway Interface (AGI)

print STDERR "4. Testing 'saynumber'...";
print "SAY NUMBER 192837465 \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This test sends Asterisk the SAY NUMBER command. This command behaves identically
to the SayNumber() dialplan application. It takes two arguments:

• The number to say

• The digits that may interrupt the command

Again, since we’re not passing in any digits as the second argument, we need to pass
in an empty set of quotes.

print STDERR "5. Testing 'waitdtmf'...";
print "WAIT FOR DIGIT 1000\n";
my $result = <STDIN>;
&checkresult($result);

This test shows the WAIT FOR DIGIT command. This command waits the specified num-
ber of milliseconds for the caller to enter a DTMF digit. If you want the command to
wait indefinitely for a digit, use -1 as the timeout. This application returns the decimal
ASCII value of the digit that was pressed.

print STDERR "6. Testing 'record'...";
print "RECORD FILE testagi gsm 1234 3000\n";
my $result = <STDIN>;
&checkresult($result);

This section of code shows us the RECORD FILE command. This command is used to
record the call audio, similar to the Record() dialplan application. RECORD FILE takes
seven arguments, the last three of which are optional:

• The filename of the recorded file.

• The format in which to record the audio.

• The digits that may interrupt the recording.

• The timeout (maximum recording time) in milliseconds, or -1 for no timeout.

• The number of samples to skip before starting the recording (optional).

• The word BEEP, if you’d like Asterisk to beep before the recording starts (optional).

• The number of seconds before Asterisk decides that the user is done with the re-
cording and returns, even though the timeout hasn’t been reached and no DTMF
digits have been entered (optional). This argument must be preceded by s=.

In this particular case, we’re recording a file called testagi (in the GSM format), with
any of the DTMF digits 1 through 4 terminating the recording, and a maximum re-
cording time of 3,000 milliseconds.

print STDERR "6a. Testing 'record' playback...";
print "STREAM FILE testagi \"\"\n";

Writing AGI Scripts in Perl | 213

my $result = <STDIN>;
&checkresult($result);

The second part of this test plays back the audio that was recorded earlier, using the
STREAM FILE command. We’ve already covered STREAM FILE, so this section of code
needs no further explanation.

print STDERR "================== Complete ======================\n";
print STDERR "$tests tests completed, $pass passed, $fail failed\n";
print STDERR "==\n";

At the end of the AGI script, a summary of the tests is printed to STDERR, which should
end up on the Asterisk console.

In summary, you should remember the following when writing AGI programs in Perl:

• Turn on strict language checking with the use strict command.§

• Turn off output buffering by setting $|=1.

• Data from Asterisk is received using a while(<STDIN>) loop.

• Write values with the print command.

• Use the print STDERR command to write debug information to the Asterisk console.

The Perl AGI Library
If you are interested in building your own AGI scripts in Perl, you may want to check
out the Asterisk::AGI Perl module written by James Golovich, which is located at http://
asterisk.gnuinter.net. The Asterisk::AGI module makes it even easier to write AGI
scripts in Perl.

Creating AGI Scripts in PHP
We promised we’d cover several languages, so let’s go ahead and see what an AGI script
in PHP looks like. The fundamentals of AGI programming still apply; only the pro-
gramming language has changed. In this example, we’ll write an AGI script to download
a weather report from the Internet and deliver the temperature, wind direction, and
wind speed back to the caller:

#!/usr/bin/php -q
<?php

The first line tells the system to use the PHP interpreter to run this script. The -q option
turns off HTML error messages. You should ensure that there aren’t any extra lines
between the first line and the opening PHP tag, as they’ll confuse Asterisk.

change this to match the code of your particular city
for a complete list of U.S. cities, go to

§ This advice probably applies to any Perl program you might write, especially if you’re new to Perl.

214 | Chapter 9: The Asterisk Gateway Interface (AGI)

http://asterisk.gnuinter.net
http://asterisk.gnuinter.net

http://www.nws.noaa.gov/data/current_obs/
$weatherURL="http://www.nws.noaa.gov/data/current_obs/KMDQ.xml";

This tells our AGI script where to go to get the current weather conditions. In this
example, we’re getting the weather for Huntsville, Alabama. Feel free to visit the web
site listed above for a complete list of stations throughout the United States of America.‖

don't let this script run for more than 60 seconds
set_time_limit(60);

Here, we tell PHP not to let this program run for more than 60 seconds. This is a safety
net, which will end the script if for some reason it takes more than 60 seconds to run.

turn off output buffering
ob_implicit_flush(false);

This command turns off output buffering, meaning that all data will be sent immedi-
ately to the AGI interface and will not be buffered.

turn off error reporting, as it will most likely interfere with
the AGI interface
error_reporting(0);

This command turns off all error reporting, as it can interfere with the AGI interface.
(You might find it helpful to comment out this line during testing.)

create file handles if needed
if (!defined('STDIN'))
{
 define('STDIN', fopen('php://stdin', 'r'));
}
if (!defined('STDOUT'))
{
 define('STDOUT', fopen('php://stdout', 'w'));
}
if (!defined('STDERR'))
{
 define('STDERR', fopen('php://stderr', 'w'));
}

This section of code ensures that we have open file handles for STDIN, STDOUT, and
STDERR, which will handle all communication between Asterisk and our script.

retrieve all AGI variables from Asterisk
while (!feof(STDIN))
{
 $temp = trim(fgets(STDIN,4096));
 if (($temp == "") || ($temp == "\n"))
 {
 break;
 }

‖ We apologize to our readers outside of the United States for using a weather service that only works for U.S.
cities. If you can find a good international weather service that provides its data in XML, it shouldn’t be too
hard to change this AGI script to work with that particular service. Once we find one, we’ll update this script
for future editions.

Creating AGI Scripts in PHP | 215

 $s = split(":",$temp);
 $name = str_replace("agi_","",$s[0]);
 $agi[$name] = trim($s[1]);
}

Next, we’ll read in all of the AGI variables passed to us by Asterisk. Using the fgets
command in PHP to read the data from STDIN, we’ll save each variable in the hash called
$agi. Remember that we could use these variables in the logic of our AGI script, al-
though we won’t in this example.

print all AGI variables for debugging purposes
foreach($agi as $key=>$value)
{
 fwrite(STDERR,"-- $key = $value\n");
 fflush(STDERR);
}

Here, we print the variables back out to STDERR for debugging purposes.

#retrieve this web page
$weatherPage=file_get_contents($weatherURL);

This line of code retrieves the XML file from the National Weather Service and puts
the contents into the variable called $weatherPage. This variable will be used later on
to extract the pieces of the weather report that we want.

#grab temperature in Fahrenheit
if (preg_match("/<temp_f>([0-9]+)<\/temp_f>/i",$weatherPage,$matches))
{
 $currentTemp=$matches[1];
}

This section of code extracts the temperature (in Fahrenheit) from the weather report,
using the preg_match command. This command uses Perl-compatible regular expres-
sions#to extract the needed data.

#grab wind direction
if (preg_match("/<wind_dir>North<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northerly';
}
elseif (preg_match("/<wind_dir>South<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southerly';
}
elseif (preg_match("/<wind_dir>East<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='easterly';
}
elseif (preg_match("/<wind_dir>West<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='westerly';
}

The ultimate guide to regular expressions is O’Reilly’s Mastering Regular Expressions, by Jeffrey E.F. Friedl.

216 | Chapter 9: The Asterisk Gateway Interface (AGI)

elseif (preg_match("/<wind_dir>Northwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northwesterly';
}
elseif (preg_match("/<wind_dir>Northeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northeasterly';
}
elseif (preg_match("/<wind_dir>Southwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southwesterly';
}
elseif (preg_match("/<wind_dir>Southeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southeasterly';
}

The wind direction is found through the use of preg_match (located in the wind_dir tags)
and is assigned to the variable $currentWindDirection.

#grab wind speed
if (preg_match("/<wind_mph>([0-9.]+)<\/wind_mph>/i",$weatherPage,$matches))
{
 $currentWindSpeed = $matches[1];
}

Finally, we’ll grab the current wind speed and assign it to the $currentWindSpeed vari-
able.

tell the caller the current conditions
if ($currentTemp)
{
 fwrite(STDOUT,"STREAM FILE temperature \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE is \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentTemp \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE degrees \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE fahrenheit \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

if ($currentWindDirection && $currentWindSpeed)
{

Creating AGI Scripts in PHP | 217

 fwrite(STDOUT,"STREAM FILE with \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE $currentWindDirection \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE wx/winds \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE at \"\"\n";)
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentWindSpeed \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite($STDOUT,"STREAM FILE miles-per-hour \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

Now that we’ve collected our data, we can send AGI commands to Asterisk (checking
the results as we go) that will deliver the current weather conditions to the caller. This
will be achieved through the use of the STREAM FILE and SAY NUMBER AGI commands.

We’ve said it before, and we’ll say it again: when calling AGI commands, you must
pass in all of the required arguments. In this case, both STREAM FILE and SAY NUMBER
commands require a second argument; we’ll pass empty quotes escaped by the back-
slash character.

You should also notice that we call the fflush command each time we write to
STDOUT. While this is arguably redundant, there’s no harm in ensuring that the AGI
command is not buffered and is sent immediately to Asterisk.

function checkresult($res)
{
 trim($res);
 if (preg_match('/^200/',$res))
 {
 if (! preg_match('/result=(-?\d+)/',$res,$matches))
 {
 fwrite(STDERR,"FAIL ($res)\n");
 fflush(STDERR);
 return 0;
 }
 else
 {
 fwrite(STDERR,"PASS (".$matches[1].")\n");
 fflush(STDERR);

218 | Chapter 9: The Asterisk Gateway Interface (AGI)

 return $matches[1];
 }
 }
 else
 {
 fwrite(STDERR,"FAIL (unexpected result '$res')\n");
 fflush(STDERR);
 return -1;
 }
}

The checkresult function is identical in purpose to the checkresult subroutine we saw
in our Perl example. As its name suggests, it checks the result that Asterisk returns
whenever we call an AGI command.

?>

At the end of the file, we have our closing PHP tag. Don’t place any whitespace after
the closing PHP tag, as it can confuse the AGI interface.

We’ve now covered two different languages in order to demonstrate the similarities
and differences of programming an AGI script in PHP as opposed to Perl. The following
things should be remembered when writing an AGI script in PHP:

• Invoke PHP with the -q switch; it turns off HTML in error messages.

• Turn off the time limit, or set it to a reasonable value (newer versions of PHP
automatically disable the time limit when PHP is invoked from the command line).

• Turn off output buffering with the ob_implicit_flush(false) command.

• Open file handles to STDIN, STDOUT, and STDERR (newer versions of PHP may have
one or more of these file handles already opened; see the previous code for a slick
way of making this work across most versions of PHP).

• Read variables from STDIN using the fgets function.

• Use the fwrite function to write to STDOUT and STDERR.

• Always call the fflush function after writing to either STDOUT or STDERR.

The PHP AGI Library
For advanced AGI programming in PHP, you may want to check out the PHPAGI
project at http://phpagi.sourceforge.net. It was originally written by Matthew Asham
and is being developed by several other members of the Asterisk community.

Writing AGI Scripts in Python
The AGI script we’ll be writing in Python, called “The Subtraction Game,” was inspired
by a Perl program written by Ed Guy and discussed by him at the 2004 AstriCon con-
ference. Ed described his enthusiasm for the power and simplicity of Asterisk when he

Writing AGI Scripts in Python | 219

http://phpagi.sourceforge.net

found he could write a quick Perl script to help his young daughter improve her math
skills.

Since we’ve already written a Perl program using AGI, and Ed has already written the
math program in Perl, we figured we’d take a stab at it in Python!

Let’s go through our Python script:

#!/usr/bin/python

This line tells the system to run this script in the Python interpreter. For small scripts,
you may consider adding the -u option to this line, which will run Python in unbuffered
mode. This is not recommended, however, for larger or frequently used AGI scripts,
as it can affect system performance.

import sys
import re
import time
import random

Here, we import several libraries that we’ll be using in our AGI script.

Read and ignore AGI environment (read until blank line)

env = {}
tests = 0;

while 1:
 line = sys.stdin.readline().strip()

 if line == '':
 break
 key,data = line.split(':')
 if key[:4] <> 'agi_':
 #skip input that doesn't begin with agi_
 sys.stderr.write("Did not work!\n");
 sys.stderr.flush()
 continue
 key = key.strip()
 data = data.strip()
 if key <> '':
 env[key] = data

sys.stderr.write("AGI Environment Dump:\n");
sys.stderr.flush()
for key in env.keys():
 sys.stderr.write(" -- %s = %s\n" % (key, env[key]))
 sys.stderr.flush()

This section of code reads in the variables that are passed to our script from Asterisk,
and saves them into a dictionary named env. These values are then written to STDERR
for debugging purposes.

def checkresult (params):
 params = params.rstrip()
 if re.search('^200',params):

220 | Chapter 9: The Asterisk Gateway Interface (AGI)

 result = re.search('result=(\d+)',params)
 if (not result):
 sys.stderr.write("FAIL ('%s')\n" % params)
 sys.stderr.flush()
 return -1
 else:
 result = result.group(1)
 #debug("Result:%s Params:%s" % (result, params))
 sys.stderr.write("PASS (%s)\n" % result)
 sys.stderr.flush()
 return result
 else:
 sys.stderr.write("FAIL (unexpected result '%s')\n" % params)
 sys.stderr.flush()
 return -2

The checkresult function is almost identical in purpose to the checkresult subroutine
in the sample Perl AGI script we covered earlier in the chapter. It reads in the result of
an Asterisk command, parses the answer, and reports whether or not the command
was successful.

def sayit (params):
 sys.stderr.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stderr.flush()
 sys.stdout.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The sayit function is a simple wrapper around the STREAM FILE command.

def saynumber (params):
 sys.stderr.write("SAY NUMBER %s \"\"\n" % params)
 sys.stderr.flush()
 sys.stdout.write("SAY NUMBER %s \"\"\n" % params)
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The saynumber function is a simple wrapper around the SAY NUMBER command.

def getnumber (prompt, timelimit, digcount):
 sys.stderr.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stderr.flush()
 sys.stdout.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 result = checkresult(result)
 sys.stderr.write("digits are %s\n" % result)
 sys.stderr.flush()
 if result:
 return result
 else:
 result = -1

Writing AGI Scripts in Python | 221

The getnumber function calls the GET DATA command to get DTMF input from the caller.
It is used in our program to get the caller’s answers to the subtraction problems.

limit=20
digitcount=2
score=0
count=0
ttanswer=5000

Here, we initialize a few variables that we’ll be using in our program.

starttime = time.time()
t = time.time() - starttime

In these lines we set the starttime variable to the current time and initialize t to 0. We’ll
use the t variable to keep track of the number of seconds that have elapsed since the
AGI script was started.

sayit("subtraction-game-welcome")

Next, we welcome the caller to the subtraction game.

while (t < 180):

 big = random.randint(0,limit+1)
 big += 10
 subt= random.randint(0,big)
 ans = big - subt
 count += 1

 #give problem:
 sayit("subtraction-game-next");
 saynumber(big);
 sayit("minus");
 saynumber(subt);
 res = getnumber("equals",ttanswer,digitcount);

 if (int(res) == ans) :
 score+=1
 sayit("subtraction-game-good");
 else :
 sayit("subtraction-game-wrong");
 saynumber(ans);

 t = time.time() - starttime

This is the heart of the AGI script. We loop through this section of code and give
subtraction problems to the caller until 180 seconds have elapsed. Near the top of the
loop, we calculate two random numbers and their difference. We then present the
problem to the caller, and read in the caller’s response. If the caller answers incorrectly,
we give the correct answer.

pct = float(score)/float(count)*100;
sys.stderr.write("Percentage correct is %d\n" % pct)
sys.stderr.flush()

222 | Chapter 9: The Asterisk Gateway Interface (AGI)

sayit("subtraction-game-timesup")
saynumber(score)
sayit("subtraction-game-right")
saynumber(count)
sayit("subtraction-game-pct")
saynumber(pct)

After the user is done answering the subtraction problems, she is given her score.

As you have seen, the basics you should remember when writing AGI scripts in Python
are:

• Flush the output buffer after every write. This will ensure that your AGI program
won’t hang while Asterisk is waiting for the buffer to fill and Python is waiting for
the response from Asterisk.

• Read data from Asterisk with the sys.stdin.readline command.

• Write commands to Asterisk with the sys.stdout.write command. Don’t forget
to call sys.stdout.flush after writing.

The Python AGI Library
If you are planning on writing lot of Python AGI code, you may want to check out Karl
Putland’s Python module, Pyst. You can find it at http://www.sourceforge.net/projects/
pyst/.

Debugging in AGI
Debugging AGI programs, as with any other type of program, can be frustrating. Luck-
ily, there are two advantages to debugging AGI scripts. First, since all of the commu-
nications between Asterisk and the AGI program happen over STDIN and STDOUT (and,
of course, STDERR), you should be able to run your AGI script directly from the operating
system. Second, Asterisk has a handy command for showing all of the communications
between itself and the AGI script: agi debug.

Debugging from the Operating System
As mentioned above, you should be able to run your program directly from the oper-
ating system to see how it behaves. The secret here is to act just like Asterisk does,
providing your script with the following:

• A list of variables and their values, such as agi_test:1.

• A blank line feed (\n) to indicate that you’re done passing variables.

• Responses to each of the AGI commands from your AGI script. Usually, typing
200 response=1 is sufficient.

Debugging in AGI | 223

http://www.sourceforge.net/projects/pyst/
http://www.sourceforge.net/projects/pyst/

Trying your program directly from the operating system may help you to more easily
spot bugs in your program.

Using Asterisk’s agi debug Command
The Asterisk command-line interface has a very useful command for debugging AGI
scripts, which is called (appropriately enough) agi debug. If you type agi debug at an
Asterisk console and then run an AGI, you’ll see something like the following:

-- Executing AGI("Zap/1-1", "temperature.php") in new stack
 -- Launched AGI Script /var/lib/asterisk/agi-bin/temperature.php
AGI Tx >> agi_request: temperature.php
AGI Tx >> agi_channel: Zap/1-1
AGI Tx >> agi_language: en
AGI Tx >> agi_type: Zap
AGI Tx >> agi_uniqueid: 1116732890.8
AGI Tx >> agi_callerid: 101
AGI Tx >> agi_calleridname: Tom Jones
AGI Tx >> agi_callingpres: 0
AGI Tx >> agi_callingani2: 0
AGI Tx >> agi_callington: 0
AGI Tx >> agi_callingtns: 0
AGI Tx >> agi_dnid: unknown
AGI Tx >> agi_rdnis: unknown
AGI Tx >> agi_context: incoming
AGI Tx >> agi_extension: 141
AGI Tx >> agi_priority: 2
AGI Tx >> agi_enhanced: 0.0
AGI Tx >> agi_accountcode:
AGI Tx >>
AGI Rx << STREAM FILE temperature ""
AGI Tx >> 200 result=0 endpos=6400
AGI Rx << STREAM FILE is ""
AGI Tx >> 200 result=0 endpos=5440
AGI Rx << SAY NUMBER 67 ""
 -- Playing 'digits/60' (language 'en')
 -- Playing 'digits/7' (language 'en')
AGI Tx >> 200 result=0
AGI Rx << STREAM FILE degrees ""
AGI Tx >> 200 result=0 endpos=6720
AGI Rx << STREAM FILE fahrenheit ""
AGI Tx >> 200 result=0 endpos=8000
 -- AGI Script temperature.php completed, returning 0

You’ll see three types of lines while your AGI script is running. The first type, prefaced
with AGI TX >>, are the lines that Asterisk transmits to your program’s STDIN. The second
type, prefaced with AGI RX <<, are the commands your AGI program writes back to
Asterisk over STDOUT. The third type, prefaced by --, are the standard Asterisk messages
presented as it executes certain commands.

To disable AGI debugging after it has been started, simply type agi no debug at an
Asterisk console.

224 | Chapter 9: The Asterisk Gateway Interface (AGI)

Using the agi debug command will enable you to see the communication between
Asterisk and your program, which can be very useful when debugging. Hopefully, these
two tips will greatly improve your ability to write and debug powerful AGI programs.

Conclusion
For a developer, AGI is one of the more revolutionary and compelling reasons to choose
Asterisk over a closed, proprietary PBX. Still, AGI is only part of the picture. In Chap-
ter 10, we’ll explore another powerful programming interface known as the Asterisk
Manager Interface.

Conclusion | 225

CHAPTER 10

Asterisk Manager Interface (AMI) and
Adhearsion

Do but take care to express yourself in a plain, easy
Manner, in well-chosen, significant and decent Terms,

and to give a harmonious and pleasing Turn to your
Periods: study to explain your Thoughts, and set them
in the truest Light, labouring as much as possible, not

to leave them dark nor intricate, but clear and
intelligible.

—Miguel de Cervantes, Preface to Don Quixote

The Manager Interface
The Asterisk Manager Interface (AMI) is a powerful programmatic interface. It allows
external programs to both control and monitor an Asterisk system.* This interface is
often used to integrate Asterisk with existing business processes and systems, CRM
(Customer Relationship Management) software. It can also be used for a wide variety
of applications, such as automated dialers and click-to-call systems.

The Asterisk Manager Interface listens for connections on a network port. A client
program can then connect to the Asterisk Manager Interface on that port, authenticate
itself, and send commands to Asterisk. Asterisk will then respond to the request, as
well as update the client program with the status of the system.

To use the Manager, you must define an account in the
file /etc/asterisk/manager.conf. This file will look something like this:

[general]
enabled = yes
port = 5038

* Contrast this with the Asterisk Gateway Interface (AGI), which allows Asterisk to launch an external program
from the dialplan. The AGI and AMI interfaces are very much complimentary to each other.

227

bindaddr = 0.0.0.0

[oreilly]
secret = notvery
;deny=0.0.0.0/0.0.0.0
;permit=209.16.236.73/255.255.255.0
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

In the [general] section, you have to enable the service by setting the parameter enabled
= yes. You will need to reload the Manager in order to have this change take effect
(module reload manager from the Asterisk console). The TCP port defaults to 5038.

Next, you create a section for each user that will authenticate to the system. For each
user, you will specify the username in square brackets ([]), followed by the password
for that user (secret), any IP addresses you wish to deny access to, any IP addresses you
wish to permit access to, and the read and write permissions for that user.

It is very important to understand that other than a clear text password
and the ability to restrict IP addresses, there is no security of any kind
on the Manager interface. If you are running Manager on an untrusted
network (or have any other complex needs), you should consider using
David Troy’s excellent AstManProxy to handle all of your connections
to the manager API.

Connecting to the Manager Interface
It is important to keep in mind that the Manager interface is designed to be used by
programs, not fingers. That’s not to say that you can’t issue commands to it directly—
just don’t expect a typical console interface, because that’s not what Manager is for.

Commands to Manager are delivered in packages with the following syntax (lines are
terminated with CR+LF):†

Action: <action type>
Key 1: Value 1
Key 2: Value 2
etc ...
Variable: Value
Variable: Value
etc...

For example, to authenticate with Manager (which is required if you expect to have
any interaction whatsoever), you would send the following:

† Carriage Return followed by Line Feed. This is popularly achieved by pressing the Enter key on the keyboard,
but there are differences across various OS platforms and programming languages, so if you are having trouble
with commands to the interface, it may be worth noting the exact character combination that is required. At
the time of writing, Wikipedia had a respectable writeup on this concept (http://en.wikipedia.org/wiki/
Newline).

228 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline

Action: login
Username: oreilly
Secret: notvery
<CR+LF>

An extra CR+LF on a blank line will submit the entire package to Manager.

Once authenticated, you will be able to initiate actions, as well as see events generated
by Asterisk. On a busy system, this can get quite complicated and become totally im-
possible to keep track of with the unaided eye. To turn keep Asterisk from sending
events, you can add the Events parameter to your login command, like this:

Action: login
Username: oreilly
Secret: notvery
Events: off
<CR+LF>

If you’re worried about sending your secret across the wire in plain text (which you
should be), you can also authenticate using an MD5 challenge-response system, which
works very similar to HTTP digest authentication. To do this, you first call the
Challenge action, which will present you with a challenge token:

Action: Challenge
AuthType: MD5

Response: Success
Challenge: 840415273

You can then take that challenge token, concatenate the plaintext secret onto the end
of it, and calculate the MD5 checksum of the resulting string. The result can then be
used to login without passing your secret in plain text.

Action: Login
AuthType: MD5
Username: Admin
Key: e7a056e1488882c6c509bbe71a049978

Response: Success
Message: Authentication accepted

Sending Commands
Once you’ve successfully logged into the AMI system, you can send commands to
Asterisk by using the other actions. We'll show a few commands here so that you can
get a feel for how they work.

Transferring a call

The Redirect action can be used to transfer a call. After logging in, you should send an
action like the one below:

The Manager Interface | 229

Action: Redirect
Channel: SIP/John-ae201e78
Context: Lab
Exten: 6001
Priority: 1
ActionID: 2340981650981

For each action you sent over the manager interface, you can send along
an arbitrary ActionID value. This will allow you to recognize the re-
sponses from Asterisk as being related to your actions. It is strongly
recommended that you send a unique ActionID with each of your AMI
commands.

This URL transfers the specified channel to another extension and priority in the
dialplan. The response to this action is:

Response: Success
ActionID: 2340981650981
Message: Redirect Successful

Reading a configuration file

To read an Asterisk configuration file via the Manger interface, we can use the the
GetConfig action. The GetConfig action returns the contents of a configuration file, or
portion thereof. The following command retrieves the contents of the file users.conf.

Action: GetConfig
Filename: users.conf
ActionID: 9873497149817

Asterisk then returns the contents of the users.conf file. The response looks like:

Response: Success
ActionID: 987397149817
Category-000000: general
Line-000000-000000: fullname=New User
Line-000000-000001: userbase=6000
Line-000000-000002: hasvoicemail=yes
Line-000000-000003: hassip=yes
Line-000000-000004: hasiax=yes
Line-000000-000005: hasmanager=no
Line-000000-000006: callwaiting=yes
Line-000000-000007: threewaycalling=yes
Line-000000-000008: callwaitingcallerid=yes
Line-000000-000009: transfer=yes
Line-000000-000010: canpark=yes
Line-000000-000011: cancallforward=yes
Line-000000-000012: callreturn=yes
Line-000000-000013: callgroup=1
Line-000000-000014: pickupgroup=1
Line-000000-000015: host=dynamic

230 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

Updating configuration files

It is often useful to be able to update an Asterisk configuration file via the Asterisk
Manager interface. The UpdateConfig action is used to update one or more settings in
a configuration file. For example, to delete a user named 6003 from users.conf you could
issue the following command:

Action: UpdateConfig
Filename: users.conf
Reload: yes
SrcFilename: users.conf
DstFilename: users.conf
Action-00000: delcat
Cat-00000: 6003
ActionID: 5298795987243

Obviously, we've only scratched the surface of the many different actions available as
part of the Asterisk Manager Interface. For a more detailed listing of the available com-
mands, see Appendix F.

The Flash Operator Panel
The Flash Operator Panel (FOP) is one of the most popular examples of the power of
the Manager interface. FOP presents a web-based visual view of your system and allows
you control of calls.

FOP is most commonly used to enable a live attendant to view the users in the system
and connect calls between them. It can also be used in a call-center environment to
provide CRM-triggered screen pops.‡

The FOP management interface is shown in Figure 10-1. To grab a copy of FOP, head
to http://www.asternic.org.

FOP isn’t all that difficult to set up, but it does require several steps to configure. The
configuration of FOP is beyond the scope of this book, but if you head on over to the
FOP web site you will find the latest documentation detailing the installation and con-
figuration process.

FOP has a fantastic community and a popular mailing list. The success of FOP has also
been aided by its inclusion in Trixbox.

Asterisk Development with Adhearsion
Recently, a new bit of technology has come along which has the potential to change
the way we create dialplans.§

‡ Customer Relationship Management (CRM) is an interface that companies use to help manage customer
information and interaction.

The Flash Operator Panel | 231

http://www.asternic.org

A New Approach to Dialplans
Asterisk has matured both in technological innovation and in popularity, but as one
becomes more and more immersed in this wonderful world, one cannot help but bump
into limitations. When you handle a lot of complex, enterprise-grade scripting with
Asterisk alone, you will face many obstacles using dialplan logic. As flexible and pow-
erful as the dialplan is, as a programming language it is quite odd, and much less flexible
than most modern scripting languages. When one needs to provide advanced logic, the
dialplan, the GUI, and even the more advanced AEL can become very frustrating.

As you build more and more complexity into your dialplans, some of the following may
cause you some head-scratching:

• Conditional looping and branching

• Variables

• Complex data structures

• Database/LDAP integration

• Use of third-party libraries

• Exchanging and distributing VoIP functionality

• Extending the configuration languages

• Poor error handling

• Poor date and time handling

Figure 10-1. The Flash Operator Panel management interface

§ We would like to thank Jay Phillips for contributing the ideas and code for this section of the book.

232 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

• Pattern matching

• Usage consistency

• Source code organization

Many people addressed these matters by writing the advanced logic in external pro-
grams such as Perl and PHP, and connecting to Asterisk via AMI and AGI. Unfortu-
nately, while the desired power was now available, these interactions did not always
simplify things for the developer. To the contrary, they often made development more
complex. Using existing technologies in Asterisk, but aiming to deliver power and sim-
plicity, Adhearsion has a new approach.

Asterisk Development with Adhearsion
Adhearsion is an open source (LGPL) framework that is designed to improve Asterisk
solution development. It rests above an Asterisk system, handling parts or all of the
dialplan and, in a few unique ways, manages access to Asterisk with several improved
interfaces. Because it runs as a separate daemon process and integrates through the
already-present Gateway (AGI) and Manager (AMI) interfaces, configuring a context
to use Adhearsion is as simple as adding a few lines to your dialplan or adding a user
to manager.conf.

Adhearsion primarily uses the highly dynamic, object-oriented Ruby programming
language, but has optional support for other languages such as C or Java. In the VoIP
world, many things exist as conceptual objects, which means that object-oriented pro-
gramming can make a lot of sense. Those familiar with Python, Perl, or other scripting
languages should have no trouble picking up Ruby, and for those who don’t, Ruby is
an excellent choice for your first scripting language.

Installing Adhearsion
Ruby software is generally installed through Ruby’s package manager (similar to Linux
package managers, but for the Ruby platform exclusively). Adhearsion exists as a gem
in the standard RubyGems trove so, with Ruby and RubyGems installed, Adhearsion
is only one install command away.

Installing Ruby/RubyGems on AsteriskNOW

AsteriskNOW comes standard with Ruby but not RubyGems (for support reasons).
Thankfully, RubyGems can be easily installed from the Ruby rPath trove with the fol-
lowing command:

conary update rubygems=ruby.rpath.org@rpl:devel
source /etc/profile

Asterisk Development with Adhearsion | 233

Installing Ruby/RubyGems on Linux

Most Linux distributions’ package managers host a Ruby package, though some do
not yet have RubyGems. With your respective distro’s preferred software management
application, install Ruby 1.8.5 or later and RubyGems if available. If RubyGems is not
available in CentOS, you can install Ruby by typing:

yum install ruby

Next, we need RubyGems. You can get that by navigating to /usr/src/, and entering:

wget http://rubyforge.org/frs/download.php/20585/rubygems-0.9.3.tgz
tar zxvf rubygems-0.9.3.tgz
cd rubygems-0.9.3
ruby setup.rb

Installing Ruby/RubyGems on Mac OS X

Ruby actually ships standard with OS X, but you will need to upgrade it and install
RubyGems from MacPorts, an OS X package manager. With MacPorts installed, (avail-
able from http://www.macports.org if you do not already have it) you can install Ruby
and RubyGems with the following command:

sudo port install ruby rb-rubygems

You may also need to add /opt/local/bin to your PATH variable in /etc/profile.

Ruby/RubyGems on Windows

A fantastic “one-click installer” exists for Windows. This installer will automatically
install Ruby, RubyGems, and a few commonly used gems all in a matter of minutes.
You can download the installer from http://rubyforge.org/projects/rubyinstaller.

Installing Adhearsion from RubyGems

Once you’ve followed one of the previous set of instructions for your system to fetch
Ruby and RubyGems, install Adhearsion with the following command:

gem install adhearsion

If any dependencies are found, you will probably need to allow them to install for
Adhearsion to work correctly.

Exploring a New Adhearsion Project
With Adhearsion installed, you can begin creating and initializing a new Adhearsion
project with the newly created ahn command, a command-line utility that manages
nearly everything in Adhearsion.

A sample command for creating a new Adhearsion project is as follows:

ahn create ~/newproject

234 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

http://www.macports.org
http://rubyforge.org/projects/rubyinstaller

This creates a folder at the destination specified containing the directory and file hier-
archy Adhearsion needs to operate. Right away, you should be able to execute the newly
created application by running:

ahn start ~/newproject

To familiarize yourself with the Adhearsion system, take a look through the applica-
tion’s folders and read the accompanying documentation.

Adhearsion dialplan writing

The ability to write dialplans in Adhearsion is typically the first feature newcomers use.
Since Ruby permits such fine-grained modification of the language itself at runtime,
one of the things Adhearsion does is make aesthetic changes, which are intended to
streamline the process of developing dialplans.

Below is an Adhearsion Hello World application:

my_first_context {
 play "hello-world"
}

Though this is completely valid Ruby syntax, not all Ruby applications look like this.
Adhearsion makes the declaration of context names comfortable by interpreting the
dialplan script specially. Your scripts will be located in the root folder of your newly
created Adhearsion application.

As calls come into Asterisk and subsequently Adhearsion, Adhearsion invokes its own
version of the context name from which the AGI request originated. Given this, we
should ensure that a context in extensions.conf has this same name and forwards calls
properly to Adhearsion.

The syntax for directing calls to Adhearsion is as follows:

[my_first_context]
exten => _.,1,AGI(agi://127.0.0.1)

This catches any pattern dialed and goes off to Adhearsion via AGI to handle the call-
processing instructions for us. The IP provided here should of course be replaced with
the necessary IP to reach your Adhearsion machine.

Now that you have a basic understanding of how Adhearsion and Asterisk interact,
here is a more real-world dialplan example in Adhearsion:

internal {
 case extension
when 10..99
 dial SIP/extension
when 6000..6020, 7000..7030
 # Join a MeetMe conference with "join"
 join extension
when _'21XX'
 if Time.now.hour.between? 2, 10
 dial SIP/"berlin-office"/extension[2..4]

Asterisk Development with Adhearsion | 235

 else speak "The German office is closed"
 end
when US_NUMBER
 dial SIP/'us-trunk-out'/extension
when /^\d{11,}$/ # Perl-like regular expression
 # Pass any other long numbers straight to our trunk.
 dial IAX/'intl-trunk-out'/extension
else
 play %w'sorry invalid extension please-try-again'
 end
}

With just this small amount of code we accomplish quite a lot. Even with limited or
no knowledge of Ruby, you can probably infer the following things:

• We use a switch-like statement on the “extension” variable (which Adhearsion
creates for us) and branch depending on that.

• Dialing a number between 10 and 99 routes us to the SIP peer with the dialed
numerical username.

• Any number dialed between 6000 and 6200 or between 7000 and 7030 goes to a
MeetMe conference of that same number. This of course requires meetme.conf to
have these conference numbers configured.

• The _'21XX' option comes straight from Asterisk’s pattern style. Prepending a
String with an underscore in Adhearsion secretly invokes a method that returns a
Ruby regular expression. In a Ruby “case” statement, regular expressions can be
used in a “when” statement to check against a pattern. The end effect should be
very familiar to those with extensions.conf writing experience.

• Adhearsion’s syntax for representing channels also comes straight from Asterisk’s
traditional format. SIP/123 can be used verbatim to represent the SIP peer 123. If
a trunk were involved, SIP/trunkname/username would act as you would expect.

• The speak() method abstracts an underlying text-to-speech engine. This can be
configured to use most of the popular engines.

• A full-blown Perl-like regular can be used in a when statement to perform more
sophisticated pattern matching if Asterisk’s patterns do not suffice.

• Adhearsion defines a few constants that may be useful to someone writing dia-
lplans. The US_NUMBER constant here is a regular expression for matching an
American number.

• If you find the need to play several files in sequence, play() accepts an Array of
filenames. By luck, Ruby has a convenient way of creating an Array of Strings.

This is of course just a simple example and covers only the absolute basics of Adhear-
sion’s dialplan authoring capabilities.

236 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

Database integration

Though immensely successful in the web development space for serving dynamic con-
tent, database integration has always been an underutilized possibility for driving
dynamic voice applications with Asterisk. Most Asterisk applications that do accom-
plish database integration outsource the complexity to a PHP or Perl AGI script because
the extensions.conf or AEL grammars are simply impractical for the level of sophisti-
cation required.

Adhearsion uses a database integration library, called ActiveRecord, developed by the
makers of the Ruby on Rails framework. With ActiveRecord, the end user seldom, if
ever, writes SQL statements. Instead, the developer accesses the database just like any
Ruby object. Because Ruby allows such flexible dynamism, access to the database looks
and feels quite natural. Additionally, ActiveRecord abstracts the differences between
database management systems, making your database access implementation agnostic.

Without going too much into the internals of ActiveRecord and more sophisticated
uses of it, let us consider the following simple MySQL schema:

CREATE TABLE groups (
 `id` int(11) DEFAULT NULL auto_increment PRIMARY KEY,
 `description` varchar(255) DEFAULT NULL,
 `hourly_rate` decimal DEFAULT NULL
);

CREATE TABLE customers (
 `id` int(11) DEFAULT NULL auto_increment PRIMARY KEY,
 `name` varchar(255) DEFAULT NULL,
 `phone_number` varchar(10) DEFAULT NULL,
 `usage_this_month` int(11) DEFAULT 0,
 `group_id` int(11) DEFAULT NULL
);

In practice we would obviously store much more information about the customer and
keep the service usage information in a database-driven call detail record, but this de-
gree of simplicity helps demonstrate ActiveRecord fundamentals more effectively.

To connect Adhearsion to this database, one simply specifies the database access in-
formation in a YAML configuration file like so:

adapter: mysql
host: localhost
database: adhearsion
username: root
password: pass

This tells Adhearsion how to connect to the database, but how we access information
in the tables depends on how we model our ActiveRecord objects. Since an object is
an instance of a class, we write a class definition to wrap around each table. We define
simple properties and relationships in the class with the superclass’s methods.

Here are two classes we may use with the aforementioned tables:

Asterisk Development with Adhearsion | 237

class Customer < ActiveRecord::Base
 belongs_to :group

 validates_presence_of :name, :phone_number
 validates_uniqueness_of :phone_number
 validates_associated :group

 def total_bill
self.group.hourly_rate * self.usage_this_month / 1.hour
 end
end

class Group < ActiveRecord::Base
 has_many :customers
 validates_presence_of :description, :hourly_rate
end

From just this small amount of information, ActiveRecord can make a lot of logical
inferences. When these classes interpret, ActiveRecord assumes the table names to be
customers and groups respectively by lowercasing the classes’ names and making them
plural. If this convention is not desired, the author can easily override it. Additionally,
at interpretation time, ActiveRecord actually peeks into the database’s columns and
makes available many new dynamically created methods.

The belongs_to and has_many methods in this example define relationships between
Customers and Groups. Notice again how ActiveRecord uses pluralization to make the
code more expressive in the has_many :customers line. From this example, we also see
several validations—policies that ActiveRecord will enforce. When creating a new
Customer we must provide a name and phone_number at the bare minimum. No two phone
numbers can conflict. Every Customer must have a Group. Every Group must have a
description and hourly_rate. These help both the developer and the database stay on
track.

Also, notice the total_bill method in the Customer class. On any Customer object we
extract from the database, we can call this method, which multiplies the hourly_rate
value of the group to which the Customer belongs by the Customer’s own phone usage
this month (in seconds).

Here are a few examples that may clarify the usefulness of having Ruby objects abstract
database logic:

everyone = Customer.find :all

jay = Customer.find_by_name "Jay Phillips"
jay.phone_number # Performs a SELECT statement
jay.total_bill # Performs arithmetic on several SELECT statements
jay.group.customers.average :usage_this_month

jay.group.destroy
jay.group = Group.create :description => "New cool group!",
 :hourly_rate => 1.23
jay.save

238 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

Because the database integration here becomes much more natural, Asterisk dialplans
becomes much more expressive as well. Below is a sample dialplan of a service provider
that imposes a time limit on outgoing calls using information from the database. To
remain simple:

Let's assume we're offering VoIP service to customers
whom we can identify with their callerid.

service {
 # The line of code below performs an SQL SELECT
 # statement on our database. The find_by_phone_number()
 # method was created automatically because ActiveRecord
 # found a phone_number column in the database. Adhearsion
 # creates the "callerid" variable for us.
 caller = Customer.find_by_phone_number callerid

 usage = caller.usage_this_month
 if usage >= 100.hours
 play "sorry-cant-let-you-do-that"
 else
 play %w'to-hear-your-account-balance press-1
 otherwise wait-moment'
 choice = wait_for_digit 3.seconds

 p choice
 if choice == 1
 charge = usage / 60.0 * caller.group.hourly_rate
 play %W"your-account will-reflect-charge-of $#{charge}
 this month for #{usage / 60} minutes and
 #{usage % 60} seconds"
 end

 # We can also write back to the "usage_this_month"
 # property of "caller". When the time method finishes,
 # the database will be updated for this caller.
 caller.usage_this_month += time do
 # Code in this block is timed.
 dial IAX/'main-trunk'/extension
 end
 caller.save
 end
}

Robust database integration like this through Adhearsion brings new ease to developing
for and managing a PBX. Centrally persistent information allows Asterisk to integrate
with other services cleanly while empowering more valuable services whose needs are
beyond that of traditional Asterisk development technologies.

Distributing and reusing code

Because an Adhearsion application resides within a single folder, completely copying
the VoIP application is as simple as zipping the files. For one of the first times in the
Asterisk community, users can easily exchange and build upon one another’s successful

Asterisk Development with Adhearsion | 239

application. In fact, open sourcing individual Adhearsion applications is greatly en-
couraged.

Additionally, on a more localized level, users can reuse Adhearsion framework exten-
sions, called helpers, or roll their own. Helpers range from entire sub-frameworks like
the Micromenus framework for integrating with on-phone micro-browsers to adding
a trivial new dialplan method that returns a random quote by Oscar Wilde.

Below is a simple Adhearsion helper written in Ruby. It creates a new method that will
exist across the entire framework, including the dialplan. For simplicity’s sake, the
method downloads an XML document at a specified HTTP URL and converts it to a
Ruby Hash object (Ruby’s associative array type):

def remote_parse url
 Hash.from_xml open(url).read
end

Note that these three lines can work as the entire contents of a helper file. When Ad-
hearsion boots, it executes the script in a way that makes any methods or classes defined
available anywhere in the system.

For some issues, particularly ones of scaling Adhearsion, it may be necessary to profile
out bottlenecks to the king of efficiency: C. Below is a sample Adhearsion helper that
returns the factorial of a number given:

int fast_factorial(int input) {
 int fact = 1, count = 1;
 while(count <= input) {
 fact *= count++;
 }
 return fact;
}

Again, the code here can exist as the entire contents of a helper file. In this case, because
it is written in C, it should have the name factorial.alien.c. This tells Adhearsion to
invoke its algorithm to read the file, add in the standard C and Ruby language devel-
opment headers, compile it, cache the shared object, load it into the interpreter, and
then wrap the C method in a Ruby equivalent. Below is a sample dialplan that simply
speaks back the factorial of six using this C helper:

fast_test {
 num = fast_factorial 6
 play num
}

Note that the C method becomes a first-class Ruby method. Ruby number objects
passed to the method are converted to C’s “int” primitive, and the return value is con-
verted back to a Ruby number object.

Helpers promise robust albeit simple extensibility to a VoIP engineer’s toolbox, but,
best of all, useful helpers can be traded and benefit the entire community.

240 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

Integrate with Your Desk Phone Using Micromenus
With increasing competition between modern IP-enabled desk phone manufacturers,
the microbrowser feature has snuck in relatively unnoticed and underutilized. The
principle is simple: physical desk phones construct interactive menus on a phone by
pulling XML over HTTP or the like. Contending interests, however, lead this
technology amiss: every vendor’s XML differs, microbrowsers are often quirky, and
available features vary vastly.

The Micromenus framework exists as an Adhearsion helper and aims to abstract the
differences between vendors’ phones. For this very particular development domain
(i.e., creating menus), Micromenus use a very simple Ruby-based “Domain Specific
Language” to program logic cleanly and independent of any phone brands.

Below is a simple example Micromenu:

image 'company-logo'
item "Call an Employee" do
 # Creates a list of employees as callable links from a database.
 Employee.find(:all).each do |someone|
 # Simply select someone to call that person on your phone.
 call someone.extension, someone.full_name
 end
end
item "Weather Information" do
 call "Hear the weather report" do
 play weather_report("Portland, OR")
 end
 item "Current: " + weather("Portland, OR")[:current][:temp]
end
item "System Uptime: " + `uptime`

A list item displays in two ways. If given only a text String, Micromenus renders only
a text element. If the arguments contain a do/end block of nested information, that text
becomes a link to a sub-page rendering that nested content.

A call item also has two uses, each producing a link which, when selected, initiates a
call. When call receives no do/end block, it simulates physically dialing the number
given as the first argument. When a do/end block exists and all calls route through
Adhearsion, selecting that item executes the dialplan functionality within the block.
This is a great example of how handling the dialplans and on-screen microbrowsers
within the same framework pays off well.

From this example we can see a few other neat things about Micromenus:

• Micromenus support sending images. If the requesting phone does not support
images, the response will have no mention of them.

• All Adhearsion helpers work here, too. We use the weather helper in this example.

• The Micromenus sub-framework can use Adhearsion’s database integration.

Asterisk Development with Adhearsion | 241

• Ruby can execute a command inside backticks and return the result as a String.
We report the uptime here with it.

This example of course assumes that you have configured your application’s database
integration properly and have an Employee class mapping to a table with an exten
sion and full_name column.

Because Micromenus simply render varying responses over HTTP, a normal web
browser can make a request to the Micromenus’ server, too. For these more high-tech
endpoints, Micromenus render an attractive interface with Ajax loading, DHTML ef-
fects, and draggable windows.

In the interest of “adhering” people together, Micromenus exist as another option to
make your Adhearsion VoIP applications more robust.

Integrating with a Web Application
Though Adhearsion by design can integrate with virtually any application, including
PHP or Java Servlets, Ruby on Rails makes for a particularly powerful partner. Rails is
a web development framework getting a lot of press lately for all the right reasons. Its
developers use Ruby to its full potential, showing how meta-programming really does
eliminate unnecessary developer work. Rails’ remarkable code clarity and application
of the Don’t Repeat Yourself (DRY) principle served as a strong inspiration to the in-
ception of Adhearsion as it exists today.

Starting with Adhearsion version 0.8.0, Adhearsion’s application directory drops in
place atop an existing Rails application, sharing data automatically. If you have needs
to develop a complex web interface to VoIP functionality, consider this deadly duo.

Using Java
Eyebrows around the world raised when Sun announced their hiring of the two core
developers of the JRuby interpreter project, Charles Nutter and Thomas Enebo, in
September 2006. JRuby is a Ruby interpreter written in Java instead of C. Because JRuby
can compile parts of a Ruby application to Java bytecode, JRuby is actually outper-
forming the C implementation of Ruby 1.8 in many different benchmarks and promises
to outperform Ruby 1.8 in all cases in the near future.

A Ruby application running in JRuby has the full benefit of not only Ruby libraries but
any Java library as well. Running Adhearsion in JRuby brings the dumbfounding as-
sortment of third-party Java libraries to PBX dialplan writing. If your corporate
environment requires tight integration with other Java technologies, embedding Ad-
hearsion in a J2EE stack may offer the flexibility needed.

242 | Chapter 10: Asterisk Manager Interface (AMI) and Adhearsion

More Information
For more information about the fast-moving Adhearsion community, including com-
plete walkthroughs, see Adhearsion’s official web site at http://adhearsion.com, Ad-
hearsion’s official blog at http://blog.adhearsion.com, the web site of Adhearsion’s
parent consulting company http://codemecca.com, or for help learning Ruby, see http://
jicksta.com.

Asterisk Development with Adhearsion | 243

http://adhearsion.com
http://blog.adhearsion.com
http://codemecca.com
http://jicksta.com
http://jicksta.com

CHAPTER 11

The Asterisk GUI Framework

…I was constructing a lighthouse while all the others
were making ships.

—Charles Simic

This chapter introduces the components that comprise the GUI and help it work with
Asterisk. It describes the installation of the web server and the GUI components for
those who are not using the AsteriskNOW distribution. It also shows you how to
modify the GUI to suit your purposes. Technical information is also provided so that
developers wishing to create their own GUI or application can utilize the web server
and GUI components. We’d like to thank the folks at Digium for writing this chapter,
especially the code examples, which they developed and tested.

Why a GUI for Asterisk?
Since the beginning, Asterisk has been a phone system for the brave. In the early days
it took guts and more than a bit of tenacity to make Asterisk do your bidding. Those
willing to accept the learning curve, wade into the config files, and fight for their calls
were rewarded with a powerful, flexible phone system (as well as a very marketable
skill set). However, the mass market was not, and is not, ready to script extensions,
manage peers, and handle the other tasks that are the crux of Asterisk administration.

Since the early pre-1.0 days, people have tried to tame the mighty Asterisk with config
file generators tied to databases and managed via a range of graphical user interfaces
(GUIs). The most successful of these did a fine job of creating an Asterisk-based ap-
plication, but none of them provided the full flexibility that the raw scripting environ-
ment offers. By replacing the digital haiku of the dialplan with a limited list of options,
the resulting system is reduced from Asterisk to an Asterisk-based system. Not a bad
thing, but not the whole enchilada.*

* In fact, two of the authors of this book once attempted to write the ultimate Asterisk GUI. Lucky for you,
they abandoned the project and began writing Asterisk documentation instead!

245

In order for a GUI to be the Asterisk GUI, it would have to leave intact the manually
scripted configuration files that have been the lingua franca of Asterisk since the dawn
of time. It would have to provide a simple, graphical means of configuration without
compromising the underlying Asterisk software or irrevocably fixing decisions that
should be left open to the end user. It would also have to provide advanced functionality
without taxing the computer or stealing valuable resources from the core goal of pro-
cessing calls.

Coinciding with the release of Asterisk 1.4, Digium launched the Asterisk GUI project.
The GUI was originally conceived as a component of Digium’s Asterisk embedded
appliance. The appliance, sold as the Asterisk Appliance Developers Kit (AADK) as
well as in a standalone configuration, is a small, solid-state Linux computer with op-
tional analog (and potentially digital) interfaces. The GUI was built using a flexible and
expandable framework that placed as much of the display and validation logic as pos-
sible on the client computer. It also took into consideration the need to preserve
handwritten config files while providing an automated means of editing them. The
resulting framework is known as AJAM (a play on the popular “Web 2.0” technology
known as Ajax), which means Asynchronous JavaScript and Asterisk Manager. The
core AJAM code, a series of AJAM-enabled web pages, and an extension to the Asterisk
manager work together to form the Asterisk GUI framework.

What Is the GUI?
The Asterisk GUI is the interface that comes with the AsteriskNOW distribution or
can be added to an existing Asterisk installation. The default interface is geared toward
the user who wants to use Asterisk as a PBX for a small business with fairly typical
telecom needs. It can best be thought of as a sample of what can be done using AJAM;
think of it as a beta interface that can be expected to evolve according to the desires of
the community. This has caused a lot of excitement in the Asterisk community, because
the underlying technologies behind the GUI raise the bar on what a PBX interface can
become. It also enables you to build your own interfaces that are tuned to your unique
requirements.

Mark Spencer Talks About the GUI
Asterisk is a powerful telephony platform. However, that power is only as valuable as its
ability to be used by a particular target user. There is a lot of value to having graphical
interfaces (GUIs) for Asterisk. Most GUIs are specifically designed to support a particular
task. For example, some GUIs are designed specifically for voicemail systems. Others are
specifically targeted to the hospitality industry. There is some demand to have a GUI that
targets Asterisk generally, but there is a natural trade-off between the ease of use and
simplicity of a GUI, versus the number of available features. For example, the GUI that
a seasoned systems administrator might require would likely be different than that of an
office administrator who is only responsible for simple moves, adds, and changes to the
system. Given this wide ranging demand, Digium developed a GUI framework called

246 | Chapter 11: The Asterisk GUI Framework

(uncreatively) the Asterisk GUI. Rather than developing a single GUI, Digium developed
different GUIs and a framework to trivialize the creation and modification of GUIs for
different segments.

A second goal was to make sure that the GUI interacted with Asterisk’s traditional con-
figuration methods in a way that did not preclude someone from using them. Most GUIs
for Asterisk use an intermediate configuration format or database, then spit out configs
for Asterisk to use. Unfortunately that means that any option that is not presented within
the GUI cannot be “manually” set in the configuration files. By contrast, the Asterisk
GUI actually modifies your traditional Asterisk configuration files, meaning that your
changes in the GUI and your changes to the files themselves can co-exist and even flow
back and forth. As an example, if you change the caller ID for a user in users.conf then
refresh the GUI, you’ll see the change in the GUI as well. Likewise if you change it in the
GUI and reload the file, you’ll see the change in the file. If you add new settings that are
not presented in the GUI (for example if you add nat=yes to a particular entry in
users.conf, then change the caller ID in the GUI, you’ll see that the nat=yes line will remain
in the file even though the caller ID change goes through. Comments are also generally
preserved across GUI edits. This means that not only is the GUI no longer required to
display all possible configurations, since esoteric ones can be set manually. This also
means that when someone starts by using the Asterisk GUI and then outgrows it, there
is a natural path for them to be able to start creating more sophisticated functions without
abandoning the GUI with which they’re familiar.

Using the GUI

When you first log in to a newly created GUI, the system walks you through a wizard
that lets you set up the basic elements of your phone system.

The GUI may not be able to detect all types of TDM interfaces, and thus
may report that it cannot find any cards even though you have some
installed. It is expected that the GUI will eventually be able to detect
and manage any cards that use the Zaptel interface, but this function-
ality is going to be complex, and is still in development at this time.

The wizard walks you through some basic settings such as extension length and dialing
rules. We are not going to get into detail on how the default GUI works. It is in constant
development, and what we write about here is not likely to be what you will experience
when you read this.

GUI elements

The standard GUI that comes with AsteriskNOW (or can be downloaded via SVN) has
a standard set of elements that represent the sorts of things a typical small office PBX
might want. The menu items are currently:

• Users

• Conferencing

• Voicemail

What Is the GUI? | 247

• Call Queues

• Service Providers

• Calling Rules

• Incoming Calls

• Voice Menus

• Record a Menu

• Active Channels

• Graphs

• System Info

• Backup

• Options

Architecture of the Asterisk GUI
Before we get too far into exploring the Asterisk GUI (or developing your own), it’s
important to understand the flow of information between the client (the web browser)
and Asterisk. Since these interfaces are Ajax applications, there are a lot of pieces that
aren’t immediately obvious. The flow of control goes something like this:

• The browser “surfs to” the URL for your management application.

• Asterisk’s web server sends the browser an HTML page, libraries, and the appli-
cation itself (which is written in JavaScript and makes heavy use of Ajax).

• The user interacts with the browser; as needed, the JavaScript application sends
commands back to the web server. These commands are in the form of URLs that
request some action from the Asterisk server itself.

• The web server interprets the URLs. If the user has logged in successfully, it sends
a command (an action) to Asterisk via the Asterisk Manager Interface (AMI), de-
scribed in Chapter 10.

• Asterisk executes the action and the results (a status code and possibly data) to the
web server.

• The web server sends Asterisk’s response back to the JavaScript application on the
browser.

• The JavaScript application updates the browser’s display.

While it may sound a little complicated at first glance, don’t be intimidated. It’s a very
flexible and powerful architecture that can be used for a myriad of applications, not
just an Asterisk GUI. For now, however, we’ll concentrate on enhancing the Asterisk
GUI. Let’s begin by configuring the underlying pieces, and then move on to installing
and modifying the Asterisk GUI.

248 | Chapter 11: The Asterisk GUI Framework

Components of the Asterisk GUI
Let’s take a closer look at some of the key components of the Asterisk GUI. We’ll use
these components later in the chapter to modify the Asterisk GUI.

Asterisk Manager Interface

As explained in Chapter 10, the Asterisk Manager Interface allows external programs
to control Asterisk. The Manager interface is the heart of the Asterisk GUI, as it does
all of the heavy lifting.

Manager over HTTP and the Asterisk web server

The web server built into Asterisk allows manager commands to be sent to Asterisk via
HTTP, instead of creating a socket connection directly to the Manager interface. This
makes it much simpler for a web application to issue AMI commands to Asterisk using
the Asynchronous JavaScript Asterisk Manager (AJAM), which we will cover shortly.
The web server can also be configured to serve static content, such as HTML files and
images.†

AJAM and JavaScript

The AJAM framework uses JavaScript and XML to asynchronously send commands to
Asterisk, and to update the information displayed in the web browser.

Installing the Asterisk GUI
If you didn’t install AsteriskNOW, you need to download and install the Asterisk GUI
files. Once the files are downloaded, you simply compile and install them as part of
your Asterisk installation.

You need Asterisk 1.4 or later in order use the Asterisk GUI.

† You may be asking yourself, “Why embed a web server inside of Asterisk? Why not just use an external web
server?” While you can use an external web server to serve up the Asterisk GUI, it’s beyond the scope of this
chapter, as the security model behind Ajax permits Ajax requests only to the same domain, port, and protocol
that sent the HTML page. This is often referred to as the same-origin policy.

Installing the Asterisk GUI | 249

You can get the latest version of the GUI files by checking them out of Digium’s Sub-
version repository.‡ If you have Subversion installed on your computer, you can
downloaded the GUI code by using the following command:

cd /usr/src # or wherever you prefer to download source code to
svn co http://svn.digium.com/svn/asterisk-gui/trunk asterisk-gui

Installing the GUI is simple as this:

cd asterisk-gui
./configure
make
make install
make samples

After running the previous commands, the GUI files are installed and part of your
Asterisk distribution.

Setting up httpd.conf and manager.conf
Configuring the Asterisk web server to process AJAM requests involves several simple
steps. In the /etc/asterisk/http.conf file, add (or un-comment) the following:

[general]
enabled=yes
enablestatic=yes ; without this, you can only send AMI commands, not display
 ; html content

bindaddr=0.0.0.0 ; address you want the Asterisk HTTP server to respond on
bindport=8088 ; port you want the Asterisk HTTP server to respond on
prefix=asterisk ; will form part of the URI, similar to a directory name

Now that we’ve got httpd.conf set up, we can serve up content to a browser. To allow
the web client to send commands to Asterisk, we have to make some changes to the
Asterisk Manger Interface (AMI). We do this by adding a few lines to the [general]
section of manager.conf, and by adding a user account with the config permission set.
Open up manager.conf and edit it to match the following:

[general]
enabled=yes ; you may already have AMI enabled if you are using it for other things
webenabled=yes ; this enables the interaction between the Asterisk web server and AMI

[asterisk_http] ; you can name the user whatever you want
secret = gooey
read = system,call,log,verbose,command,agent,user,config
write = system,call,log,verbose,command,agent,user,config

Save the changes and restart Asterisk. You should be able to connect to Asterisk’s web
server through the following URI:

‡ There is currently no way to download the GUI via FTP. That situation may change at any time, so feel free
to check the Asterisk web site for updated information.

250 | Chapter 11: The Asterisk GUI Framework

http://localhost:8088/asterisk/static/ajamdemo.html

If for some reason you’re having problems getting to that demo page, go back to the
asterisk-gui source code directory and run:

make checkconfig

And that’s it! Asterisk is now web-enabled. Now, let’s move on to the actual work of
developing with the Asterisk GUI.

Developing for the Asterisk GUI
Once you’ve installed the files for the Asterisk GUI, you can begin to play with devel-
oping for the GUI. Over the next few sections, we’ll walk through setting up the various
components and putting them together to enhance and expand the capabilities of the
GUI.

Issuing Manager Commands over HTTP
The Asterisk GUI issues commands to Asterisk by calling specially crafted URLs to the
Asterisk web server. This section provides examples of some commonly used com-
mands (actions) and the corresponding web server responses. These AMI URLs have
the following general structure:

http://hostname:8088/asterisk/rawman?action=command&....parameter=value pairs...
http://hostname:8088/asterisk/manager?action=command&....parameter=value pairs...
http://hostname:8088/asterisk/mxml?action=command&....parameter=value pairs...

The difference between the rawman, manager and mxml URLs is important. The web server
exports three different views of the AMI interface. If you use a rawman URL, the server
returns a series of keyword/value pairs in the HTTP response. If you use a manager URL,
the server returns the result formatted as HTML. In a similar style, if you use a mxml
URL, the server returns the results formatted in XML. For modern Ajax-style applica-
tions, the rawman and mxml forms are probably more useful.§

The actions that can be sent to the server, along with their parameters, are the ordinary
manager commands described in Appendix F. Note that the LOGIN and CHALLENGE ac-
tions are unique in that they aren’t sent to Asterisk itself, but are processed by the
Manager interface to authenticate the user. If the user hasn’t authenticated correctly,
the server returns an error response rather than sending the action to Asterisk for pro-
cessing.

Let’s look at some commonly used actions, and see how we can use them to control
the server.

§ By similar reasoning, the manager form is much easier for humans to use for debugging purposes.

Developing for the Asterisk GUI | 251

LOGIN

The LOGIN command authenticates credentials for the Manager interface’s HTML view.
Once you are logged in, Asterisk stores a cookie on your browser (valid for the length
of the httptimeout setting). This cookie is used to connect to the same session. The URL:

http://localhost:8088/asterisk/rawman?action=login&username=asterisk_http
&secret=gooey

sends a login command to the web server that includes the credentials. If successful,
the web server responds with:

Response: Success
Message: Authentication accepted

This, of course, is a very simplistic way for a login to work. Sending the username and
secret password in a URL is bad practice, though it’s very useful during development.
A more appropriate way to handle the login, and an example of more complex com-
mand processing, is to use a challenge/response sequence. Issue a request like this:

http://localhost:8088/asterisk/rawman?action=challenge&AuthType=md5

The CHALLENGE command initiates a challenge/response sequence that can be used to
log in a user. The server responds by sending a challenge (an arbitrary string) in the
response:

Response: Success
Challenge: 113543555

Your application answers the challenge by computing the MD5 hash of the challenge
concatenated with the user’s password. Here’s how a user might manually calculate
the MD5 hash:

echo -n 113543555gooey | md5sum
 50a0f43ad4c9d99a39f1061cf7301d9a -

You can then use the calculated hash as the login key in a URL like this:

http://localhost:8088/asterisk/rawman?action=login&username=asterisk_http
&authtype=md5&key=50a0f43ad4c9d99a39f1061cf7301d9a

For security reasons, the login action must take place within five seconds
of the challenge action. Note also that cookies must be enabled for the
challenge/response to work, as the cookie ensures that the login action
uses the same manager session ID as the challenge action.

If you use a manager URL to request the challenge (instead of using rawman), the response
will be formatted as HTML:

<title>Asterisk™ Manager Interface</title>
<body bgcolor="#ffffff">
<table align=center bgcolor="#f1f1f1" width="500">
<tr><td colspan="2" bgcolor="#f1f1ff"><h1> Manager Tester</h1></td></tr>

252 | Chapter 11: The Asterisk GUI Framework

<tr><td>Response</td><td>Success</td></tr>
<tr><td>Challenge</td><td>113543555</td></tr>
</table>
</body>

Similarly, if you use the mxml view instead, you will receive a response formatted as XML:

<Ajax-response>
 <response type='object' id='unknown'>
 <generic response='Success' challenge='113543555' />
 </response>
</Ajax-response>

Other than the formatting, there are no other differences between the three types of
responses. For most applications, digging the challenge out of the keyword/value pairs
will be much simpler than using rawman or mxml in a situation like this, where you don’t
need to display the HTML to the user.

Transferring a call

The REDIRECT action can be used to transfer a call. Simply generate a URL such as:

http://localhost:8088/asterisk/rawman?action=redirect&channel=SIP/John-ae201e78
&priority=1&exten=6001

This URL transfers the specified channel to another extension and priority in the
dialplan. The response to this action is:

Response: Success
Message: Redirect Successful

Reading a configuration file

The GETCONFIG command returns the contents of a configuration file, or portion thereof.
The URL:

http://localhost:8088/asterisk/rawman?action=getconfig&filename=users.conf

returns the contents of the users.conf file. The Asterisk GUI uses this functionality to
present the current Asterisk configuration to the end user. The response looks like this:

Response: Success
 Category-000000: general
 Line-000000-000000: fullname=New User
 Line-000000-000001: userbase=6000
 Line-000000-000002: hasvoicemail=yes
 Line-000000-000003: hassip=yes
 Line-000000-000004: hasiax=yes
 Line-000000-000005: hasmanager=no
 Line-000000-000006: callwaiting=yes
 Line-000000-000007: threewaycalling=yes
 Line-000000-000008: callwaitingcallerid=yes
 Line-000000-000009: transfer=yes
 Line-000000-000010: canpark=yes
 Line-000000-000011: cancallforward=yes

Developing for the Asterisk GUI | 253

 Line-000000-000012: callreturn=yes
 Line-000000-000013: callgroup=1
 Line-000000-000014: pickupgroup=1
 Line-000000-000015: host=dynamic
 Category-000001: 6007
 Line-000001-000000: fullname=Bill Savage
 Line-000001-000001: secret=1234
 Line-000001-000002: email=bsavage@digium.com
 Line-000001-000003: cid_number=6001
 Line-000001-000004: zapchan=
 Line-000001-000005: context=numberplan-custom-1
 Line-000001-000006: hasvoicemail=yes
 Line-000001-000007: hasdirectory=no
 Line-000001-000008: hassip=yes
 Line-000001-000009: hasiax=yes
 Line-000001-000010: hasmanager=no
 Line-000001-000011: callwaiting=yes
 Line-000001-000012: threewaycalling=yes
 Line-000001-000013: mailbox=6007
 Line-000001-000014: hasagent=yes
 Line-000001-000015: group=

Updating configuration files using UPDATECONFIG

The UPDATECONFIG action is used to update one or more settings in a configuration file.
For example, to delete a user you should use a URL like this:

http://localhost:8088/asterisk/rawman?action=updateconfig&reload=yes&srcfilename
=users.conf&dstfilename=users.conf&Action-000000=delcat&Cat-000000=6003&
Var-000000=&Value-000000=

Error response

A user must be logged in to the web server before any other commands can be issued.
Any of the commands we’ve discussed will return an error response if the user is not
authenticated. If it’s not given by an authenticated user, this URI http://localhost:8088/
asterisk/rawman?action=ping returns this response to indicate an error:

Response: Error
Message: Authentication Required

Ajax, AJAM, and Asterisk
As an acronym, Ajax stands for Asynchronous JavaScript and XML. While the term
includes the words asynchronous and XML, this does not mean that you can make only
asynchronous requests, nor are you required to use XML. Some authors describe Ajax
as simply a combination of HTML, JavaScript, DHTML, and DOM. The next gener-
ation browsers, such as Mozilla/Firefox, use an XMLHttpRequest (a JavaScript object)
to send an asynchronous request to the server. The request is made in the background
and processed by the server.

254 | Chapter 11: The Asterisk GUI Framework

Back on the browser, the result is handled by a callback: whatever the server returns
can be stored and used to update the page being displayed. For Internet Explorer 5 or
later, the XMLHttp ActiveX object serves the same purpose.

Form processing in a traditional web application

HTML forms are usually submitted by using a submit button (type=submit). When the
user clicks the submit button, processing stops, and doesn’t continue until the server
returns a new page:

<FORM action="login.php" method="POST">
 <input type=text name="username">
 <input type=password name="password">
 <input type=submit>
</FORM>

Before going any further with Ajax or JavaScript, let’s take a look at how a traditional
web application works. Traditional web applications use HTML’s <FORM> element to
define a form in which all of the parameters a user needs to send to the server are defined.
In addition the action="login.php" informs the browser where to send all of these
variables. The method="POST" tells the browser how to send these variables to the server.

Form processing in an Ajax application

An Ajax application uses JavaScript to send the contents of a form to the server. If you
have made the request asynchronously, your JavaScript code doesn’t wait for the server
to respond. This also means that you can let the users continue to interact with the
page, even though a request may be taking place in the background. This can be dan-
gerous and, thus, you may want to restrict certain actions until a request has completed.
The browser, by default, gives no visual indication that a request is being made in the
background. It is your responsibility to inform the user of the progress of a request.
Here’s the code for submitting the contents of the username and password fields via
Ajax:

<script language="javascript" type="text/javascript">
 function submitform(){
 var uname = document.getElementById("username").value;
 var pwd = document.getElementById("password").value;
 // xmlHttp = new ActiveXObject("Msxml2.XMLHTTP"); // IE 7
 // xmlHttp = new ActiveXObject("Microsoft.XMLHTTP"); // IE 5
 xmlHttp = new XMLHttpRequest(); // Mozilla or Firefox

 var url = "/rawman?action=login&username=" + escape(uname) + "&secret=" + escape(pwd);

 xmlHttp.open("GET", url, true);
 xmlHttp.onreadystatechange = dosomething;
 // dosomething() would be another JavaScript function
 xmlHttp.send(null);
}
</script>

Developing for the Asterisk GUI | 255

The getElementById() method reads the value of the username and the password fields.
This code then gets an XMLHttpRequest object, which it uses to send these values back
to the server. Note that the kind of object you need depends on whether your users are
using Internet Explorer 7, 5, or Mozilla/Firefox. It’s fairly easy to write code to handle
all of these situations, or to use a library like Prototype to handle platform independence
for you. The username and password are encoded in a URL and sent to the server. The
call to xmlHttp.onreadystatechange registers a handler to process the result that the
server returns to us.

This code only deals with making the XMLHttp request, and it tells the browser to call
the dosomething() function when there is a response from the server. Here’s a
dosomething() function that handles this response:

<script language="javascript" type="text/javascript">
 function dosomething() {
 if (xmlHttp.readyState == 4) {
 var login_response = xmlHttp.responseText;
 }
 }
</script>

Make sure that each XMLHttp step has completed (with either success
or failure) before performing the next one.

This function is called whenever there’s a change in the state of the HTTP request. The
if statement saves the response only if the request’s readyState is 4, which means that
the request has completed. The JavaScript variable login_response now contains the
response of the login page.

Note that this is very far from being production-ready code. In particular, the simplistic
username and password handling is appropriate for testing, but would be a serious
security problem in a production system—even if the application is used only on a
private network. To build more robust and secure password handling, use the chal-
lenge/response system presented earlier. If you want to learn more about writing Ajax
web applications, we recommend Head Rush Ajax by Brett McLaughlin (O’Reilly).

The Prototype framework

Prototype (http://prototypejs.org) is a JavaScript framework released under an MIT-style
license. Prototype can make your job extremely easy while developing an Ajax appli-
cation. It provides many ways to make your code shorter and clearer. For example, in
the submitform function, the call to document.getElementById() can be replaced by the
$() function. Likewise, the call to value to get the DOM element’s content can be
replaced with a call to $F(). Thus, document.getElementById("username").value be-
comes simply $F('username'); the result is code that’s much simpler and more readable.

256 | Chapter 11: The Asterisk GUI Framework

http://prototypejs.org

Prototype also makes it easy to make XMLHttp requests in an elegant manner. Using
Prototype’s Ajax object, the submitform() function can be rewritten as:

<script language="javascript" type="text/javascript">
function submitform(){
 var url = '/rawman';
 var pars = 'username=' + escape($F('username')) + '&secret=' + escape($F('password'));

var myAjax = new Ajax.Request(url,
 { method: 'get',
 parameters: pars,
 onComplete: dosomething
 });

}
</script>

Not only is this code much shorter, you don’t have to write browser-specific code in
your web pages; Prototype takes care of the differences between Mozilla/Firefox and
the various versions of Internet Explorer. Furthermore, it takes care of testing the re-
quest’s readyState, so you leave that annoying if statement out of your handler.
Prototype has lots of built-in functions, some of which have been extensively used in
the Asterisk framework. There’s no room to discuss them here, but for more informa-
tion, see the Short Cuts Prototype Quick Reference by Scott Raymond and
Prototype and Scriptaculous: Taking the Pain Out of JavaScript by Chris Angus, both
from O’Reilly.

Customization of the GUI
Now that we’ve explored the different pieces that form the foundation of the Asterisk
GUI, we have what we need to be able to explore the GUI itself and modify it to fit our
needs. To get to the Asterisk GUI, go to the following address in your browser: http://
localhost:8088/asterisk/static/config/cfgbasic.html.

Looking at Figure 11-1 might lead you to conclude that the Asterisk GUI is simply one
more Asterisk GUI in an already crowded space. Nothing could be further from the
truth. This GUI doesn’t just allow you to tweak it, it practically begs you to. In this
section we are going to discuss how you can modify the GUI and use AJAM to build
your own extensions to the GUI. In order to benefit the most from this information,
you need some HTML and JavaScript knowledge.

The GUI home page is named cfgbasic.html. All other pages are loaded into the iframe
contained within the cfgbasic.html page. By default, cfgbasic.html loads home.html into
the main frame.

For most changes to the GUI, you’ll eventually need to modify cfgbasic.html, which is
the login screen.

Developing for the Asterisk GUI | 257

Adding a new tab to the GUI

As an example of customizing the Asterisk GUI, let’s create a new tab that displays the
contents of extensions.conf. First, we need to create a file and put it in the /var/lib/
asterisk/static-html/config directory. In this example, we’ll name the file test.html:

<script src="scripts/prototype.js"></script>
<script src="scripts/astman.js"></script>
<script>
function localAjaxinit() {
 parent.loadscreen(this);
 makerequest('g','extensions.conf', '' , function(t){
 $('ExtensionsDotConf').innerHTML = "<PRE>" + t + "</PRE>";
 });
}
</script>
<body onload="localAjaxinit()" bgcolor="EFEFEF">
 <div id="ExtensionsDotConf"></div>
</body>

This code simply displays the configuration of the extensions.conf file. Obviously it’s a
very simple example, but it shows the fundamentals of creating a new page for the
Asterisk GUI. Let’s walk through the example step by step.

The first line tells the browser to load the Prototype library. The second line tells the
browser to load the astman.js file, which contains much of the code designed to interact
with the Manager interface.

Figure 11-1. A screenshot of the Asterisk GUI

258 | Chapter 11: The Asterisk GUI Framework

Next, we define a function called localAjaxinit. The localAjaxinit function first tells
this page’s parent (cfgbasic.html in this case) to run the loadscreen function, passing in
this page as the parameter. This causes the main GUI screen to load our new
test.html inside the iframe. The second thing we do inside the localAjaxinit function
is to use the makerequest function. The makerequest function is defined in astman.js and
makes it very convenient to make requests to the web server.‖

The first parameter of the makerequest function specifies what type of request is being
made. It can be set to any of the following:

'g'
Use the GetConfig action to retrieve the configuration from the configuration file
specified in the second parameter.

'u'
Use the UpdateConfig action to update the configuration in the configuration file
specified in the second parameter. The third parameter to the function specifies
the configuration data that should be updated.

''
If the first parameter to the makerequest function is a set of single quotes, then the
custom action specified in the third parameter will be sent.

The fourth parameter is the callback function that will be called with the response to
the Ajax request.

Examples of Using makerequest
As an example, the following code snippet shows three different ways to use the
makerequest function. In the first, we’ll get the configuration data from users.conf. In
the second, we’ll update musiconhold.conf and change the value of the random setting
in the default class. Last but not least, we’ll call the Ping action. Each of them sets a
callback function named t that simply replaces the contents of the div with the response
of the Ajax call.

makerequest('g', 'users.conf', '' ,
 function(t) { $('ExtensionsDotConf').innerHTML = "<PRE>" + t +
 "</PRE>"; });
makerequest('u', 'musiconhold.conf',

'&Action-000000=update&Cat-000000=default&Var-000000=random&Value-
 000000=yes' ,
 function(t) { $('ExtensionsDotConf').innerHTML = "<PRE>" + t +
 "</PRE>"; });

makerequest('', '', 'action=Ping' ,
 function(t) { $('ExtensionsDotConf').innerHTML = "<PRE>" + t +
 "</PRE>"; });

‖ In reality, makerequest is a simple wrapper around a call to Prototype’s Ajax.Request method.

Developing for the Asterisk GUI | 259

The rest of our test.html simply contains an HTML body with a div element, which is
where we’ll place the configuration data when we get it. Note that the HTML body tag
has an onload attribute, which causes the browser to execute the localAjaxinit function
once the page has finished loading.

Now that we’ve created a new page, we need to edit cfgbasic.html to add this page as
a panel in the GUI. Open cfgbasic.html and search for a JavaScript function named
returnpanels and insert this code in the list of panels, where you would like your panel
to appear:

newpanel(["Test", "test.html", "Test"]);

Now reload the GUI in your browser. You should see a new tab on the lefthand side
named Test that displays the configuration values for extensions.conf when clicked.

While there’s a lot more to learn about the AJAM interface and the Asterisk GUI, this
example should show just how easy it is to add new functionality to the GUI. In this
next example, we’ll show how simple it is to expose a setting from the configuration
files in the GUI.

Exposing configuration settings in the GUI

As explained earlier, one of the unique benefits of the Asterisk GUI over the other
graphical frontends to Asterisk is that it updates the configuration files in place, taking
special care not to overwrite or erase any extra settings you might have in your config-
uration files. To show just how easy it is to expose new settings in the GUI, we’ll add
a simple checkbox to the GUI to make it possible to set the nat setting in users.conf.

If you open the GUI and click on the tab labeled Users, the GUI loads the file named
users.html in the iframe. Let’s open up users.html (usually located in /var/lib/asterisk/
static-http/config) and begin modifying it to add our checkbox.

First, search near the top of the file where a variable named fieldnames is defined. This
variable contains a list of all of the field names that will be set by this page of the GUI.
Simply add nat to the end of the list, or add the following line directly below the current
definition for fieldnames.

fieldnames.push('nat');

This tells the Asterisk GUI that we want to be able to see the value of nat and to be able
to set it as well. In order to see or set the value, however, we need to add an element to
the HTML form. To do that, search users.html for the IAX checkbox, and add the
following lines between it and the CTI checkbox.

 <tr>
 <td align=right><input type='checkbox' id='nat'></td>
 <td>NAT</td>
</tr>

Simply reload the page, and that’s all there is to it. With just a few lines of additional
code, we’re able to expose the nat setting to the GUI. It couldn’t be much simpler!

260 | Chapter 11: The Asterisk GUI Framework

As you’re developing for the Asterisk GUI, you’ll probably find that
debugging Ajax and JavaScript code can be somewhat difficult at times.
We strongly suggest you make use of an extension to Mozilla Firefox
named Firebug that greatly simplifies the task of debugging Ajax, Java-
Script, and HTML. Check it out at http://www.getfirebug.com. There is
also a scaled-down version for Internet Explorer known as Firebug Lite,
which is available for download at the same web site.

For More Information
Over the course of this chapter, we’ve introduced you to the Asterisk GUI and the
AJAM framework. We’ve covered the architecture of how the GUI works, and how to
modify the GUI. If you would like more information on developing a graphical interface
for Asterisk, please refer to the GUI Developers Guide located at http://asterisknow.org/
developers/gui-guide.

Developing for the Asterisk GUI | 261

http://www.getfirebug.com
http://asterisknow.org/developers/gui-guide
http://asterisknow.org/developers/gui-guide

CHAPTER 12

Relational Database Integration

Few things are harder to put up with than the annoyance
of a good example.

—Mark Twain

Introduction
In this chapter we are going to explore integrating some Asterisk features and functions
into a database. There are several databases available for Linux, but we have chosen to
limit our discussion to PostgreSQL. While we acknowledge MySQL is also an extremely
popular database, we had to choose one, and our experience with PostgreSQL tipped
the scale in its favor. All that having been said, what we are actually going to be doing
is discussing the ODBC connector, so as long has you have familiarity with getting your
favorite database ODBC-ready, the substance of this chapter will apply to you.

Integrating Asterisk with databases is one of the fundamental elements allowing clus-
tering of Asterisk into a large, distributed system. By utilizing the power of the database,
dynamically changing data can convey information across an array of Asterisk systems.
Our newest favorite Asterisk function is func_odbc, which we will cover later in this
chapter.

While not all Asterisk deployments will require a relational database, understanding
how to harness them opens the lid of a treasure chest full of new ways to design your
telecom solution.

Installing the Database
The first thing to do is to install the PostgreSQL database server:*

yum install -y postgresql-server

* On a large, busy system you will want to install this on a completely separate box from your Asterisk system.

263

Then start the database, which will take a few seconds to initialize for the first time:

service postgresql start

Next, create a user called asterisk, which we will use to connect to and manage the
database. Run the following commands:

su - postgres
$ createuser -P
Enter name of user to add: asterisk
Enter password for new user:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

By default, PostgreSQL does not listen on the TCP/IP connection, which Asterisk will
be using. We need to modify the /var/lib/pgsql/data/postgresql.conf file in order to allow
Asterisk to make IP connections to the database. To do this, simply remove the com-
ment from the beginning of the tcpip_socket and port parameters. Be sure to change
the tcpip_socket option from false to true.

tcpip_socket = true max_connections = 100
 # note: increasing max_connections costs about 500 bytes of shared
 # memory per connection slot, in addition to costs from shared_buffers
 # and max_locks_per_transaction.
#superuser_reserved_connections = 2
port = 5432

Now, edit the /var/lib/pgsql/data/pg_hba.conf file in order to allow the asterisk user we
just created to connect to the PostgreSQL server over the TCP/IP socket. At the end of
the file, replace everything below # Put your actual configuration here with the fol-
lowing:

host all asterisk 127.0.0.1 255.255.255.255 md5
local all asterisk trust

Now we can create the database that we will use throughout this chapter. We’re going
to create a database called asterisk and set the owner to our asterisk user.

$ createdb --owner=asterisk asterisk
CREATE DATABASE

Restart the PostgreSQL server after exiting from the postgres user back to root:

$ exit
service postgresql restart

We can verify our connection to the PostgreSQL server via TCP/IP like so:

psql -h 127.0.0.1 -U asterisk Password:
Welcome to psql 7.4.16, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands

264 | Chapter 12: Relational Database Integration

 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

asterisk=>

Double-check your configuration as discussed earlier if you get the following error,
which means connections via the TCP/IP socket are not allowed:

psql: could not connect to server: Connection refused
Is the server running on host "127.0.0.1" and accepting
TCP/IP connections on port 5432?

Installing and Configuring ODBC
The ODBC connector is a database abstraction layer that makes it possible for Asterisk
to communicate with a wide range of databases without requiring the developers to
create a separate database connector for every database Asterisk wants to support. This
saves a lot of development effort and code maintenance. There is a slight performance
cost to this because we are adding another application layer between Asterisk and the
database. However, this can be mitigated with proper design and is well worth it when
you need powerful, flexible database capabilities in your Asterisk system.

Before we install the connector in Asterisk, we have to install ODBC into Linux itself.
To install the ODBC drivers, simply run the command:

yum install -y unixODBC unixODBC-devel libtool-ltdl libtool-ltdl-devel

See Chapter 3 for the matrix of packages you should have installed.

We need to install the unixODBC-devel package because it is used by Asterisk to create
the ODBC modules we will be using throughout this chapter.

Verify that you have the PostgreSQL ODBC driver configured in the /etc/odbcinst.ini
file. It should look something like this:

[PostgreSQL]
Description = ODBC for PostgreSQL
Driver = /usr/lib/libodbcpsql.so
Setup = /usr/lib/libodbcpsqlS.so
FileUsage = 1

Verify the system is able to see the driver by running the following command. It should
return the label name PostgreSQL if all is well.

odbcinst -q -d
[PostgreSQL]

Installing and Configuring ODBC | 265

Next, configure the /etc/odbc.ini file, which is used to create an identifier that Asterisk
will use to reference this configuration. If at any point in the future you need to change
the database to something else, you simply need to reconfigure this file, allowing As-
terisk to continue to point to the same place.†

[asterisk-connector]
Description = PostgreSQL connection to 'asterisk' database
Driver = PostgreSQL
Database = asterisk
Servername = localhost
UserName = asterisk
Password = welcome
Port = 5432
Protocol = 7.4
ReadOnly = No
RowVersioning = No
ShowSystemTables = No
ShowOidColumn = No
FakeOidIndex = No
ConnSettings =

Let’s verify that we can connect to our database using the isql application. The isql
application will not perform the connect as the root user, and must be run as the same
owner as the database. Since the owner of the asterisk database under PostgreSQL is
the asterisk user, we must create a Linux account with the same name. In Chapter 14,
we will take advantage of this user to run Asterisk as non-root.

su - asterisk
$ echo "select 1" | isql -v asterisk-connector
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> +------------+
| ?column? |
+------------+
| 1 |
+------------+
SQLRowCount returns 1
1 rows fetched
$ exit

With unixODBC installed, configured, and verified to work, we need to recompile
Asterisk so that the ODBC modules are created and installed. Change back to your

† Yes, this is excessively verbose. The only entries you really need are Driver, Database, and Servername. Even
the Username and Password are specified elsewhere, as seen later.

266 | Chapter 12: Relational Database Integration

Asterisk sources directory and run the ./configure script so it knows you have installed
unixODBC.

cd /usr/src/asterisk-1.4
make distclean
./configure
make menuselect
make install

Almost everything in this chapter is turned on by default. You will want
to run make menuselect to verify that the ODBC related modules are
enabled. These include cdr_odbc, func_odbc, func_realtime,
pbx_realtime, res_config_odbc, res_odbc. For voicemail stored in an
ODBC database, be sure to select ODBC_STORAGE from the Voicemail
Build Options menu. You can verify the modules exist in the /usr/lib/
asterisk/modules/ directory.

Configuring res_odbc for Access to Our Database
ODBC connections are configured in the res_odbc.conf file located in /etc/asterisk. The
res_odbc.conf file sets the parameters that the various Asterisk modules will use to
connect to the database.‡

Modify the res_odbc.conf file:

[asterisk]
enabled => yes
dsn => asterisk-connector
username => asterisk
password => welcome
pooling => no
limit => 0
pre-connect => yes

The dsn option points at the database connection we configured in /etc/odbc.ini, and
the pre-connect option tells Asterisk to open up and maintain a connection to the
database when loading the res_odbc.so module. This lowers some of the overhead that
would come from repeatedly setting up and tearing down the connection to the
database.

Once you’ve configured res_odbc.conf, start Asterisk and verify the database connec-
tion with the odbc show CLI command:

*CLI> odbc show
Name: asterisk
DSN: asterisk-connector

‡ The pooling and limit options are quite useful for MS SQL Server and Sybase databases. These permit you
to establish multiple connections (up to limit connections) to a database while ensuring that each connection
has only one statement executing at once (this is due to a limitation in the protocol used by these database
servers).

Installing and Configuring ODBC | 267

Pooled: no
Connected: yes

Using Realtime
The Asterisk Realtime Architecture (ARA) is a method of storing the configuration files
(that would normally be found in /etc/asterisk) and their configuration options in a
database table. There are two types of realtime; static and dynamic. The static version
is similar to the traditional method of reading a configuration file, except that the data
is read from the database instead. The dynamic realtime method is used for things such
as user and peer objects (SIP, IAX2), and voicemail which loads and updates the in-
formation as it is required. Changes to static information requires a reload just as if you
had changed the text file on the system, but dynamic information is polled by Asterisk
as needed and requires no reload. Realtime is configured in the extconfig.conf file lo-
cated in the /etc/asterisk directory. This file tells Asterisk what to load from the database
and where to load it from, allowing certain files to be loaded from the database and
other files to be loaded from the standard configuration files.

Static Realtime
Static realtime is used when you want to store the configuration that you would nor-
mally place in the configuration files in /etc/asterisk but want to load from a database.
The same rules that apply to flat files on your system still apply when using static
realtime, such as requiring you to either run the reload command from the Asterisk
CLI, or to reload the module associated with the configuration file (i.e., module reload
chan_sip.so).

Using the preload Directive
Most files are able to be loaded via static realtime, but a few files are not able to be
loaded using this method. These include asterisk.conf, extconfig.conf, and logger.conf.
Additionally, the files manager.conf, cdr.conf, and rtp.conf cannot be loaded from static
realtime unless the storage drivers are loaded before the main Asterisk core initializes
(this is because the configuration files need to be loaded by realtime before the module
goes to read its configuration). Since we are using ODBC in this chapter, we would
need to add the following lines to modules.conf:

; /etc/asterisk/modules.conf
preload => res_odbc.so
preload => res_config_odbc.so

268 | Chapter 12: Relational Database Integration

When using static realtime, we tell Asterisk which files we want to load from the da-
tabase using the following syntax in the extconfig.conf file:

; /etc/asterisk/extconfig.conf
filename.conf => driver,database[,table]

If the table name is not specified, then Asterisk will use the name of the
file instead.

The static realtime module uses a specifically formatted table to read the configuration
of static files in from the database. You can define the table for static realtime in Post-
greSQL as follows:

CREATE TABLE ast_config
(
 id serial NOT NULL,
 cat_metric int4 NOT NULL DEFAULT 0,
 var_metric int4 NOT NULL DEFAULT 0,
 filename varchar(128) NOT NULL DEFAULT ''::character varying,
 category varchar(128) NOT NULL DEFAULT 'default'::character varying,
 var_name varchar(128) NOT NULL DEFAULT ''::character varying,
 var_val varchar(128) NOT NULL DEFAULT ''::character varying,
 commented int2 NOT NULL DEFAULT 0,
 CONSTRAINT ast_config_id_pk PRIMARY KEY (id)
)
WITHOUT OIDS;

A brief explanation about the columns is required in order to understand how Asterisk
takes the rows from the database and applies them to the configuration for the various
modules you may load:

cat_metric
The weight of the category within the file. A lower metric means it appears higher
in the file (see the sidebar “A Word About Metrics”).

var_metric
The weight of an item within a category. A lower metric means it appears higher
in the list. This is useful for things like codec order in sip.conf or iax.conf where
you want disallow=all to appear first (metric of 0), followed by allow=ulaw (metric
of 1), then by allow=gsm (metric of 2) (see the sidebar “A Word About Metrics”).

filename
The filename the module would normally read from the hard drive of your system
(i.e., musiconhold.conf, sip.conf, iax.conf, etc.).

category
The section name within the file, such as [general], but don’t save to the database
using the square brackets.

Using Realtime | 269

var_name
The option on the left side of the equals sign (i.e., disallow is the var_name in
disallow=all).

var_val
The value to an option on the right side of the equals sign (i.e., all is the var_val
in disallow=all).

commented
Any value other than 0 will evaluate as if it were prefixed with a semicolon in the
flat file (commented out).

A Word About Metrics
The metrics in static realtime are used to control the order that objects are read into
memory. Think of the cat_metric and var_metric as the original line numbers in the
flat file. A higher cat_metric is processed first (because Asterisk matches categories from
bottom to top―this is why the order of users and peers can matter in sip.conf or
iax.conf). A lower var_metric is processed first within the category because Asterisk will
process the order of options top-down within the category (e.g., disallow=all should
be set to a value lower than the allow’s value within the category to make sure it is
processed first).

A simple file we can load from static realtime is the musiconhold.conf file. Let’s start by
moving this file to a temporary location:

cd /etc/asterisk
mv musiconhold.conf musiconhold.conf.old

In order for the classes to be removed from memory, we need to restart Asterisk. Then
we can verify our classes are blank by running moh show classes:

*CLI> restart now
*CLI> moh show classes
*CLI>

So let’s put the [default] class back into Asterisk, but now we’ll load it from the data-
base. Connect to PostgreSQL and execute the following INSERT statements:

INSERT INTO ast_config (filename,category,var_name,var_val)
VALUES ('musiconhold.conf','general','mode','files');
INSERT INTO ast_config (filename,category,var_name,var_val)
VALUES ('musiconhold.conf','general','directory','/var/lib/asterisk/moh');

You can verify your values have made it into the database by running a SELECT state-
ment:

asterisk=# select filename,category,var_name,var_val from ast_config;

 filename | category | var_name | var_val
------------------+----------------+--------------+------------------------
 musiconhold.conf | general | mode | files

270 | Chapter 12: Relational Database Integration

 musiconhold.conf | general | directory | /var/lib/asterisk/moh
(2 rows)

And now, there’s just one last thing to modify in the extconfig.conf file in /etc/asterisk
directory to tell Asterisk to get the data for musiconhold.conf from the database. Add
the following line to the end of the extconfig.conf file, then save it:

musiconhold.conf => odbc,asterisk,ast_config

Then connect to the Asterisk console and perform a reload:

*CLI> module reload

You can now verify that we have our music-on-hold classes loading from the database
by running moh show classes:

*CLI> moh show classes
Class: general
 Mode: files
 Directory: /var/lib/asterisk/moh

And there you go; musiconhold.conf loaded from the database. You can perform the
same steps in order to load other flat files from the database!

Dynamic Realtime
The dynamic realtime system is used to load objects that may change often: SIP/IAX2
users and peers, queues and their members, and voicemail. Since this information in
the system may either be changing or new records are being added on a regular basis,
we can utilize the power of the database to let us load this information on an as-needed
basis.

All of realtime is configured in the /etc/asterisk/extconfig.conf file, but dynamic realtime
has well-defined configuration names such as sippeers. Defining something like SIP
peers is done with the following format:

; extconfig.conf
sippeers => driver,database[,table]

The table name is optional, in which case Asterisk will use the predefined name (i.e.,
sippeers) as the table to look up the data. In our example, we’ll be using the ast_sip
peers table to store our SIP peer information.

Remember that we have both SIP peers and SIP users; peers are end-
points we send calls to, and a user is something we receive calls from.
A friend is shorthand that defines both.

So to configure Asterisk to load all SIP peers from a database using realtime, we would
define something like:

Using Realtime | 271

; extconfig.conf
sippeers => odbc,asterisk,ast_sipfriends

To also load our SIP users from the database, define it like so:

sipusers => odbc,asterisk,ast_sipfriends

You may have noticed we used the same table for both the sippeers and sipusers. This
is because there will be a type field (just as if you had defined the type in the sip.conf
file) that will let us define a type of user, peer, or friend. When defining the table for
SIP users and peers, we need at least the following:

+------+--------+-------+--------+-----+------------+----------+
|name |host |secret | ipaddr | port| regseconds | username |
+------+--------+-------+--------+-----+------------+----------+
|100 |dynamic |welcome| | |1096954152 | 1000 |
+------+--------+-------+--------+-----+------------+----------+

The port, regseconds, and ipaddr fields are required to let Asterisk store the registration
information for the peer in order to know where to send the call. This is assuming the
host is dynamic; however, if the peer is static, we would have to populate the ipaddr
field ourselves. The port field is optional and would use the default standard port de-
fined in the [general] section, and the regseconds would remain blank.) There are many
more options for a SIP friend that we can define, such as the caller ID, and adding that
information is as simple as adding the callerid column to the table. See the
sip.conf.sample file for more options that can be defined for SIP friends.

Storing Call Detail Records
Call Detail Records (CDR) contain information about calls that have passed through
your Asterisk system. They are discussed further in Chapter 13. This is a popular use
of databases in Asterisk because CDR can be easier to manage if you store the records
in a database (for example, you could keep track of many Asterisk systems in a single
table).

Setting the systemname for Globally Unique IDs
CDRs consist of a unique identifier and several fields of information about the call
(including source and destination channel, length of call, last application executed and
so forth). In a clustered set of Asterisk boxes, it is theoretically possible to have dupli-
cation among unique identifiers since each Asterisk system considers only itself. To
address this, we can automatically append a system identifier to the front of the unique
ID by adding an option to /etc/asterisk/asterisk.conf. For each of your boxes, set an
identifier by adding something like:

[options]
systemname=toronto

272 | Chapter 12: Relational Database Integration

Let’s create a table in our database to store CDR. Log in to the PostgreSQL server with
the psql application:

psql -U asterisk -h localhost asterisk
Password:

And create the asterisk_cdr table:

asterisk=> CREATE TABLE asterisk_cdr
(
 id bigserial NOT NULL,
 calldate timestamptz,
 clid varchar(80),
 src varchar(80),
 dst varchar(80),
 dcontext varchar(80),
 channel varchar(80),
 dstchannel varchar(80),
 lastapp varchar(80),
 lastdata varchar(80),
 duration int8,
 billsec int8,
 disposition varchar(45),
 amaflags int8,
 accountcode varchar(20),
 uniqueid varchar(40),
 userfield varchar(255),
 CONSTRAINT asterisk_cdr_id_pk PRIMARY KEY (id)
)
WITHOUT OIDS;

You can verify the table was created by using the \dt command (describe tables):

asterisk=> \dt asterisk_cdr
 List of relations
 Schema | Name | Type | Owner
--------+--------------+-------+----------
 public | asterisk_cdr | table | asterisk
(1 row)

Next, configure Asterisk to store its CDR into the database. This is done in the /etc/
asterisk/cdr_odbc.conf file with the following configuration:

[global]
dsn=asterisk-connector
username=asterisk
password=welcome
loguniqueid=yes
table=asterisk_cdr

Storing Call Detail Records | 273

If Asterisk is already running, from the Asterisk CLI execute module reload
cdr_odbc.so. You can also just type reload, to reload everything.

*CLI> reload

Verify the status of CDR by entering the following command and looking for
CDR registered backend: ODBC:

*CLI> cdr status
CDR logging: enabled
CDR mode: simple
CDR registered backend: cdr-custom
CDR registered backend: cdr_manager
CDR registered backend: ODBC

Now, perform a call through your Asterisk box and verify you have data in the aster-
isk_cdr table. The easiest way to test a call is with the Asterisk CLI command console
dial (assuming that you have a sound card and chan_oss installed). However, you can
utilize any method at your disposal to place a test call:

*CLI> console dial 100@default
-- Executing [100@default:1] Playback("OSS/dsp", "tt-weasels") in new stack
-- <OSS/dsp> Playing 'tt-weasels' (language 'en')

Then connect to the database and perform a SELECT statement to verify you have data
in the asterisk_cdr table. You could also do SELECT * FROM asterisk_cdr;, but that
will return a lot more data:

psql -U asterisk -h localhost asterisk
Password:

asterisk=> SELECT id,dst,channel,uniqueid,calldate FROM asterisk_cdr;
 id | dst | channel | uniqueid | calldate
----+-----+---------+----------------------+------------------------
 1 | 100 | OSS/dsp | toronto-1171611019.0 | 2007-02-16 02:30:19-05
(1 rows)

Getting Funky with func_odbc: Hot-Desking
The func_odbc dialplan function is arguably the coolest and most powerful dialplan
function in Asterisk. It allows you to create and use fairly simple dialplan functions that
retrieve and use information from databases directly in the dialplan. There are all kinds
of ways in which this might be used, such as managing users or allowing sharing of
dynamic information within a clustered set of Asterisk machines.

What func_odbc allows you to do is define SQL queries to which you assign function
names. In effect, you are creating custom functions that obtain their results by executing
queries against a database. The func_odbc.conf file is where you specify the relationship
between the function names you create and the SQL statements you wish them to
perform. By referring to the named function in the dialplan, you can retrieve and update
values in the database.

274 | Chapter 12: Relational Database Integration

While using an external script to interact with a database (from which
a flat file is created that Asterisk would read) has advantages (if the
database went down, your system would continue to function and the
script would simply not update any files until connectivity to the data-
base was restored), a major disadvantage is that any changes you make
to a user are not available until you run the update script. This is prob-
ably not a big issue on small systems, but on large systems, waiting for
changes to take effect can cause issues, such as pausing a live call while
a large file is loaded and parsed.

You can relieve some of this by utilizing a replicated database system.
In the version of Asterisk following 1.4 (currently trunk), the syntax of
the func_odbc.conf file changes slightly, but gives the ability to failover
to another database system. This way you can cluster the database
backend utilizing a master-master relationship (pgcluster; Slony-II), or
a master-slave (Slony-I) replication system.

In order to get you into the right frame of mind for what follows, we want you to picture
a Dagwood sandwich.§

Can you relay the total experience of such a thing by showing someone a picture of a
tomato, or by waving a slice of cheese about? Not hardly. That is the conundrum we
faced when trying to give a useful example of why func_odbc is so powerful. So, we
decided to build the whole sandwich for you. It’s quite a mouthful, but after a few bites
of this, peanut butter and jelly is never going to be the same.

For our example, we decided to implement something that we think could have some
practical uses. Let’s picture a small company with a sales force of five people who have
to share two desks. This is not as cruel as it seems, because these folks spend most of
their time on the road, and they are each only in the office for at most one day each week.

Still, when they do get into the office, they’d like the system to know which desk they
are sitting at, so that their calls can be directed there. Also, the boss wants to be able
to track when they are in the office, and control calling privileges from those phones
when no one is there.

This need is typically solved by what is called a hot-desking feature, so we have built
one for you in order to show you the power of func_odbc.

Lets start with the easy stuff, and create two desktop phones in the sip.conf file.

; sip.conf
; HOT DESK USERS
[desk_1]
type=friend
host=dynamic
secret=my_special_secret
context=hotdesk

§ And if you don’t know what a Dagwood is, that’s what Wikipedia is for. I am not that old.

Getting Funky with func_odbc: Hot-Desking | 275

qualify=yes

[desk_2]
type=friend
host=dynamic
secret=my_special_secret
context=hotdesk
qualify=yes

; END HOT DESK USERS

These two desk phones both enter the dialplan at the [hotdesk] context in exten
sions.conf. If you want to have these devices actually work, you will of course need to
set the appropriate parameters in the devices themselves, but we’ve covered all that in
Chapter 4.

That’s all for sip.conf. We’ve got two slices of bread. Hardly a sandwich yet.

Now let’s get the database part of it set up (we are assuming that you have an ODBC
database created and working as outlined in the earlier parts of this chapter). First,
connect to the database console like so:

su - postgres
$ psql -U asterisk -h localhost asterisk
Password:

Then create the table with the following bit of code:

CREATE TABLE ast_hotdesk
(
 id serial NOT NULL,
 extension int8,
 first_name text,
 last_name text,
 cid_name text,
 cid_number varchar(10),
 pin int4,
 context text,
 status bool DEFAULT false,
 "location" text,
 CONSTRAINT ast_hotdesk_id_pk PRIMARY KEY (id)
)
WITHOUT OIDS;

After that, we populated the database with the following information (some of the
values that you see actually would change only after the dialplan work is done, but we
have it in here by way of example). At the PostgreSQL console, run the following
commands:

asterisk=> INSERT INTO ast_hotdesk ('extension', 'first_name', 'last_name', 'cid_name',
'cid_number', 'pin', 'context', 'location') \
VALUES (1101, 'Leif', 'Madsen', 'Leif Madsen', '4165551101', '555', 'longdistance',
'desk_1');

276 | Chapter 12: Relational Database Integration

Repeat the previous line and change the VALUES for all entries you wish to have in the
database. You can view the data in the ast_hotdesk table by running a simple SELECT
statement from the PostgreSQL console:

asterisk=> SELECT * FROM ast_hostdesk;

which would give you something like the following output:

| id | extension | first_name | last_name | cid_name | cid_number | pin
|---+-----------+------------+----------------+-----------------+-------------+----
| 1 | 1101 | "Leif" | "Madsen" | "Leif Madsen" | "4165551101" | "555"
| 2 | 1102 | "Jim" | "Van Meggelen" | "Jim Van Meggelen" | "4165551102" | "556"
| 3 | 1103 | "Jared" | "Smith" | "Jared Smith" | "4165551103" | "557"
| 4 | 1104 | "Mark" | "Spencer" | "Mark Spencer" | "4165551104" | "558"
| 5 | 1105 | "Kevin" | "Fleming" | "Kevin Fleming" | "4165551105" | "559"

| context | status | location |$
+-----------------+---------+----------+
"longdistance"	"TRUE"	"desk_1"
"longdistance"	"FALSE"	""
"local"	"FALSE"	""
"international"	"FALSE"	""
"local"	"FALSE"	""

We’ve got the condiments now, so let’s get to our dialplan. This is where the magic is
going to happen.

Before you start typing, take note that we have placed all of the sample
text that follows in appendix H, so while we encourage you to follow
us along through the examples, you can also see what it all looks like as
a whole, by checking the appendix (and by copying and pasting, if you
have an electronic version of this book).

Somewhere in extensions.conf we are going to have to create the [hotdesk] context. To
start, let’s define a pattern-match extension that will allow the users to log in:

; extensions.conf
; Hot Desking Feature
[hotdesk]
; Hot Desk Login
exten => _110[1-5],1,NoOp()
exten => _110[1-5],n,Set(E=${EXTEN})
exten => _110[1-5],n,Verbose(1|Hot Desk Extension ${E} is changing status)
exten => _110[1-5],n,Verbose(1|Checking current status of extension ${E})
exten => _110[1-5],n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
exten => _110[1-5],n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})

We’re not done writing this extension yet, but let’s pause for a moment and see where
we’re at so far.

When a sales agent sits down at a desk, they log in by dialing their own extension
number. In this case we have allowed the 1101 through 1105 extensions to log in with

Getting Funky with func_odbc: Hot-Desking | 277

our pattern match of _110[1-5]. You could just as easily make this less restrictive by
using _11XX (allowing 1100 through 1199). This extension uses func_odbc to perform
a lookup with the HOTDESK_INFO() dialplan function (which we will be creating shortly).
This custom function (which we define in the func_odbc.conf file) performs an SQL
statement and returns whatever is retrieved from the database.

We would define the new function HOTDESK_INFO() in func_odbc.conf like so:

[INFO]
prefix=HOTDESK
dsn=asterisk
read=SELECT ${ARG1} FROM ast_hotdesk WHERE extension = '${ARG2}'

That’s a lot of stuff in just a few lines. Let’s quickly cover them before we move on.

First of all, the prefix is optional. If you don’t configure the prefix, then Asterisk adds
“ODBC” to the name of the function (in this case INFO), which means this function
would become ODBC_INFO(). This is not very descriptive of what the function is doing,
so it can be helpful to assign a prefix that helps to relate your ODBC functions to the
task they are performing. In this case we chose HOTDESK, which means that this
custom function will be named HOTDESK_INFO.

The dsn attribute tells Asterisk which connection to use from res_odbc.conf. Since sev-
eral database connections could be configured in res_odbc.conf, we specify which one
to use here. In Figure 12-1, we show the relationship between the various file config-
urations and how they reference down the chain to connect to the database.

We then define our SQL statement with the read attribute. Dialplan functions have two
different formats that they can be called with: one for retrieving information, and one
for setting information. The read attribute is used when we call the HOTDESK_INFO()
function with the retrieve format (and we could execute a separate SQL statement with
the write attribute; we’ll discuss the format for the write attribute a little bit later in
this chapter).

Reading values from this function would take the format in the dialplan like so:

exten => s,n,Set(RETURNED_VALUE=${HOTDESK_INFO(status,1101)})

This would return the value located in the database within the status column where
the extension column equals 1101. The status and 1101 we pass to the
HOTDESK_INFO() function are then placed into the SQL statement we assigned to the
read attribute, available as ${ARG1} and ${ARG2}, respectively. If we had passed a third
option, this would have been available as ${ARG3}.

278 | Chapter 12: Relational Database Integration

Be sure that your data is unique enough that you only get a single row
back. If more than one row is returned, Asterisk will see only the first
row returned. With PostgreSQL, you could add a LIMIT 1 to the end
of your SQL statement to limit a single row being returned, but this is
not a good practice to rely on. A little further into this section we’ll see
how we can use the LIMIT and OFFSET PostgreSQL functions to loop
through multiple rows of data!

After the SQL statement is executed, the value returned (if any) is assigned to the
RETURNED_VALUE channel variable.

Using the ARRAY() function
In our example, we are utilizing two separate database calls and assigning those values
to a pair of channel variables, (${E}_STATUS and ${E}_PIN). This was done to simplify
the example:

exten => _110[1-5],n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
exten => _110[1-5],n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})

As an alternative, we could have returned multiple columns and saved them to separate
variables utilizing the ARRAY() dialplan function. If we had defined our SQL statement
in the func_odbc.conf file like so:

read=SELECT pin,status FROM ast_hotdesk WHERE extension = '${E}'

then we could use the ARRAY() function to save each column of information for the row
to its own variable with a single call to the database:

exten => _110[1-5],n,Set(ARRAY(${E}_PIN,${E}_STATUS)=${HOTDESK_INFO(${E})})

func_odbc.conf res_odbc.conf
 [INFO]
 prefix=hotdesk
 dsn=asterisk
 readsql=…

[asterisk]
enabled=>yes
dsn=>PostgreSQL-asterisk
pre-connect=>yes

/etc/odbc/ini

[PostgreSQL-asterisk]
Description =Aserisk pgsql connection
Servername =localhost

database

Asterisk Linux

Figure 12-1. Relationships between func_odbc.conf, res_odbc.conf, /etc/odbc.ini (unixODBC), and
the database connection

Getting Funky with func_odbc: Hot-Desking | 279

So, in the first two lines of our following block of code we are passing the value
status, and the value contained in the ${E} variable (e.g., 1101) to the HOTDESK_INFO
() function. The two values are then replaced in the SQL statement with ${ARG1} and
${ARG2}, respectfully, the SQL statement is executed, and the value returned is assigned
to the ${E}_STATUS channel variable.

OK, let’s finish writing the pattern-match extension now:

exten => _110[1-5],n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
exten => _110[1-5],n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})
exten => _110[1-5],n,GotoIf($[${ISNULL(${${E}_STATUS})}]?invalid_user,1)
; check if ${E}_STATUS is NULL
exten => _110[1-5],n,GotoIf($[${${E}_STATUS} = 1]?logout,1:login,1)

After assigning the value of the status column to the ${E}_STATUS variable (if you dialed
extension 1101, then the variable name would be 1101_STATUS), we check if we received
a value back from the database (error checking). We make use of the ISNULL() function
to perform this check.

The last row in the block checks the status of the phone, and if currently logged in, will
log off the agent. If not already logged in, it will go to extension login, priority 1 within
the same context.‖

In the version following 1.4 (currently trunk) you can use the
${ODBCROWS} channel variable with statements executed by a readsql.
We could have replaced the GotoIf() with something like:

exten => _110[1-5],n,GotoIf($[${ODBCROWS} < 0]?invalid_user,1)

The login extension runs some initial checks to verify the pin code entered by the agent.
We allow him three tries to enter the correct pin, and if invalid, will send the call to the
login_fail extension (which we will be writing later on).

exten => login,1,NoOp() ; set counter initial value
exten => login,n,Set(PIN_TRIES=0) ; set max number of login attempts
exten => login,n,Set(MAX_PIN_TRIES=3)
exten => login,n(get_pin),NoOp() ; increase pin try counter
exten => login,n,Set(PIN_TRIES=$[${PIN_TRIES} + 1])
exten => login,n,Read(PIN_ENTERED|enter-password|${LEN(${${E}_PIN})})
exten => login,n,GotoIf($[${PIN_ENTERED} = ${${E}_PIN}]?valid_login,1)
exten => login,n,Playback(invalid-pin)
exten => login,n,GotoIf($[${PIN_TRIES} <=${MAX_PIN_TRIES}]?get_pin:login_fail,1)

‖ Remember that in a traditional phone system all extensions must be numbers, but in Asterisk, extensions
can have names as well. A possible advantage of using an extension that’s not a number is that it will be much
harder for a user to dial it from her phone and, thus, more secure. We’re going to use several named extensions
in this example. If you want to be absolutely sure that a malicious user cannot access those named extensions,
simply use the trick that the AEL loader uses: start with a priority other than 1.

280 | Chapter 12: Relational Database Integration

If the pin entered matches, we validate the login with the valid_login extension. First
we utilize the CHANNEL variable to figure out which phone device we’re calling from. The
CHANNEL variable is usually populated with something such as: SIP/desk_1-ab4034c, so
we make use of the CUT() function to first pull off the SIP/ portion of the string and
assign that to LOCATION. We then strip off the -ab4034c part of the string, discard it, and
assign the remainder of desk_1 to the LOCATION variable.

exten => valid_login,1,NoOp()
; CUT off the channel technology and assign to the LOCATION variable
exten => valid_login,n,Set(LOCATION=${CUT(CHANNEL,/,2)})
; CUT off the unique identifier and save the remainder to the LOCATION variable
exten => valid_login,n,Set(LOCATION=${CUT(LOCATION,-,1)})

We utilize yet another custom function, HOTDESK_CHECK_PHONE_LOGINS(), created in
func_odbc.conf to check if any other users were previously logged in to this phone and
had forgotten to log out. If the number of previously logged in users was greater than
0 (and should only ever be 1, but we check for more anyway and reset those, too), it
runs the logic in the logout_login extension.

If no previous agents were logged in, we update the login status for this user with the
HOTDESK_STATUS() function:

exten => valid_login,n,Set(ARRAY(USERS_LOGGED_IN)=${HOTDESK_CHECK_PHONE_
LOGINS(${LOCATION})})
exten => valid_login,n,GotoIf($[${USERS_LOGGED_IN} > 0]?logout_login,1)
exten => valid_login,n(set_login_status),NoOp()

; Set the status for the phone to '1' and where we're logged into
; NOTE: we need to escape the comma here because the Set() application has arguments
exten => valid_login,n,Set(HOTDESK_STATUS(${E})=1\,${LOCATION})
exten => valid_login,n,GotoIf($[${ODBCROWS} < 1]?error,1)
exten => valid_login,n,Playback(agent-loginok)
exten => valid_login,n,Hangup()

We create a write function in func_odbc.conf like so:

[STATUS]
prefix=HOTDESK
dsn=asterisk
write=UPDATE ast_hotdesk SET status = '${VAL1}', location = '${VAL2}' WHERE extension
= '${ARG1}'

The syntax is very similar to the read syntax discussed earlier in the chapter, but there
are a few new things here, so let’s discuss them before moving on.

The first thing you may have noticed is that we now have both ${VALx} and ${ARGx}
variables in our SQL statement. These contain the values we pass to the function from
the dialplan. In this case, we have two VAL variables, and a single ARG variable that were
set from the dialplan via this statement:

Set(HOTDESK_STATUS(${E})=1\,${LOCATION})

Getting Funky with func_odbc: Hot-Desking | 281

Because the Set() dialplan application can also take arguments (you can
set multiple variables and values by separating them with commas or
pipes), you need to escape the comma with the backslash (\) so it is
not processed by the expression parser for the Set() application, but
rather parses it for the HOTDESK_STATUS() function.

Notice the syntax is slightly different from that of the read style function. This signals
to Asterisk that you want to perform a write (this is the same syntax as other dialplan
functions).

We are passing the value of the ${E} variable to the HOTDESK_STATUS() function, whose
value is then accessible in the SQL statement within func_odbc.conf with the ${ARG1}
variable. We then pass two values: 1 and ${LOCATION}. These are available to the SQL
statement in the ${VAL1} and ${VAL2} variables, respectively.

As mentioned previously, if we had to log out one or more agents before logging in, we
would check this with the logout_login extension. This dialplan logic will utilize the
While() application to loop through the database and perform any database correction
that may need to occur. More than likely this will execute only one loop, but it’s a good
example of how you might update or parse multiple rows in the database:

exten => logout_login,1,NoOp()
; set all logged in users on this device to logged out status
exten => logout_login,n,Set(ROW_COUNTER=0)
exten => logout_login,n,While($[${ROW_COUNTER} < ${USERS_LOGGED_IN}])

The ${USERS_LOGGED_IN} variable was set previously with the HOTDESK_CHECK_PHONE_LOG
INS() function, which assigned a value of 1 or greater. We did this by counting the
number of rows that were affected:

; func_odbc.conf
[CHECK_PHONE_LOGINS]
prefix=HOTDESK
dsn=asterisk
read=SELECT COUNT(status) FROM ast_hotdesk WHERE status = '1' AND location = '${ARG1}'

We then get the extension number of the user that is logged in with the HOTDESK_LOG
GED_IN_USER() function. The LOCATION variable is populated with desk_1, which tells us
which device we want to check on, and the ${ROW_COUNTER} contains which iteration of
the loop we’re on. These are both passed as arguments to the dialplan function. The
result is then assigned to the WHO variable:

exten => logout_login,n,Set(WHO=${HOTDESK_LOGGED_IN_USER(${LOCATION},${ROW_COUNTER})})

The HOTDESK_LOGGED_IN_USER() function then pulls a specific row out of the database
that corresponds with the iteration of the loops we are trying to process:

[LOGGED_IN_USER]
prefix=HOTDESK
dsn=asterisk

282 | Chapter 12: Relational Database Integration

read=SELECT extension FROM ast_hotdesk WHERE status = '1'
AND location = '${ARG1}' ORDER BY id LIMIT '1' OFFSET '${ARG2}'

Now that we know what extension we want to update, we write to the HOTDESK_STATUS
() function, and assign a 0 to the status column where the extension number matches
the value in the ${WHO} variable (i.e., 1101). We then end the loop with EndWhile() and
return back to the valid_login extension at the set_login_status priority label (as dis-
cussed previously):

exten => logout_login,n,Set(HOTDESK_STATUS(${WHO})=0) ; logout phone
exten => logout_login,n,Set(ROW_COUNTER=$[${ROW_COUNTER} + 1])
exten => logout_login,n,EndWhile()
exten => logout_login,n,Goto(valid_login,set_login_status) ; return to logging in

The rest of the context should be fairly straightforward (if some of this doesn’t make
sense, we suggest you go back and refresh your memory with Chapter 5 and Chap-
ter 6). The one trick you may be unfamiliar with could be the usage of the ${ODB
CROWS} channel variable, which is set by the HOTDESK_STATUS() function. This tells us
how many rows were affected in the SQL UPDATE, which we assume to be 1. If the value
of ${ODBCROWS} is less than 1, then we assume an error and handle appropriately:

exten => logout,1,NoOp()
exten => logout,n,Set(HOTDESK_STATUS(${E})=0)
exten => logout,n,GotoIf($[${ODBCROWS} < 1]?error,1)
exten => logout,n,Playback(silence/1&agent-loggedoff)
exten => logout,n,Hangup()

exten => login_fail,1,NoOp()
exten => login_fail,n,Playback(silence/1&login-fail)
exten => login_fail,n,Hangup()

exten => error,1,NoOp()
exten => error,n,Playback(silence/1&connection-failed)
exten => error,n,Hangup()

exten => invalid_user,1,NoOp()
exten => invalid_user,n,Verbose(1|Hot Desk extension ${E} does not exist)
exten => invalid_user,n,Playback(silence/2&invalid)
exten => invalid_user,n,Hangup()

We also include the hotdesk_outbound context which will handle our outgoing calls
after we have logged the agent in to the system:

include => hotdesk_outbound

The hotdesk_outbound context utilizes many of the same principles and usage as pre-
viously discussed, so we won’t approach it quite so thoroughly, but essentially the
[hotdesk_outbound] context will catch all dialed numbers from the desk phones. We first
set our LOCATION variable using the CHANNEL variable, then determine which extension
(agent) is logged in to the system and assign it to the WHO variable. If this variable is
NULL, then we reject the outgoing call. If not NULL, then we get the agent information
using the HOTDESK_INFO() function and assign it to several CHANNEL variables. This

Getting Funky with func_odbc: Hot-Desking | 283

includes the context to handle the call with, where we perform a Goto() to the context
we have been assigned (which controls our outbound access).

If we try to dial a number that is not handled by our context (or one of the transitive
contexts—i.e., international contains -> long distance, which also contains -> local),
then the built-in extension i is executed which plays back a message stating the action
cannot be performed, then hangs up the caller:

[hotdesk_outbound]
exten => _X.,1,NoOp()
exten => _X.,n,Set(LOCATION=${CUT(CHANNEL,/,2)})
exten => _X.,n,Set(LOCATION=${CUT(LOCATION,-,1)})
exten => _X.,n,Set(WHO=${HOTDESK_PHONE_STATUS(${LOCATION})})
exten => _X.,n,GotoIf($[${ISNULL(${WHO})}]?no_outgoing,1)
exten => _X.,n,Set(${WHO}_CID_NAME=${HOTDESK_INFO(cid_name,${WHO})})
exten => _X.,n,Set(${WHO}_CID_NUMBER=${HOTDESK_INFO(cid_number,${WHO})})
exten => _X.,n,Set(${WHO}_CONTEXT=${HOTDESK_INFO(context,${WHO})})
exten => _X.,n,Goto(${${WHO}_CONTEXT},${EXTEN},1)

[international]
exten => _011.,1,NoOp()
exten => _011.,n,Set(E=${EXTEN})
exten => _011.,n,Goto(outgoing,call,1)

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

include => longdistance

[longdistance]
exten => _1NXXNXXXXXX,1,NoOp()
exten => _1NXXNXXXXXX,n,Set(E=${EXTEN})
exten => _1NXXNXXXXXX,n,Goto(outgoing,call,1)

exten => _NXXNXXXXXX,1,Goto(1${EXTEN},1)

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

include => local

[local]
exten => _416NXXXXXX,1,NoOp()
exten => _416NXXXXXX,n,Set(E=${EXTEN})
exten => _416NXXXXXX,n,Goto(outgoing,call,1)

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

If the call is allowed to be executed, then the call is sent to the [outgoing] context for
call processing, where the caller ID name and number are set with the CALLERID()

284 | Chapter 12: Relational Database Integration

function. The call is then placed via the SIP channel using the service_provider we
created in the sip.conf file:

[outgoing]
exten => call,1,NoOp()
exten => call,n,Set(CALLERID(name)=${${WHO}_CID_NAME})
exten => call,n,Set(CALLERID(number)=${${WHO}_CID_NUMBER})
exten => call,n,Dial(SIP/service_provider/${E})
exten => call,n,Playback(silence/2&pls-try-call-later)
exten => call,n,Hangup()

Our service_provider might look something like this in sip.conf:

[service_provider]
type=friend
host=switch1.service_provider.net
username=my_username
fromuser=my_username
secret=welcome
context=incoming
canreinvite=no
disallow=all
allow=ulaw

And that’s it! The complete dialplan utilized for the hot-desk feature is displayed in full
in Appendix G.

How many things have you just thought of that you could apply func_odbc to? See why
we’re so excited about this feature as well?!

The func_odbc Backport
With Asterisk 1.4, you can use a backported version of func_odbc that uses a slightly
different configuration format. This allows you to use multiple DSN connections to
separate databases, and also to utilize the ${ODBCROWS} channel variable for SQL read
(SELECT) queries. To check out the backport of func_odbc and install it (which over-
writes the existing func_odbc.c file):

cd /usr/src/
svn co http://svncommunity.digium.com/svn/func_odbc/1.4 ./func_odbc-1.4
cp func_odbc-1.4/func_odbc.c ./asterisk-1.4/funcs
cp: overwrite `./asterisk-1.4/funcs/func_odbc.c'? y
cd asterisk-1.4
make install

The version described in this chapter works with a stock Asterisk 1.4 system, but the
backport (and Asterisk 1.6) will use the following syntax changes:

• read will become readsql

• write will become writesql

• dsn will become readhandle and writehandle (for separate read and write database
locations)

Getting Funky with func_odbc: Hot-Desking | 285

• Multiple readhandles and writehandles can be listed, in order of preference, to
perform failover when the primary handle cannot be contacted (limit of 5)

• prefix will remain unchanged

The current syntax in Asterisk 1.4 will continue to work in the backport, but will display
a deprecation warning in the version to follow. Support will eventually be removed.

ODBC Voicemail
Asterisk contains the ability to store voicemail inside the database using the ODBC
connector. This is useful in a clustered environment where you want to abstract the
voicemail data from the local system so that multiple Asterisk boxes have access to the
same data. Of course, you have to take into consideration that you are centralizing a
part of Asterisk, and you need to take actions to protect that data, such as regular
backups, and possibly clustering the database backend using replication. If you are
using PostgreSQL, there are some good projects for doing this: PGcluster (http://pgfoun
dry.org/projects/pgcluster/) and Slony-I (http://gborg.postgresql.org/project/slony1/proj
display.php).

Asterisk stores the voicemail inside a Binary Large Object (BLOB). When retrieving the
data, it pulls the information out of the BLOB and temporarily stores it on the hard
drive while it is being played back to the user. Asterisk then removes the BLOB and
records from the database when the user deletes the voicemail. Many databases, such
as MySQL, contain native support for BLOBs, but PostgreSQL has a couple of extra
steps required to utilize this functionality that we’ll explore in this section. When you’re
done, you’ll be able to record, play back, and delete voicemail data from the database
just as if it were stored on the local hard drive.

This section builds upon previous configuration sections in this chapter.
If you have not already done so, be sure to follow the steps in the
“Installing the Database” and “Installing and Configuring ODBC” sec-
tions before continuing. In the “Installing and Configuring ODBC”
section, be sure you have enabled ODBC_STORAGE in the menuselect system
under Voicemail Options.

Creating the Large Object Type
We have to tell PostgreSQL how to handle the large objects. This includes creating a
trigger to clean up the data when we delete a record from the database that references
a large object.

Connect to the database as the asterisk user from the console:

psql -h localhost -U asterisk asterisk
Password:

286 | Chapter 12: Relational Database Integration

http://pgfoundry.org/projects/pgcluster/
http://pgfoundry.org/projects/pgcluster/
http://gborg.postgresql.org/project/slony1/projdisplay.php
http://gborg.postgresql.org/project/slony1/projdisplay.php

At the PostgreSQL console, run the following script to create the large object type:

CREATE FUNCTION loin (cstring) RETURNS lo AS 'oidin' LANGUAGE internal IMMUTABLE STRICT;
CREATE FUNCTION loout (lo) RETURNS cstring AS 'oidout' LANGUAGE internal
IMMUTABLE STRICT;
CREATE FUNCTION lorecv (internal) RETURNS lo AS 'oidrecv' LANGUAGE internal
IMMUTABLE STRICT;
CREATE FUNCTION losend (lo) RETURNS bytea AS 'oidrecv' LANGUAGE internal
IMMUTABLE STRICT;

CREATE TYPE lo (INPUT = loin, OUTPUT = loout, RECEIVE = lorecv, SEND = losend,
INTERNALLENGTH = 4, PASSEDBYVALUE);
CREATE CAST (lo AS oid) WITHOUT FUNCTION AS IMPLICIT;
CREATE CAST (oid AS lo) WITHOUT FUNCTION AS IMPLICIT;

We’ll be making use of the PostgreSQL procedural language called pgSQL/PL to create
a function. This function will be called from a trigger that gets executed whenever we
modify or delete a record from the table used to store voicemail. This is so the data is
cleaned up and not left as an orphan in the database:

CREATE FUNCTION vm_lo_cleanup() RETURNS "trigger"
 AS $$
 declare
 msgcount INTEGER;
 begin
 -- raise notice 'Starting lo_cleanup function for large object with oid
 %',old.recording;
 -- If it is an update action but the BLOB (lo) field was not changed,
 dont do anything
 if (TG_OP = 'UPDATE') then
 if ((old.recording = new.recording) or (old.recording is NULL)) then
 raise notice 'Not cleaning up the large object table,
 as recording has not changed';
 return new;
 end if;
 end if;
 if (old.recording IS NOT NULL) then
 SELECT INTO msgcount COUNT(*) AS COUNT FROM voicemessages WHERE recording
 = old.recording;
 if (msgcount > 0) then
 raise notice 'Not deleting record from the large object table, as object is
 still referenced';
 return new;
 else
 perform lo_unlink(old.recording);
 if found then
 raise notice 'Cleaning up the large object table';
 return new;
 else
 raise exception 'Failed to cleanup the large object table';
 return old;
 end if;
 end if;
 else
 raise notice 'No need to cleanup the large object table, no recording on old row';

ODBC Voicemail | 287

 return new;
 end if;
 end$$
 LANGUAGE plpgsql;

We’re going to create a table called voicemessages where the voicemail information will
be stored:

CREATE TABLE voicemessages
(
 uniqueid serial PRIMARY KEY,
 msgnum int4,
 dir varchar(80),
 context varchar(80),
 macrocontext varchar(80),
 callerid varchar(40),
 origtime varchar(40),
 duration varchar(20),
 mailboxuser varchar(80),
 mailboxcontext varchar(80),
 recording lo,
 label varchar(30),
 "read" bool DEFAULT false
);

And now we need to associate a trigger with our newly created table in order to perform
cleanup whenever we make a change or deletion from the voicemessages table:

CREATE TRIGGER vm_cleanup AFTER DELETE OR UPDATE ON voicemessages FOR EACH ROW EXECUTE
PROCEDURE vm_lo_cleanup();

Configuring voicemail.conf for ODBC Storage
There isn’t much to add to the voicemail.conf file to enable the ODBC voicemail storage.
In fact, it’s only three lines! Generally, you probably have multiple format types defined
in the [general] section of voicemail.conf, however we need to set this to a single format.
The wav49 format is a compressed WAV file format that should be playable on both
Linux and Microsoft Windows desktops.

The odbcstorage option points at the name you defined in the res_odbc.conf file (if
you’ve been following along in this chapter, then we called it asterisk). The odbctable
option refers to the table where voicemail information should be stored. In the examples
in this chapter we use the table named voicemessages:

[general]
format=wav49
odbcstorage=asterisk
odbctable=voicemessages

You may want to create a separate voicemail context, or you can utilize the default
voicemail context:

[default]
1000 => 1000,J.P. Wiser

288 | Chapter 12: Relational Database Integration

Now connect to your Asterisk console and unload then reload the app_voicemail.so
module:

*CLI> module unload app_voicemail.so
 == Unregistered application 'VoiceMail'
 == Unregistered application 'VoiceMailMain'
 == Unregistered application 'MailboxExists'
 == Unregistered application 'VMAuthenticate'

*CLI> module load app_voicemail.so
 Loaded /usr/lib/asterisk/modules/app_voicemail.so => (Comedian Mail (Voicemail System))
 == Registered application 'VoiceMail'
 == Registered application 'VoiceMailMain'
 == Registered application 'MailboxExists'
 == Registered application 'VMAuthenticate'
 == Parsing '/etc/asterisk/voicemail.conf': Found

And verify that your new mailbox loaded successfully:

*CLI> voicemail show users for default
Context Mbox User Zone NewMsg
default 1000 J.P. Wiser 0

Testing ODBC Voicemail
Let’s create some simple dialplan logic to leave and retrieve some voicemail from our
test voicemail box. We can use the simple dialplan logic as follows:

[odbc_vm_test]
exten => 100,1,Voicemail(1000@default) ; leave a voicemail
exten => 200,1,VoicemailMain(1000@default) ; retrieve a voicemail

Once you’ve updated your extensions.conf file, be sure to reload the dialplan:

*CLI> dialplan reload

You can either include the odbc_vm_test context into a context accessible by an existing
user, or create a separate user to test with. If you wish to do the latter, you could define
a new SIP user in sip.conf like so (this will work assuming the phone is on the local LAN):

[odbc_test_user]
type=friend
secret=supersecret
context=odbc_vm_test
host=dynamic
qualify=yes
disallow=all
allow=ulaw
allow=gsm

Don’t forget to reload the SIP module:

*CLI> module reload chan_sip.so

And verify that the SIP user exists:

ODBC Voicemail | 289

*CLI> sip show users like odbc_test_user
Username Secret Accountcode Def.Context ACL NAT
odbc_test_user supersecret odbc_vm_test No RFC3581

Then configure your phone or client with the username odbc_test_user and password
supersecret, and then place a call to extension 100 to leave a voicemail. If successful,
you should see something like:

 -- Executing VoiceMail("SIP/odbc_test_user-10228cac", "1000@default") in new stack
 -- Playing 'vm-intro' (language 'en')
 -- Playing 'beep' (language 'en')
 -- Recording the message
 -- x=0, open writing: /var/spool/asterisk/voicemail/default/1000/tmp/dlZunm format:
 wav49, 0x101f6534
 -- User ended message by pressing #
 -- Playing 'auth-thankyou' (language 'en')
 == Parsing '/var/spool/asterisk/voicemail/default/1000/INBOX/msg0000.txt': Found

We can now make use of the psql application again to make sure the recording really
did make it into the database:

psql -h localhost -U asterisk asterisk
Password:

Then run a SELECT statement to verify that you have some data in the voicemessages
table:

localhost=# SELECT id,dir,callerid,mailboxcontext,recording FROM voicemessages;
id | dir | callerid | mailboxcontext | recording
---+--+--------------+---------------+-------
1 | /var/spool/asterisk/voicemail/default/1000/INBOX | +18005551212 | default | 47395
(1 row)

If the recording was placed in the database, we should get a row back. You’ll notice
that the recording column contains a number (which will most certainly be different
from that listed here), which is really the object ID of the large object stored in a system
table. Let’s verify that the large object exists in this system table with the lo_list
command:

localhost=# \lo_list
 Large objects
 ID | Description
-------+-------------
 47395 |
(1 row)

What we’re verifying is that the object ID in the voicemessages table matches that listed
in the large object system table. We can also pull the data out of the database and store
it to the hard drive so we can play the file back to make sure our message was saved
correctly:

localhost=# \lo_export 47395 /tmp/voicemail-47395.wav
lo_export

290 | Chapter 12: Relational Database Integration

Then verify the audio with your favorite audio application, such as the play application:

play /tmp/voicemail-47395.wav

Input Filename : /tmp/voicemail-47395.wav
Sample Size : 8-bits
Sample Encoding: wav
Channels : 1
Sample Rate : 8000

Time: 00:06.22 [00:00.00] of 00:00.00 (0.0%) Output Buffer: 298.36K

Done.

And now that we’ve confirmed everything was stored in the database correctly, we can
try listening to it via the VoicemailMain() application by dialing extension 200:

*CLI>
 -- Executing VoiceMailMain("SIP/odbc_test_user-10228cac", "1000@default") in new stack
 -- Playing 'vm-password' (language 'en')
 -- Playing 'vm-youhave' (language 'en')
 -- Playing 'digits/1' (language 'en')
 -- Playing 'vm-INBOX' (language 'en')
 -- Playing 'vm-message' (language 'en')
 -- Playing 'vm-onefor' (language 'en')
 -- Playing 'vm-INBOX' (language 'en')
 -- Playing 'vm-messages' (language 'en')
 -- Playing 'vm-opts' (language 'en')
 -- Playing 'vm-first' (language 'en')
 -- Playing 'vm-message' (language 'en')
 == Parsing '/var/spool/asterisk/voicemail/default/1000/INBOX/msg0000.txt': Found

Conclusion
In this chapter, we learned about several areas where Asterisk can integrate with a
relational database. This is useful for systems where you need to start scaling by clus-
tering multiple Asterisk boxes working with the same centralized information, or when
you want to start building external applications to modify information without requir-
ing a reload of the system (i.e., not requiring the modification of flatfiles).

Conclusion | 291

CHAPTER 13

Managing Your Asterisk System

It won’t be covered in the book. The source code has to be useful for something,
after all.

—Larry Wall

While there is a cornucopia of creative things that you are going to want to do with
your spanking-new Asterisk system, there are also some basic, unglamorous, dare we
say, boring things that need to be discussed.

Call Detail Recording
Without even being told, Asterisk assumes that you want to store CDR information.*

By default, Asterisk will create a CSV file and place it in the fold-
er /var/log/asterisk/cdr-csv/.† To the naked eye, this file looks like a bit of a mess. If,
however, you separate each line according to the commas, you will find that each line
contains information about a particular call, and that the commas separate the follow-
ing values:

accountcode
Assigned if configured for the channel in the channel configuration file (i.e.,
sip.conf). The account code is assigned on a per-channel basis. You can also change
this value from the dialplan by setting CDR(accountcode).

src
Received Caller ID (string, 80 characters).

* If you are wondering why such an obviously simple thing seems to be such an achievement, the reason is
simply that many traditional PBXes do not have this capability built in. With those systems, you have to
purchase some sort of third-party appliance even just to capture the raw call data. Asterisk simply stores it.
No drama. No cost. No kidding.

† A Comma Separated Values (CSV) file is a common method of formatting database-type information in a
text file. You can open CSV files with a text editor, but most spreadsheet and database programs will also
read them and properly parse them into rows and columns.

293

dst
Destination extension.

dcontext
Destination context.

clid
Caller ID with text (80 characters).

channel
Channel used (80 characters).

dstchannel
Destination channel, if appropriate (80 characters).

lastapp
Last application, if appropriate (80 characters).

lastdata
Last application data (arguments, 80 characters).

start
Start of call (date/time).

answer
Answer of call (date/time).

end
End of call (date/time).

duration
Total time in system, in seconds (integer), from dial to hangup.

billsec
Total time call is up, in seconds (integer), from answer to hangup.

disposition
What happened to the call (ANSWERED, NO ANSWER, BUSY).

amaflags
What flags to use (DOCUMENTATION, BILL, IGNORE, etc.), specified on a per-channel
basis, like accountcode. AMA flags stand for Automated Message Accounting flags,
which are somewhat standard (supposedly) in the industry.

userfield
A user-defined field, maximum 255 characters.

Storing CDRs in a Database
CDRs can also be stored in a database. Asterisk currently supports SQLite, PostgreSQL,
MySQL, and unixODBC, but we will cover only ODBC in this book (see Chapter 12).
Many people prefer to store their CDRs in a database, so that queries can be run to help
with billing and resource management.

294 | Chapter 13: Managing Your Asterisk System

Managing Logs
Asterisk activity generates events that will cause the creation of an entry in either the
main system logs, or in Asterisk’s own logfiles. On a busy system (or a system that is
experiencing a severe problem), these logfiles can grow very large, very quickly. If de-
bugging is turned on, the processes involved in writing to these logfiles can begin to
have an effect on system performance. By default, Asterisk will simply add to the files
until the hard drive is full. Fortunately, Linux provides utilities to handle the rotation
of logfiles (so that no single file becomes too large), and also the deletion of older logfiles
(which will prevent the system from getting clogged with logfiles).

The logrotate utility is normally run once per day by the operating system. Unfortu-
nately, since there is no script installed to instruct logrotate on how to handle Asterisk,
its logfiles will grow unchecked until a rotate script is added to handle them. In order
to make that happen, we need to set up parameters for Asterisk in a file in the /etc/
logrotate.d directory. This file will need to rotate the current logfile, and then send
Asterisk instructions to rotate its own logger (causing it to stop using the now old logfile,
and generate a new file).

Create a new file /etc/logrotate.d/asterisk and place the following lines in it:

/var/log/asterisk/* /var/log/asterisk/cdr-csv {
missingok
sharedscripts
monthly
rotate 12
postrotate
 asterisk -rx "logger rotate" > /dev/null 2> /dev/null
endscript
}

This file tells the logrotate utility to rotate the Asterisk logs every month, save 12 months
worth of logs, and then tell Asterisk that the logfiles have been rotated (which will cause
Asterisk to create new logfiles and begin writing to them). We selected these values
arbitrarily. Feel free to adjust them to suit your needs.

Running Asterisk As a Non-root User
By default, Asterisk runs as the root user, and while we don’t have any hard data, our
own experiences lead us to conclude that the vast majority of Asterisk systems are run
in this default state. From a security perspective, this represents an unacceptable
risk―strangely, one which most of us seem willing to take.

Running Asterisk as non-root is not terribly hard to achieve, but it requires a few extra
steps, and debugging it can be frustrating if you do not understand how Linux per-
missions work. However, from a security perspective it is well worth the effort.

Managing Logs | 295

We’re going to run Asterisk as the user asterisk, so we need to create that user on our
system first. The following commands will be run as root. We’ll tell you when to switch
and use the asterisk user that we’re about to create:

adduser -c "Asterisk PBX" asterisk
passwd asterisk

Now that you’ve created the asterisk user, let’s switch to that user, with which we’ll
perform the rest of the commands. Once we su to the asterisk user,‡ we can download
a copy of Asterisk via SVN, FTP or WGET, and then compile and install. We’re going
to grab a copy of Asterisk from the SVN repository in the following example.

1.4.5 is the current release version at the time of this writing, but it won’t
be by the time you read this, so check the Asterisk web site for the latest
version. In other words, don’t just type 1.4.5 whenever you see us refer
to it. Find out what is current and use that instead.

su - asterisk
$ svn co http://svn.digium.com/svn/asterisk/tags/1.4.5 asterisk-1.4.5
$ cd asterisk-1.4.5
$./configure --prefix=$HOME/asterisk-bin --sysconfdir=$HOME/asterisk-bin
 --localstatedir=$HOME/asterisk-bin
$ make menuselect
$ make install

When running the ./configure script with the --prefix flag, we’re telling the system to
install the binary components into our $HOME§ directory under the subdirectory called
asterisk-bin. The --sysconfdir flag tells the system where to place the configuration
files, and --localstatedir tells the system where to install additional files, such as
sounds. The key here is that since we are downloading, compiling, and installing as the
user asterisk, everything that only gets created will be assigned to that user, and have
the permissions granted to that user.

We can now install the sample files as well into the $HOME/asterisk-bin/asterisk
directory:

$ make samples

Test starting up Asterisk with the following command:

$./asterisk-bin/sbin/asterisk -cvvv

Normally, Asterisk needs to be run as a service. During installation, the make config
command will install the init scripts. Unfortunately, this will not work when you are
logged in as the user asterisk, because only the root user has the authority to make

‡ su historically means super-user, but nowadays it could also mean switch-user or substitute-user. The - in
the command tells su to use the environment for that user (for example to use the PATH for that user)

§ $HOME is a system variable that defines the path to the home directory for the current user, i.e., /home/asterisk.

296 | Chapter 13: Managing Your Asterisk System

changes to system startup commands. It would appear that what we need to do is log
in as root, navigate to the /home/asterisk/asterisk-1.4.5 folder, and run the
make config command again (now with the authority to really make it happen). Problem
solved, right?

Yes, but not quite. If you run the service asterisk start command, you will find that
it complains that it cannot find asterisk. Know why? Because the init script figures the
asterisk executable got installed in /usr/sbin, where it would be if we had installed
asterisk as root. So, we need to tell the init script where to find asterisk and the
safe_asterisk script, like this:

ln -s /home/asterisk/asterisk-bin/sbin/asterisk /usr/sbin/asterisk
ln -s /home/asterisk/asterisk-bin/sbin/safe_asterisk /usr/sbin/safe_asterisk

Since the init script utilizes the safe_asterisk script, and by default wants to start Asterisk
as the root user, we have to modify the safe_asterisk script telling it to run Asterisk as
our non-root user. So open up the safe_asterisk script with your favorite text editor and
look for the ASTARGS variable (around line 78). Then add -U asterisk between the quotes
like so:

#
Don't fork when running "safely"
#
ASTARGS="-U asterisk"

Go ahead and start Asterisk by running service asterisk start and verify Asterisk is
running as the asterisk user using the ps command:

service asterisk start
ps aux | grep asterisk

503 30659 0.0 1.8 26036 8692 pts/2 Sl 15:07 0:00
/home/asterisk/asterisk-bin/sbin/asterisk -U asterisk -vvvg -c

The 503 is actually our asterisk user, which we verify by looking at the /etc/passwd file:

cat /etc/passwd

asterisk:x:503:503:Asterisk PBX:/home/asterisk:/bin/bash

Reboot the system to ensure that everything comes up as required. Keep in mind that
a lot of things that you do with Asterisk might assume that you are running as root, so
keep an eye out for errors that relate to a lack of permission. Your Asterisk process may
think it is the superuser, but we have clipped its wings somewhat.

Why go through the trouble? The advantage of this is simply that if any security vul-
nerability in Asterisk‖ allows someone to access the box through the Asterisk account,

‖ If you walk up to any system that’s running Asterisk, hook a keyboard and screen up to it, and press Alt-F9;
you will be connected to the Asterisk CLI. Press ! and hit Return, and you will have a shell. If Asterisk is
running as root, you now own that system.

Running Asterisk As a Non-root User | 297

he will be limited to system activities allowed by that account. When Asterisk is run as
root, a security compromise gives the intruder full control of your system.

Customizing System Prompts
In keeping with the seemingly limitless flexibility of Asterisk, you can also modify the
system prompts. This is very simple to explain, but generally difficult to do well.

With more than 300 system prompts in the main distribution, and an additional 600
in the asterisk-sounds add-on, if you’re contemplating customizing all of them you’d
better have either a lot of money or a lot of time on your hands.

An audio engineer is also recommended to ensure that the recordings are normalized
to –3 dB and that all prompts start and end at a zero-crossing point (with just the right
amount of silence prepended and appended).

The Voice
If you are interested in The Voice of Asterisk, she is Allison Smith, and she can deliver
customized recordings for you to use on your own system.

This is a powerful concept, as very few PBXes allow you to use the same voice in your
custom recordings as is used by the system prompts.

Allison is the voice of the system prompts in both English and Spanish.

There are also prompts available in French. Montreal’s own June Wallack is the voice
of the French Asterisk prompts (and also does prompts in flawless English,# should
you want the same voice for both languages).

To find out how to get your own voice prompts, visit the Digium web site, http://
www.digium.com/products/voice.

Once you have the recordings, the actual implementation is easy—simply replace the
files in /var/lib/asterisk/sounds with the ones you have created.

Alternatively, you can opt to record your own prompts and place them in a folder of
your choosing. When you refer to sound files with the Playback() or Background()
applications, you can refer to the full pathname of the sound file, or to any subdirectory
of /var/lib/asterisk/sounds/.

Note that the default sounds that come with Asterisk are delivered in format. We would
not normally recommend storing them in this format (unless you have a lot of channels

We were going to say “accentless English”, but then we’d have to apologize to folks from the British Isles,
Australia, South Africa, and who knows where else. We are not experts in languages, dialects, and such, but our
ears tell us that there is a type of accent that in North America is common for professional voices. This is the
accent that is common to the Pacific coast from San Diego to Seattle, and most of English-speaking Canada as
well. Both June and Allison deliver English prompts in this accent, and we think it sounds great.

298 | Chapter 13: Managing Your Asterisk System

http://www.digium.com/products/voice
http://www.digium.com/products/voice

that will be entering the system using the GSM codec). Sure, you save some hard drive
space, but the extra load on your CPU when it has to transcode all these files (not to
mention the lower overall quality of the sound) makes the use of GSM undesirable, to
our thinking. Use uncompressed files (such as .wav, .ulaw or .alaw) and your CPU will
not have to work as hard. As an added bonus, your prompts will sound better.

Sound Recording from the Dialplan
Surprisingly, one of the easiest ways to get respectable-quality recordings is not through
a PC with fancy editing software, but rather through a telephone set. There are many
reasons for this, but the most important is that the telephone will tend to filter out
background noise (such as white noise caused by HVAC equipment) and will record
at a consistent audio level.

This little addition to your dialplan will allow you to easily create recordings, which
will be placed in your system’s /tmp/ folder (from there, you can rename them and move
them wherever you’d like):

exten => _66XX,1,Wait(2)
exten => _66XX,n,Record(/tmp/prompt${EXTEN:2}:wav)
exten => _66XX,n,Wait(1)
exten => _66XX,n,Playback(/tmp/prompt${EXTEN:2})
exten => _66XX,n,Wait(2)
exten => _66XX,n,Hangup()

This snippet will allow you to dial from 6600 to 6699, and it will record prompts in
the /tmp/ folder using the names prompt00.wav to prompt99.wav. After you complete
recording (by pressing the # key), it will play your prompt back to you and hang up.

Be sure to move your prompts out of the /tmp/ dir to the Asterisk sounds directory. To
keep the dialplan readable, rename your prompt<XX> files to something more mean-
ingful. For example:

mv /tmp/prompt00.wav /var/lib/asterisk/sounds/custom/welcome-message.wav

Music on Hold
Any popular PBX system offers the ability to supply a source of music to be played for
callers while on hold. Asterisk allows for a lot of creativity in this regard.

Nowadays, everyone is familiar with the MP3 music format, and there is a lot of interest
in using MP3s as a music-on-hold source. The concept sure seems like a good idea, but
there are a few things that we think should be given some consideration:

Music on Hold | 299

• MP3 files are extremely complex, and require a substantial amount of CPU to
decode. If you have a lot of channels pulling music from the system (for example,
people sometimes like to listen to music through their phone, or a call center may
have several callers on hold), the load on the CPU caused by all of the transcoding
of the stored MP3 files could place too much demand on a machine that is otherwise
suitable to the performance needs of the system.

• Current-generation hard drives hold a lot of data, so there may not be any reason
to worry about cutting down hard drive use. Compressed audio makes sense from
a distribution standpoint (an MP3 is a much smaller download than the equivalent
in .wav format), but once on your system, do we really care how much space they
take up?

• MP3 files don’t usually come with the right sort of licensing. ;-)

Taking all of this into consideration, we recommend that you convert your music sour-
ces into the native format of the various codecs you may be supporting. For example,
if you support μlaw for your internal phones, and G.729 on your VoIP circuits, you will
want to store your music in both formats so that Asterisk will not have to perform
transcoding to play music to calls on those channels.

Free Music
A lot of people do not realize that playing music on hold requires a special license. This
is true even if you play music from CDs that you own, or from the radio. To ensure that
there is no ambiguity, we recommend avoiding the whole matter and using only music
that does not come encumbered with the kind of licenses that the music industry seems
to prefer.

There are many web sites where you can go to get music that is licensed in a manner
that is suitable for music on hold. Two that we have found are http://en.wikipedia.org/
wiki/Wikipedia:Sound/list and http://www.opsound.org/.

Both offer a sizeable collection of music that can be easily downloaded. Note that this
may not all be of professional quality, so listen to all of it before you commit it to your
music-on-hold collection.*

We often use public domain music (or Creative Commons licensed music) on our
systems. Creative Commons music often comes in ogg-Vorbis format (which is con-
ceptually similar to MP3, but not compatible). In order to play .ogg or .mp3 files on our
Asterisk system, we are going to convert them to a format that Asterisk can easily
handle. This requires the following steps:

1. We need to make sure that SoX, the Sound eXchange utility, is installed. If not,
run the following command to install it:

* Seed a search with the term “Creative Commons music” to find more freely usable music.

300 | Chapter 13: Managing Your Asterisk System

http://en.wikipedia.org/wiki/Wikipedia:Sound/list
http://en.wikipedia.org/wiki/Wikipedia:Sound/list
http://www.opsound.org/

$ yum install sox

2. Download the music that you have chosen to a working folder on your system
(/tmp is probably a suitable location). As an example, the following command
downloaded some nice piano music by Pachelbel for us:

$ wget http://upload.wikimedia.org/wikipedia/commons/6/62/Pachelbel%27s_Canon.ogg

3. Now we have to convert the song from ogg-Vorbis format to a format more suitable
to Asterisk:

$ sox Pachelbel\'s_Canon.ogg -r 8000 -c 1 -s -w moh1.wav resample -ql

You may also need to adjust the amplitude with the -v option.

We’ve now taken our source file, converted it to a .wav file suitable to Asterisk,†

and saved the resulting file as moh1.wav.

4. Almost done now. We just need to create a folder for the permanent home of the
new files (/tmp is certainly no place for them):

$ mkdir /var/lib/asterisk/mohwav

and then move them there:

$ mv *.wav /var/lib/asterisk/mohwav

5. Since we have placed our music files in a different folder from that where Asterisk
installs its sample music, we will need to change the configuration file to reflect
this. Edit your /etc/asterisk/musiconhold.conf file with one that contains the
following:

[default]
mode=files
directory=/var/lib/asterisk/mohwav
random=yes

As for what to play, that will depend on what image you want to project to your callers.
Regardless of your choice, you should keep some things in mind:

• People don’t actually want to be on hold, so they are not usually planning to be
there for long. This means that there is not much point in providing them with a
mind-expanding musical experience. If things go as they hope, they won’t be there
long enough to get into it.

† Note that we could have used any format that was compatible with Asterisk; we’ve just chosen .wav for this
example because it is easy for the CPU to transcode into μlaw/alaw/slin on the fly, yet remains easy to work
with in other environments.

Music on Hold | 301

• The fidelity on a phone system does not allow for accurate reproduction of tones.
Heavy bass generally sounds terrible, and high frequencies will typically just end
up as noise. Keep the music simple, and it is more likely to sound good.

• Musical tastes are as varied as people, and while it might be nice to try and cover
a wide range of styles, music that is too eclectic is more likely to annoy than en-
lighten.

Classical music addresses all of the above criteria, and it is easy to obtain. It also sounds
classy (go figure!), so it is a pretty safe choice, although we’ll admit it doesn’t usually
score any points in the hipness department.

Asterisk includes three songs with the source code download that are licensed for use
with Asterisk. These songs are intended as samples. Since there are only three of them,
people who call you regularly will quickly tire of them. We have a recurring nightmare
in which the worldwide success of Asterisk means that the human race is forced to
listen to the same three songs as music on hold. That is why we wrote this section for
you.

Randomizing Music on Hold
In a traditional PBX, music on hold usually comes from a single source. Everyone that
is hearing music is hearing the exact same thing at the exact same time, and even when
no one is on hold, the music is still playing. On Asterisk, the music is not playing until
a need for it arises, and each caller gets her own music source. If Asterisk were to simply
start playing songs in the order it found them, each call placed on hold would always
hear the same song starting from the beginning. In order to simulate traditional music
on hold, Asterisk can (and normally should) be set to play the music in a random
fashion. This means that it will select which file to play at random. If you have enough
different songs in your music-on-hold directory, you will minimize the chance that
someone who calls frequently will have to listen to the same songs all of the time.

Conclusion
This chapter could easily become a book (and possibly will one day). We have chosen
a few topics to cover that we think will provide value to most readers, but there are
certainly many more topics that can be discussed. As with so many things in this book,
we have merely scratched the surface.

302 | Chapter 13: Managing Your Asterisk System

CHAPTER 14

Potpourri

The first 90 percent of the task takes 90 percent of the
time, and the last 10 percent of the task takes the other

90 percent of the time.

—The Ninety:Ten Rule

The toughest part of writing this book was not finding things to write about, but rather
deciding what we would not be able to write about. Now that we’ve covered the basics,
you are ready to be told the truth: we have not taught you anywhere near all that there
is to know about Asterisk.

Now please understand, this is not because we didn’t want to give you our very best;
it’s merely because Asterisk is, well, limitless (or so we believe).

In this chapter, we want to give you a taste of some of the wonders Asterisk holds in
store for you. Nearly every section in this chapter could become a book in itself (and
they will become books, if Asterisk succeeds in the way we think it is going to).

Festival
Festival is a popular open source text-to-speech engine. The basic premise of using
Festival with Asterisk is that your dialplan can pass a body of text to Festival, which
will then “speak” the text to the caller. Probably the most obvious use for Festival would
be to have it read your email to you when you are on the road.*

* Probably the coolest use of Festival is in Simon Ditner’s ZoIP, a port of the famous Zork game to a fully
speech-enabled engine running on Asterisk (ZoIP also uses Sphinx, which we will not be covering in this
book). We’re going to have to come up with a new kind of name for this sort of thing. It’s not a video game,
since there is no screen, so do we need to call these audio games? Regardless, check it out at http://
www.zoip.org.

303

http://www.zoip.org
http://www.zoip.org

Getting Festival Set Up and Ready for Asterisk
There are currently two ways to use Festival with Asterisk. The first (and easiest) meth-
od—without having to patch and recompile Festival—is to add the following text to
Festival’s configuration file (festival.scm, usually located in /etc/ or /usr/share/festival/):

(define (tts_textasterisk string mode)
"(tts_textasterisk STRING MODE)

Apply tts to STRING. This function is specifically designed for use in
server mode so a single function call may synthesize the string. This
function name may be added to the server safe functions."
(let ((wholeutt (utt.synth (eval (list 'Utterance 'Text string)))))
(utt.wave.resample wholeutt 8000)
(utt.wave.rescale wholeutt 5)
(utt.send.wave.client wholeutt)))

You may place this text anywhere in the file, as long as it is not between any other
parentheses.

The second (and more traditional) way is to compile Festival with an Asterisk-specific
patch (located in the contrib/ directory of the Asterisk source).

Information on both of these methods is contained in the README.festival file, located
in the contrib/ directory of the Asterisk source.

For either method, you’ll need to modify the Festival access list in the festival.scm file.
Simply search for the word “localhost” and replace it with the fully qualified domain
name of your server.

Both of these methods set up Festival to be able to correctly communicate with Asterisk.
After setting up Festival, you should start the Festival server. You can then call the
Festival() application from within your dialplan.

Configuring Asterisk for Festival
The Asterisk configuration file that deals with Festival is aptly called festival.conf. Inside
this file, you specify the hostname and port of your Festival server, as well some settings
for the caching of Festival speech. For most installations (if you’re going to run Festival
on your Asterisk server), the defaults will work just fine.

Starting the Festival Server
To start the Festival server for debugging purposes, simply run festival with the
--server argument, like this:

[root@asterisk ~]# festival --server

304 | Chapter 14: Potpourri

Once you’re sure that the Festival server is running and not rejecting your connections,
you can start Festival by typing:

[root@asterisk ~]# festival_server 2>&1 >/dev/null &

Calling Festival from the Dialplan
Now that Festival is configured and the Festival server is started, let’s call it from within
a simple dialplan:

exten => 123,1,Answer()
exten => 123,2,Festival(Asterisk and Festival are working together)

You should always call the Answer() application before calling
Festival(), to ensure that a channel is established.

As Asterisk connects to Festival, you should see output like this in the terminal where
you started the Festival server:

[root@asterisk ~]# festival --server
server Sun May 1 18:38:51 2005 : Festival server started on port 1314
client(1) Sun May 1 18:39:20 2005 : accepted from asterisk.localdomain
client(1) Sun May 1 18:39:21 2005 : disconnected

If you see output like the following, it means you didn’t add the host to the access list
in festival.scm:

[root@asterisk ~]# festival --server
server Sun May 1 18:30:52 2005 : Festival server started on port 1314
client(1) Sun May 1 18:32:32 2005 : rejected from asterisk.localdomain not
in access list

Yet Another Way to Use Festival with Asterisk
Some people in the Asterisk community have reported success with passing text to
Festival’s text2wave utility and then having Asterisk play back the resulting .wav file.
For example, you might do something like this:

exten => 124,1,Answer()
exten => 124,2,System(echo "This is a test of Festival" | /usr/bin/text2wave
-scale 1.5 -F 8000 -o /tmp/festival.wav)
exten => 124,3,Playback(/tmp/festival)
exten => 124,4,System(rm /tmp/festival.wav)
exten => 124,5,Hangup()

This method also allows you to call other text-to-speech engines, such as the popular
speech engine from Cepstral http://www.cepstral.com, which is an inexpensive com-
mercial derivative of Festival with very good-sounding voices. For this example, we’ll
assume that Cepstral is installed in /usr/local/cepstral/:

exten => 125,1,Answer()
exten => 125,2,System(/usr/local/cepstral/bin/swift -o /tmp/swift.wav

Festival | 305

http://www.cepstral.com

"This is a test of Cepstral")
exten => 125,3,Playback(/tmp/swift)
exten => 125,4,System(rm /tmp/swift.wav)
exten => 125,5,Hangup()

Call Files
Call files allow you to create calls through the Linux shell. These powerful events are
triggered by depositing a .call file in the directory /var/spool/asterisk/outgoing/. The
actual name of the file does not matter, but it’s good form to give the file a meaningful
name and to end the filename with .call.

When a call file appears in the outgoing folder, Asterisk will almost immediatelyact on
the instructions contained therein.†

Call files are formatted in the following manner. First, we define where we want to call:

Channel: channel

We can control how long to wait for a call to be answered (the default is 45 seconds),
how long to wait between call retries, and the maximum number of retries. If
MaxRetries is omitted, the call will be attempted only once:

WaitTime: number
RetryTime: number
MaxRetries: number

If the call is answered, we specify where to connect it here:

Context: context-name
Extension: ext
Priority: priority

Alternatively, we can specify a single application and pass arguments to it:

Application: Playback()
Data: hello-world

Next, we set the Caller ID of the outgoing call:

CallerID: Asterisk 800-555-1212

Then we set channel variables, as follows:

SetVar: john=Zap/1/5551212
SetVar: sally=SIP/1000

and add a CDR account code:

Account: documentation

† We’re talking within milliseconds here. Don’t believe us? Try it for yourself!

306 | Chapter 14: Potpourri

When you create a call file, do not do so from the spool directory. As-
terisk monitors the spool aggressively and will try to grab your file before
you’ve even finished writing it! Create call files in some other folder,
make a copy in the same folder, and then mv the copy into the spool
directory. Note that we said mv, not cp. This is important, because the
way that Linux copies files means that the file appears in the destination
folder before it is completely there. Contrast that with a mv operation,
which will not allow the file to appear in the destination folder until the
move operation is complete. If you copy, there is a very good chance
that Asterisk will read the file before it is all there, which will cause
unexpected results.

DUNDi
If there were any concerns that Mark Spencer was in danger of running out of good
ideas, Distributed Universal Number Discovery (DUNDi) ought to lay such thoughts
to rest. DUNDi is poised to be as revolutionary as Asterisk. The DUNDi web site (http://
www.dundi.com) says it best: “DUNDi™ is a peer to peer system for locating Internet
gateways to telephony services. Unlike traditional centralized services (such as the re-
markably simple and concise ENUM standard; http://www.faqs.org/rfc/rfc2916.txt),
DUNDi is fully distributed with no centralized authority whatsoever.” DUNDi is
somewhat of a routing protocol for VoIP.

How Does DUNDi Work?
Think of DUNDi as a large phone book that allows you to ask peers if they know of an
alternative VoIP route to an extension number or PSTN telephone number.

For example, assume that you are connected to the DUNDi-test network (a free and
open network that terminates calls to traditional PSTN numbers). You ask your friend
Bob if he knows how to reach 1-212-555-1212, a number for which you have no direct
access. Bob replies, “I don’t know how to reach that number, but let me ask my peer
Sally.”

Bob asks Sally if she knows how to reach the requested number, and she responds with,
“You can reach that number at IAX2/dundi:very_long_password@hostname/extension.”
Bob then stores the address in his database and passes on to you the information about
how to reach 1-800-555-1212 via VoIP, allowing you an alternative method of reaching
the same destination through a different network.

Because Bob has stored the information he found, he’ll be able to provide it to any peers
who later request the same number from him, so the lookup won’t have to go any
further. This helps reduce the load on the network and increases response times for
numbers that are looked up often. (However, it should be noted that DUNDi creates
a rotating key and, thus, stored information is valid for a limited period of time.)

DUNDi | 307

http://www.dundi.com
http://www.dundi.com
http://www.faqs.org/rfc/rfc2916.txt

DUNDi performs lookups dynamically, either with a switch => statement in your
extensions.conf file or with the use of the DUNDiLookup() application. DUNDi is available
only in Asterisk version 1.2 or higher.

You can use the DUNDi protocol in a private network as well. Say you’re the Asterisk
administrator of a very large enterprise installation, and you wish to simplify the ad-
ministration of extension numbers. You could use DUNDi in this situation, allowing
multiple Asterisk boxes (presumably located at each of the company’s locations and
peered with one another) to perform dynamic lookups for the VoIP addresses of ex-
tensions on the network.

Configuring Asterisk for Use with DUNDi
There are three files that need to be configured for DUNDi: dundi.conf,
extensions.conf, and iax.conf.‡ The dundi.conf file controls the authentication of peers
whom we allow to perform lookups through our system. This file also manages the list
of peers to whom we might submit our own lookup requests. Since it is possible to run
several different networks on the same box, it is necessary to define a different section
for each peer, and then configure the networks in which that peer is allowed to perform
lookups. Additionally, we need to define which peers we wish to use to perform
lookups.

The General Peering Agreement

The General Peering Agreement (GPA) is a legally binding license agreement that is
designed to prevent abuse of the DUNDi protocol. Before connecting to the
DUNDi-test group, you are required to sign a GPA. The GPA is used to protect the
members of the group and to create a “trust” between the members. It is a requirement
of the DUNDi-test group that your complete and accurate contact information be con-
figured in dundi.conf, so that members of your peer group can contact you. The GPA
can be found in the doc/ subdirectory of the Asterisk source.

General configuration

The [general] section of dundi.conf contains parameters relating to the overall opera-
tion of the DUNDi client and server:

; DUNDi configuration file
;
[general]
;
department=IT
organization= toronto.example.com

‡ The dundi.conf and extensions.conf files must be configured. We have chosen to configure iax.conf for our
address advertisement on the network, but DUNDi is protocol-agnostic—thus sip.conf, h323.conf, or
mgcp.conf could be used instead.

308 | Chapter 14: Potpourri

locality=Toronto
stateprov=ON
country=CA
email=support@toronto.example.com
phone=+19055551212
;
; Specify bind address and port number. Default is 4520
;bindaddr=0.0.0.0
port=4520
entityid=FF:FF:FF:FF:FF:FF
ttl=32
autokill=yes
;secretpath=dundi

The entity identifier defined by entityid should generally be the Media Access Control
(MAC) address of an interface in the machine. The entity ID defaults to the first Ethernet
address of the server, but you can override this with entityid, as long as it is set to the
MAC address of something you own. The MAC address of the primary external interface
is recommended. This is the address that other peers will use to identify you.

The Time To Live (ttl) field defines how many peers away we wish to receive replies
from and is used to break loops. Each time a request is passed on down the line because
the requested number is not known, the value in the TTL field is decreased by one,
much like the TTL field of an ICMP packet. The TTL field also defines the maximum
number of seconds we are willing to wait for a reply.

When you request a number lookup, an initial query (called a DPDISCOVER) is sent to
your peers requesting that number. If you do not receive an acknowledgment (ACK) of
your query (DPDISCOVER) within 2,000 ms (enough time for a single transmission only)
and autokill is equal to yes, Asterisk will send a CANCEL to the peers. (Note that an
acknowledgment is not necessarily a reply to the query; it is just an acknowledgment
that the peer has received the request.) The purpose of autokill is to keep the lookup
from stalling due to hosts with high latency. In addition to the yes and no options, you
may also specify the number of milliseconds to wait.

The pbx_dundi module creates a rotating key and stores it in the local Asterisk database
(AstDB). The key name secret is stored in the dundi family. The value of the key can
be viewed with the database show command at the Asterisk console. The database
family can be overridden with the secretpath option.

Creating mapping contexts

The dundi.conf file defines DUNDi contexts that are mapped to dialplan contexts in
your extensions.conf file. DUNDi contexts are a way of defining distinct and separate
directory service groups. The contexts in the mapping section point to contexts in the
extensions.conf file, which control the numbers that you advertise. When you create a
peer, you need to define which mapping contexts you will allow this peer to search.
You do this with the permit statement (each peer may contain multiple permit

DUNDi | 309

statements). Mapping contexts are related to dialplan contexts in the sense that they
are a security boundary for your peers.

Phone numbers must be advertised in the following format:

<country_code><area_code><prefix><number>

For example, a complete North American number could be advertised as 14165551212.

All DUNDi mapping contexts take the form of:

dundi_context => local_context,weight,technology,destination[,options]]

The following configuration creates a DUNDi mapping context that we will use to
advertise our local phone numbers to the DUNDi-test group. Note that this should all
appear on one line:

dundi-test => dundi-local,0,IAX2,dundi:${SECRET}@toronto.example.com/
${NUMBER}, nounsolicited,nocomunsolicit,nopartial

In this example, the mapping context is dundi-test, which points to the dundi-local
context within extensions.conf (providing a listing of phone numbers to reply to).
Numbers that resolve to the PBX should be advertised with a weight of zero (directly
connected). Numbers higher than 0 indicate an increased number of hops or paths to
reach the final destination. This is useful when multiple replies for the same lookup are
received at the end that initially requested the number; a weight with a lower number
will be the preferred path.

If we can reply to a lookup, our response will contain the method by which the other
end can connect to the system. This includes the technology to use (such as IAX2, SIP,
H323, and so on), the username and password with which to authenticate, which host
to send the authentication to, and finally the extension number.

Asterisk provides some shortcuts to allow us to create a “template” with which we can
build our responses. The following channel variables can be used to construct the tem-
plate:

${SECRET}
Replaced with the password stored in the local AstDB

${NUMBER}
The number being requested

${IPADDR}
The IP address to connect to

It is generally safest to statically configure the hostname, rather than
making use of the ${IPADDR} variable. The ${IPADDR} variable will some-
times reply with an address in the private IP space, which is unreachable
from the Internet.

310 | Chapter 14: Potpourri

Defining DUNDi peers

DUNDi peers are defined in the dundi.conf file. Peers are identified by the unique layer-
two MAC address of an interface on the remote system. The dundi.conf file is where
we define what context to search for peers requesting a lookup and which peers we
want to use when doing a lookup for a particular network:

[00:00:00:00:00:00] ; Remote Office
model = symmetric
host = montreal.example.com
inkey = montreal
outkey = toronto
include = dundi-test
permit = dundi-test
qualify = yes
dynamic=yes

The remote peer’s identifier (MAC address) is enclosed in square brackets ([]). The
inkey and outkey are the public/private key pairs that we use for authentication. Key
pairs are generated with the astgenkey script, located in the ./asterisk/contrib/scripts/
source directory. Be sure to use the -n flag so that you don’t have to initialize passwords
every time you start Asterisk:

cd /var/lib/asterisk/keys
/usr/src/asterisk/contrib/scripts/astgenkey -n toronto

The resulting keys, toronto.pub and toronto.key, will be placed in your /var/lib/asterisk/
keys/ directory. The toronto.pub file is the public key, which you should post to a web
server so that it is easily accessible for anyone with whom you wish to peer. When you
peer, you can give your peers the HTTP-accessible public key, which they can then
place in their /var/lib/asterisk/keys/ directories.

After you have downloaded the keys, you must reload the res_crypto.so and pbx_dun
di.so modules in Asterisk:

*CLI> module reload res_crypto.so
 -- Reloading module 'res_crypto.so' (Cryptographic Digital Signatures)
 -- Loaded PRIVATE key 'toronto'
 -- Loaded PUBLIC key 'toronto'

*CLI> module reload pbx_dundi.so
 -- Reloading module 'pbx_dundi.so' (Distributed Universal Number
 Discovery
(DUNDi))

 == Parsing '/etc/asterisk/dundi.conf': Found

Then, create the dundi user in the iax.conf file to allow connections into your Asterisk
system. When a call is authenticated, the extension number being requested is passed
to the dundi-local context in the extensions.conf file, where the call is then handled by
Asterisk.

DUNDi | 311

Allowing remote connections

Here is the user definition for the dundi user:

[dundi]
type=user
dbsecret=dundi/secret
context=dundi-local
disallow=all
allow=ulaw
allow=g726

Instead of using a static password, Asterisk regenerates passwords every 3,600 seconds
(1 hour). The value is stored in /dundi/secret of the Asterisk database and advertised
using the ${SECRET} variable defined within the mapping context lines in dundi.conf.
You can see the current keys for all peers, including your local public and private keys,
by performing a show keys at the Asterisk CLI.

The context entry dundi-local is where authorized callers are sent in extensions.conf.
From there, we can manipulate the call just as we would in the dialplan of any other
incoming connection.

Configuring the dialplan

The extensions.conf file handles what numbers you advertise and what you do with the
calls that connect to them. The dundi-local context performs double duty:

• It controls the numbers we advertise, referenced by the dundi mapping context in
dundi.conf.

• It controls what to do with the call, referenced by the dundi user in iax.conf.

You have the power of dialplan pattern matching to advertise ranges of numbers and
to control the incoming calls. In the following dialplan, we are only advertising the
number +1-416-555-1212, but pattern matching could just as easily have been em-
ployed to advertise a range of numbers or extensions:

[dundi-local]
exten => 14165551212,1,NoOp(dundi-local: Number advertisement and incoming)
exten => 14165551212,n,Answer()
exten => 14165551212,n(call),Dial(SIP/1000)
exten => 14165551212,n,Voicemail(u1000)
exten => 14165551212,n,Hangup()
exten => 14165551212,n(call)+101,Voicemail(b1000)
exten => 14165551212,n,Hangup()

Alternative Voicemail Storage Methods
Asterisk’s normal way of storing voicemail is to simply record the message in a file,
which is placed on the local hard drive under the /var/spool/asterisk/voicemail tree.
While this works well enough for simple PBX deployments, there are more advanced

312 | Chapter 14: Potpourri

ways of doing this that can be very useful in larger, distributed networks, or environ-
ments where tighter integration with external applications is desired.

Storing Voicemail in an IMAP Server
The ability to store voice messages in the same location as regular email is something
that the telecom industry has been promising for a long time. They called it Unified
Messaging, and while most PBXes now offer some sort of unified messaging, it is typ-
ically very expensive to license and implement.

Naturally, Asterisk cuts through all the silliness and just allows you to have your voi-
cemailbox integrated into an IMAP environment. There are several advantages to
storing your voicemail on an IMAP server. When you listen to a voicemail on your
phone, the message is set to the read state on the IMAP server. This means that your
email client will also note that it has been read. By the same token, if you listen to the
message from your email client, the voicemail will turn off the message notification
light on any phones that are assigned to that mailbox. Deleting a message from one
place will cause it to be deleted from every place. So once deleted, the message is truly
gone. This is Unified Messaging, the holy grail of voicemail to email integration, but
Asterisk humbly decides not to make a big deal of it.

IMAP integration is still new functionality, so there are a few things that need to be
added in order to get it to function. First off, Asterisk needs to have an IMAP client
installed so that it can communicate with the IMAP server. Pretty much any IMAP
server works (even Exchange Server), and the authors have personally tested IMAP
voicemail support with both the Courier-IMAP and Dovecot IMAP servers. The IMAP
server may be on the same physical machine as the Asterisk installation, or it may be
on the other side of the globe. To be able to access the IMAP server, Asterisk requires
an IMAP client library. This library is the University of Washington’s free IMAP client,
named c-client. To install the c-client you simply need to navigate to your /usr/src di-
rectory and run the following commands:

wget ftp://ftp.cac.washington.edu/mail/imap.tar.Z

This downloads the source code. Extract it with:

tar zxvf imap.tar.Z

You’ll want to pay special attention to the name of the directory that is
created by this command, as the directory name will probably change
again by the time you read this. During the production of this book, the
directory name has changed four times. The last time we checked, it was
named /usr/src/imap-2006h.

Navigate into the resulting folder and run:

make lrh IP6=4

Alternative Voicemail Storage Methods | 313

This will compile everything Asterisk needs to make use of the IMAP client libraries.§

Now we have to recompile Asterisk with the IMAP capabilities. We’ll need to navigate
to the location of our Asterisk source files (such as /usr/src/asterisk), and run the fol-
lowing command:

/configure --with-imap=/usr/src/imap-2006h

The we need to rerun make menuconfig to incorporate IMAP storage into the compile.
Under Voicemail Build Options select the IMAP_STORAGE parameter, and then press x to
save and exit. This ensures that when we compile Asterisk, it will build the IMAP
module as well. Obviously, the next step then is to recompile and reinstall Asterisk. A
simple way to do this is, in your terminal, to run:

make && make install

OK, so we’ve got the module compiled and installed. Now it’s time to configure it.

In the /etc/asterisk folder, we’ll need to add a few lines to the voicemail.conf file, in the
[general] section:

imapserver=localhost
imapport=143
expungeonhangup=yes
authuser=vmail
authpassword=vmailsecret
imapfolder=Voicemail

Since Dovecot is available in the CentOS package repository, installing a small IMAP
server to handle your virtual (voicemail) users on your Asterisk box is simple:

yum install dovecot

Now make sure that IMAP support is enabled in /etc/dovecot.conf by uncommenting
the protocols line so that it appears as follows:

protocols = imap imaps

After you’ve enabled IMAP support, create the user account that will be storing the
mail:

groupadd vmail
useradd vmail -g vmail -s /bin/true -c "asterisk voicemail user" -p vmailsecret
 -d /var/spool/asterisk/imap-voicemail vmail
chown -R vmail.vmail /var/spool/asterisk/imap-voicemail

Now restart Dovecot and Asterisk, and you should be good to go.

service dovecot restart
service asterisk restart

§ The lrh option tells the compiler that this is a Linux Red Hat system. The IP6=4 option tells the compiler
that we don’t want to compile in support for IPV6. Read the Makefile for other options. For RHEL 5 or
CentOS 5, you should use lr5 instead of lrh.

314 | Chapter 14: Potpourri

Congratulations! You’ve successfully installed basic IMAP voicemail support with As-
terisk! This is just the tip of the iceberg, though. With IMAP voicemail storage, it is
easy to implement shared (e.g., departmental) voicemail using shared IMAP folders.
Many companies already have departmental email, so having a shared voicemail box
is a very natural and logical progression of the technology. With IMAP voicemail stor-
age, each employee can manage several voicemail boxes without becoming confused
as to whether a particular voicemail message is for them personally or for a department
to which they belong. There is nothing unusual to configure from Asterisk’s point of
view; you simply call the VoiceMail() application with the desired mailbox and context,
and make sure that the department employees have the shared IMAP folder included
in their email client’s folder list.

Finally, you may want to use per-mailbox authorization (i.e., each voicemail box au-
thenticates as a specific user) instead of a global Asterisk IMAP user. Asterisk supports
this through the imapuser and imappassword options in the individual voicemail box
definition entries:

[imapvoicemail]
100 => 1234,Sue's Mailbox,,,imapuser=sue@example.tld|imapsecret=suesimapsecret
101 => 5555,Bob's Mailbox,,,imapuser=bob@example.tld|imapsecret=bobsimapsecret

In this particular example, if a message is left in IMAP mailbox 100 in the
imapvoicemail context, Asterisk will authenticate to the IMAP server as sue@exam
ple.tld, using suesimapsecret as the password. Similarly, bob@example.tld/bobsimap
secret will be used to authenticate if a message is left in mailbox 101 of the same
voicemail context.

Storing Voicemail in an ODBC Database
In case you missed it, you can also store voicemail in a database via the ODBC con-
nector. See Chapter 12 for details!

Asterisk and Jabber (XMPP)
The name Jabber is actually the original name for the IETF XMPP protocols (RFC
3920-3923). Since Jabber is by far a better name than XMPP, the original name has
stuck. This protocol was originally designed to be a decentralized, nonproprietary,
open-standards messaging and presence framework. It supports offline message deliv-
ery and encryption, and has grown to include voice messaging, which Asterisk sup-
ports.

It is interesting to note that in the beginning, Jabber was seen as a competitor to the
SIMPLE protocol, which is SIP-based. XMPP is designed as a more general protocol,
and is of course XML-based.

Asterisk and Jabber (XMPP) | 315

Asterisk can be configured to utilize XMPP in several capacities. It may utilize XMPP
as a presence framework (e.g., Extension 205 is away or on the phone), or, through the
voice messaging framework JINGLE, support full voice communications with other
services such as Google Talk.

Unlike other messaging networks such as MSN and Yahoo!, XMPP is decentralized.
Anyone may have his own Jabber server and run any number of services on his server.
You send messages in much the same way that you send email: the Jabber server you
use contacts the Jabber server of the other person, and a direct connection is estab-
lished. If the other person is not online, the message is stored, and when she log in to
her Jabber server, any stored messages are delivered. With encryption (the XMPP pro-
tocol supports TLS), it is no wonder why many businesses are starting to implement
their internal messaging networks using this amazing protocol, and Asterisk is able to
seamlessly integrate into this communications network.

Conclusion
That’s pretty much all that this chapter is going to teach you, but it’s nowhere near all
there is to learn. Hopefully, you are starting to get an idea of how big this Asterisk thing
really is.

In the next chapter, we’re going to try and predict the future of telecom, and we’ll
discuss how (and why) we believe that Asterisk is well positioned to play a starring role.

316 | Chapter 14: Potpourri

CHAPTER 15

Asterisk: The Future of Telephony

First they ignore you, then they laugh at you, then they
fight you, then you win.

—Mahatma Gandhi

We have arrived at the final chapter of this book. We’ve covered a lot, but we hope
that you now realize that we have barely begun to scratch the surface of this phenom-
enon called Asterisk. To wrap things up, we want to spend some time exploring what
we might see from Asterisk and open source telephony in the near future.

While prognostication is always a thankless task, we are confident in asserting that
open source communications engines such as Asterisk herald a shift in thinking that
will transform the telecommunications industry. In this chapter, we will discuss some
of our reasons for this belief.

The Problems with Traditional Telephony
Although Alexander Graham Bell is most famously remembered as the father of the
telephone, the reality is that during the latter half of the 1800s, dozens of minds were
working toward the goal of carrying voice over telegraph lines. These people were
mostly business-minded folks, looking to create a product through which they might
make their fortunes.

We have come to think of traditional telephone companies as monopolies, but this was
not true in their early days. The early history of telephone service took place in a very
competitive environment, with new companies springing up all over the world, often
with little or no respect for the patents they might be violating. Many famous monop-
olies got their start through the waging (and winning) of patent wars.

It’s interesting to contrast the history of the telephone with the history of Linux and
the Internet. While the telephone was created as a commercial exercise, and the telecom
industry was forged through lawsuits and corporate takeovers, Linux and the Internet
arose out of the academic community, which has always valued the sharing of
knowledge over profit.

317

The cultural differences are obvious. Telecommunications technologies tend to be
closed, confusing, and expensive, while networking technologies are generally open,
well-documented, and competitive.

Closed Thinking
If one compares the culture of the telecommunications industry to that of the Internet,
it is sometimes difficult to believe the two are related. The Internet was designed by
enthusiasts, whereas contributing to the development of the PSTN is impossible for
any individual to contemplate. This is an exclusive club; membership is not open to
just anyone.*

The International Telecommunication Union (ITU) clearly exhibits this type of closed
thinking. If you want access to its knowledge, you have to be prepared to pay for it.
Membership requires proof of your qualifications, and you will be expected to pay
thousands of dollars to gain access to its library of publications.

Although the ITU is the United Nations’s sanctioned body responsible for international
telecommunications, many of the VoIP protocols (SIP, MGCP, RTP, STUN) come not
from the hallowed halls of the ITU, but rather from the IETF (which publishes all of
its standards free to all, and allows anyone to submit an Internet Draft for
consideration).

Open protocols such as SIP may have a tactical advantage over ITU protocols, such as
H.323, due to the ease with which one can obtain them. Although H.323 is widely
deployed by carriers as a VoIP protocol in the backbone, it is much more difficult to
find H.323-based endpoints; newer products are far more likely to support SIP.

The success of the IETF’s open approach has not gone unnoticed by the mighty ITU.
It has recently become possible to download up to three documents free of charge from
the ITU web site.†Openness is clearly on its minds. Recent statements by the ITU sug-
gest that there is a desire to achieve “Greater participation in ITU by civil society and
the academic world.” Mr. Houlin Zhao, the ITU’s Director of the Telecommunication
Standardization Bureau (TSB), believes that “ITU should take some steps to encourage
this.”‡

The roadmap to achieving this openness is unclear, but the ITU is beginning to realize
the inevitable.

* Contrast this with the IETF’s membership page, which states: “The IETF is not a membership organization
(no cards, no dues, no secret handshakes :-)... It is open to any interested individual... Welcome to the IETF.”
Talk about community!

† Considering the thousands of documents available, and the fact that each document generally contains
references to dozens more, the value of this free information is difficult to judge.

‡ http://www.itu.int/ITU-T/tsb-director/itut-wsis/files/wg-wsis-Zhao-rev1.pdf

318 | Chapter 15: Asterisk: The Future of Telephony

http://www.itu.int/ITU-T/tsb-director/itut-wsis/files/wg-wsis-Zhao-rev1.pdf

As for Asterisk, it embraces both the past and the future: H.323 support is available,
although the community has for the most part shunned H.323 in favor of the IETF
protocol SIP and the darling of the Asterisk community, IAX.

Limited Standards Compliancy
One of the oddest things about all of the standards that exist in the world of legacy
telecommunications is the various manufacturers’ seeming inability to implement them
consistently. Each manufacturer desires a total monopoly, so the concept of intero-
perability tends to take a back seat to being first to market with a creative new idea.

The ISDN protocols are a classic example of this. Deployment of ISDN was (and in
many ways still is) a painful and expensive proposition, as each manufacturer decided
to implement it in a slightly different way. ISDN could very well have helped to usher
in a massive public data network, 10 years before the Internet. Unfortunately, due to
its cost, complexity, and compatibility issues, ISDN never delivered much more than
voice, with the occasional video or data connection for those willing to pay. ISDN is
quite common (especially in Europe, and in North America in larger PBX implemen-
tations), but it is not delivering anywhere near the capabilities that were envisioned for
it.

As VoIP becomes more and more ubiquitous, the need for ISDN will disappear.

Slow Release Cycles
It can take months, or sometimes years, for the big guys to admit to a trend, let alone
release a product that is compatible with it. It seems that before a new technology can
be embraced, it must be analyzed to death, and then it must pass successfully through
various layers of bureaucracy before it is even scheduled into the development cycle.
Months or even years must pass before any useful product can be expected. When those
products are finally released, they are often based on hardware that is obsolete; they
also tend to be expensive and to offer no more than a minimal feature set.

These slow release cycles simply don’t work in today’s world of business communica-
tions. On the Internet, new ideas can take root in a matter of weeks and become viable
in extremely short periods of time. Since every other technology must adapt to these
changes, so too must telecommunications.

Open source development is inherently better able to adapt to rapid technological
change, which gives it an enormous competitive advantage.

The spectacular crash of the telecom industry may have been caused in large part by
an inability to change. Perhaps that continued inability is why recovery has been so
slow. Now, there is no choice: change, or cease to be. Community-driven technologies
such as Asterisk will see to that.

The Problems with Traditional Telephony | 319

Refusing to Let Go of the Past and Embrace the Future
Traditional telecommunications companies have lost touch with their customers.
While the concept of adding functionality beyond the basic telephone is well under-
stood, the idea that the user should be the one defining this functionality is not.

Nowadays, people have nearly limitless flexibility in every other form of communica-
tion. They simply cannot understand why telecommunications cannot be delivered as
flexibly as the industry has been promising for so many years. The concept of flexibility
is not familiar to the telecom industry, and very well might not be until open source
products such as Asterisk begin to transform the fundamental nature of the industry.
This is a revolution similar to the one Linux and the Internet willingly started more
than 10 years ago (and IBM unwittingly started with the PC, 15 years before that). What
is this revolution? The commoditization of telephony hardware and software, enabling
a proliferation of tailor-made telecommunications systems.

Paradigm Shift
In “Paradigm Shift” (http://tim.oreilly.com/articles/paradigmshift_0504.html), Tim
O’Reilly talks about a paradigm shift that is occurring in the way technology (both
hardware and software) is delivered.§ O’Reilly identifies three trends:
the commoditization of software, network-enabled collaboration, and
software customizability (software as a service). These three concepts provide evidence
to suggest that open source telephony is an idea whose time has come.

The Promise of Open Source Telephony
Every good work of software starts by scratching a de-

veloper’s personal itch.

—Eric S. Raymond, The Cathedral and the Bazaar

In his book The Cathedral and the Bazaar (O’Reilly), Eric S. Raymond explains that
“Given enough eyeballs, all bugs are shallow.” The reason open source software de-
velopment produces such consistent quality is simple: crap can’t hide.

The Itch That Asterisk Scratches
In this era of custom database and web site development, people are not only tired of
hearing that their telephone system “can’t do that,” they quite frankly just don’t believe
it. The creative needs of the customers, coupled with the limitations of the technology,
have spawned a type of creativity born of necessity: telecom engineers are like

§ Much of the following section is merely our interpretation of O’Reilly’s article. To get the full gist of these
ideas, the full read is highly recommended.

320 | Chapter 15: Asterisk: The Future of Telephony

http://tim.oreilly.com/articles/paradigmshift_0504.html

contestants in an episode of Junkyard Wars, trying to create functional devices out of
a pile of mismatched components.

The development methodology of a proprietary telephone system dictates that it will
have a huge number of features, and that the number of features will in large part
determine the price. Manufacturers will tell you that their products give you hundreds
of features, but if you only need five of them, who cares? Worse, if there’s one missing
feature you really can’t do without, the value of that system will be diluted by the fact
that it can’t completely address your needs.

The fact that a customer might only need 5 out of 500 features is ignored, and that
customer’s desire to have 5 unavailable features that address the needs of his business
is dismissed as unreasonable.‖ Until flexibility becomes standard, telecom will remain
stuck in the last century—all the VoIP in the world notwithstanding.

Asterisk addresses that problem directly and solves it in a way that few other telecom
systems can. This is extremely disruptive technology, in large part because it is based
on concepts that have been proven time and time again: “the closed-source world can-
not win an evolutionary arms race with open-source communities that can put orders
of magnitude more skilled time into a problem.”#

Open Architecture
One of the stumbling blocks of the traditional telecommunications industry has been
its apparent refusal to cooperate with itself. The big telecommunications giants have
all been around for over a hundred years. The concept of closed, proprietary systems
is so ingrained in their culture that even their attempts at standards compliancy are
tainted by their desire to get the jump on the competition, by adding that one feature
that no one else supports. For an example of this thinking, one simply has to look at
the VoIP products being offered by the telecom industry today. While they claim
standards compliance, the thought that you would actually expect to be able to connect
a Cisco phone to a Nortel switch, or that an Avaya voicemail system could be integrated
via IP to a Siemens PBX, is not one that bears discussing.

In the computer industry, things are different. Twenty years ago, if you bought an IBM
server, you needed an IBM network and IBM terminals to talk to it. Now, that IBM
server is likely to interconnect to Dell terminals though a Cisco network (and run Linux,
of all things). Anyone can easily think of thousands of variations on this theme. If any

‖ From the perspective of the closed-source industry, this attitude is understandable. In his book
The Mythical Man-Month: Essays on Software Engineering (Addison-Wesley), Fred Brooks opined that “the
complexity and communication costs of a project rise with the square of the number of developers, while
work done only rises linearly.” Without a community-based development methodology, it is very difficult to
deliver products that at best are little more than incremental improvements over their predecessors, and at
worst are merely collections of patches.

Eric S. Raymond, The Cathedral and the Bazaar.

The Promise of Open Source Telephony | 321

one of these companies were to suggest that we could only use their products with
whatever they told us, they would be laughed out of business.

The telecommunications industry is facing the same changes, but it’s in no hurry to
accept them. Asterisk, on the other hand, is in a big hurry to not only accept change,
but embrace it.

Cisco, Nortel, Avaya, and Polycom IP phones (to name just a few) have all been suc-
cessfully connected to Asterisk systems. There is no other PBX in the world today that
can make this claim. None.

Openness is the power of Asterisk.

Standards Compliance
In the past few years, it has become clear that standards evolve at such a rapid pace
that to keep up with them requires an ability to quickly respond to emerging technology
trends. Asterisk, by virtue of being an open source, community-driven development
effort, is uniquely suited to the kind of rapid development that standards compliance
demands.

Asterisk does not focus on cost-benefit analysis or market research. It evolves in re-
sponse to whatever the community finds exciting—or necessary.

Lightning-Fast Response to New Technologies
After Mark Spencer attended his first SIP Interoperability Test (SIPIT) event, he had a
rudimentary but working SIP stack for Asterisk coded within a few days. This was
before SIP had emerged as the protocol of choice in the VoIP world, but he saw its value
and momentum and ensured that Asterisk would be ready.

This kind of foresight and flexibility is typical in an open source development com-
munity (and very unusual in a large corporation).

Passionate Community
The Asterisk-users list receives many email messages per day. More than 10,000 people
are subscribed to it. This kind of community support is unheard of in the world of
proprietary telecommunications, while in the open source world it is commonplace.

The very first AstriCon event was expected to attract 100 participants. Nearly 500
showed up (far more wanted to but couldn’t attend). This kind of community support
virtually guarantees the success of an open source effort.

322 | Chapter 15: Asterisk: The Future of Telephony

Some Things That Are Now Possible
So what sorts of things can be built using Asterisk? Let’s look at some of the things
we’ve come up with.

Legacy PBX migration gateway

Asterisk can be used as a fantastic bridge between an old PBX and the future. You can
place it in front of the PBX as a gateway (and migrate users off the PBX as needs dictate),
or you can put it behind the PBX as a peripheral application server. You can even do
both at the same time, as shown in Figure 15-1.

Here are some of the options you can implement:

Keep your old PBX, but evolve to IP
Companies that have spent vast sums of money in the past few years buying pro-
prietary PBX equipment want a way out of proprietary jail, but they can’t stomach
the thought of throwing away all of their otherwise functioning equipment. No
problem—Asterisk can solve all kinds of dilemmas, from replacing a voicemail
system to providing a way to add IP-based users beyond the nominal capacity of
the system.

Find-me-follow-me
Provide the PBX a list of numbers where you can be reached, and it will ring them
all whenever a call to your DID (Direct Inward Dialing, a.k.a. phone number)
arrives. Figure 15-2 illustrates this technology.

PSTN

VoIP

IP telephone

PBX telephone

Remote PBX

Legacy PBX

PRI/BRI/Analog
PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Inbound call to DID

Delivered to
home office

VoIP call
Relayed out to

cell phone

Passed to PBX

Remote Asterisk

PRI/BRI/Analog

Delivered to
remote PBX

Cell phone

Database/Web/
Application server

Figure 15-1. Asterisk as a PBX gateway

The Promise of Open Source Telephony | 323

VoIP calling
If a legacy telephony connection from an Asterisk PBX to an old PBX can be es-
tablished, Asterisk can provide access to VoIP services, while the old PBX continues
to connect to the outside world as it always has. As a gateway, Asterisk simply
needs to emulate the functions of the PSTN, and the old PBX won’t know that
anything has changed. Figure 15-3 shows how you can use Asterisk to VoIP-enable
a legacy PBX.

Low-barrier IVR

Many people confuse the term “Interactive Voice Response,” or IVR, with the Auto-
mated Attendant (AA). Since the Automated Attendant was the very first thing IVR was

PSTN

VoIP

IP telephone

PBX telephone

Legacy PBX

PRI/BRI/Analog PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Inbound call to DID

Delivered to
home office

Relayed out to
cell phone

Passed to PBX

Cell phone

Figure 15-2. Find-me-follow-me

PSTN

VoIP

IP telephone

PBX telephone

Remote PBX

Legacy PBX

PRI/BRI/Analog
PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Connection to
remote Asterisk

PRI/BRI/Analog

Delivered to
remote PBX

Figure 15-3. VoIP-enabling a legacy PBX

324 | Chapter 15: Asterisk: The Future of Telephony

used for, this is understandable. Nevertheless, to the telecom industry, the term IVR
represents far more than an AA. An AA generally does little more than present a way
for callers to be transferred to extensions, and it is built into most proprietary voicemail
systems—but IVR can be so much more.

IVR systems are generally very expensive not only to purchase, but also to configure.
A custom IVR system will usually require connectivity to an external database or ap-
plication. Asterisk is arguably the perfect IVR, as it embraces the concepts of connec-
tivity to databases and applications at its deepest level.

Here are a few examples of relatively simple IVRs that an Asterisk system could be used
to create:

Weather reporting
Using the Internet, you can obtain text-based weather reports from around the
world in a myriad of ways. Capturing these reports and running them through a
purpose-built parser (Perl would probably eat this up) would allow the information
to be available to the dialplan. Asterisk’s sound library already contains all of the
required prompts, so it would not be an onerous task to produce an interactive
menu to play current forecasts for anywhere in the world.

Math programs
Ed Guy (the architect of Pulver’s FWD network) did a presentation at AstriCon
2004 in which he talked about a little math program he’d cooked up for his daugh-
ter to use. The program took him no more than an hour to write. What it did was
present her with a number of math questions, the answers to which she keyed into
the telephone. When all the questions were tabulated, the system presented her
with her score. This extremely simple Asterisk application would cost tens of
thousands of dollars to implement on any closed PBX platform, assuming it could
be done at all. See Chapter 9 for further details. As is so often the case, things that
are simple for Asterisk would be either impossible or massively expensive with any
other IVR system.

Distributed IVR
The cost of a proprietary IVR system is such that when a company with many small
retail locations wants to provide IVR, it is forced to transfer callers to a central
server to process the transactions. With Asterisk, it becomes possible to distribute
the application to each node and, thus, handle the requests locally. Literally thou-
sands of little Asterisk systems deployed at retail locations across the world could
serve up IVR functionality in a way that would be impossible to achieve with any
other system. No more long-distance transfers to a central IVR server, no more
huge trunking facility dedicated to the task—more power with less expense.

These are three rather simple examples of the potential of Asterisk.

The Promise of Open Source Telephony | 325

Conference rooms

This little gem is going to end up being one of the killer functions of Asterisk. In the
Asterisk community, everyone finds themselves using conference rooms more and
more, for purposes such as these:

• Small companies need an easy way for business partners to get together for a chat.

• Sales teams have a meeting once per week where everyone can dial in from wherever
they are.

• Development teams designate a common place and time to update one another on
progress.

Home automation

Asterisk is still too much of an über-geek’s tool to be able to serve in the average home,
but with no more than average Linux and Asterisk skills, the following things become
plausible:

Monitoring the kids
Parents who want to check up on the babysitter (or the kids home alone) could
dial an extension context protected by a password. Once authenticated, a two-way
audio connection would be created to all the IP phones in the house, allowing Mom
and Dad to listen for trouble. Creepy? Yes. But an interesting concept nonetheless.

Locking down your phones
Going out for the night? Don’t want the babysitter tying up the phone? No problem!
A simple tweak to the dialplan, and the only calls that can be made are to 911, your
cell phone, and the pizza parlor. Any other call attempt will get the recording “We
are paying you to babysit our kids, not make personal calls.”

Pretty evil, huh?

Controlling the alarm system
You get a call while on vacation that your Mom wants to borrow some cooking
utensils. She forgot her key and is standing in front of the house shivering. Piece
of cake; a call to your Asterisk system, a quick digit string into the context you
created for the purpose, and your alarm system is instructed to disable the alarm
for 15 minutes. Mom better get her stuff and get out quick, though, or the cops’ll
be showing up!

Managing teenagers’ calls
How about allocating a specific phone-time limit to your teenagers? To use the
phone, they have to enter their access codes. They can earn extra minutes by doing
chores, scoring all As, dumping that annoying bum with the bad haircut—you get
the idea. Once they’ve used up their minutes... click... you get your phone back.

Incoming calls can be managed as well, via Caller ID. “Donny, this is Suzy’s father.
She is no longer interested in seeing you, as she has decided to raise her standards
a bit. Also, you should consider getting a haircut.”

326 | Chapter 15: Asterisk: The Future of Telephony

The Future of Asterisk
We’ve come to love the Internet, both because it is so rich in content and inexpensive,
and, perhaps more importantly, because it allows us to define how we communicate.
As its ability to carry richer forms of media advances, we’ll find ourselves using it more
and more. Once Internet voice delivers quality that rivals (or betters) the capabilities
of the PSTN, the phone company had better look for another line of business. The
PSTN will cease to exist and become little more than one more communications pro-
tocol that the Internet happily carries for us. As with most of the rest of the Internet,
open source technologies will lead this transformation.

Speech Processing
The dream of having our technical inventions talk to us is older than the telephone
itself. Each new advance in technology spurs a new wave of eager experimentation.
Generally, results never quite meet expectations, possibly because as soon as a machine
says something that sounds intelligent, most people assume that it is intelligent.

People who program and maintain computers realize their limitations and, thus, tend
to allow for their weaknesses. Everybody else just expects their computers and software
to work. The amount of thinking a user must do to interact with a computer is often
inversely proportional to the amount of thinking the design team did. Simple interfaces
belie complex design decisions.

The challenge, therefore, is to design a system that has anticipated the most common
desires of its users, and that can also adroitly handle unexpected challenges.

Festival

The Festival text-to-speech server can transform text into spoken words. While this is
a whole lot of fun to play with, there are many challenges to overcome.

For Asterisk, an obvious value of text-to-speech might be the ability to have your tel-
ephone system read your emails back to you. Of course, if you’ve noticed the somewhat
poor grammar, punctuation, and spelling typically found in email messages these days,
you can perhaps appreciate the challenges this poses.

One cannot help but wonder if the emergence of text-to-speech will inspire a new
generation of people dedicated to proper writing. Seeing spelling and punctuation er-
rors on the screen is frustrating enough; having to hear a computer speak such things
will require a level of Zazen that few possess.

Speech recognition

If text-to-speech is rocket science, speech recognition is science fiction.

The Future of Asterisk | 327

Speech recognition can actually work very well, but unfortunately this is generally true
only if you provide it with the right conditions—and the right conditions are not those
found on a telephone network. Even a perfect PSTN connection is considered to be at
the lowest acceptable limit for accurate speech recognition. Add in compressed and
lossy VoIP connections, or a cell phone, and you will discover far more limitations than
uses.

Asterisk now has an entire speech API so that outside companies (or even open source
projects) can tie their speech recognition engines into Asterisk. One company that has
done this is LumenVox. By using its speech recognition engine along with Asterisk, you
can make voice-driven menus and IVR systems in record time! For more information,
see http://www.lumenvox.com.

High-Fidelity Voice
As we gain access to more and more bandwidth, it becomes less and less easy to un-
derstand why we still use low-fidelity codecs. Many people do not realize that Skype
uses a higher fidelity than a telephone; it’s a large part of the reason why Skype has a
reputation for sounding so good.

If you were ever to phone CNN, wouldn’t you love to hear James Earl Jones’s mellif-
luous voice saying “This is CNN,” instead of some tinny electronic recording? And if
you think Allison Smith* sounds good through the phone, you should hear her in per-
son!

In the future, we will expect, and get, high-fidelity voice though our communications
equipment.

Beginning in Asterisk 1.4, there is limited support for the G.722 codec. As more and
more hardware vendors start building support for high-fidelity voice into their VoIP
hardware, you’ll see more support in Asterisk for making better-than PSTN quality
calls.

Video
While most of this book focuses on audio, video is also supported in many ways within
Asterisk. Video support is not complete, however. The problem is not so much one of
functionality as it is one of bandwidth and processing power. More significantly, it is
not yet important enough to the community to merit the attention it needs.

* Allison Smith is The Voice of Asterisk; it is her voice in all of the system prompts. To have Allison produce
your own prompt, simply visit http://thevoice.digium.com.

328 | Chapter 15: Asterisk: The Future of Telephony

http://www.lumenvox.com
http://thevoice.digium.com

The challenge of video-conferencing

The concept of video-conferencing has been around since the invention of the cathode
ray tube. The telecom industry has been promising a video-conferencing device in every
home for decades.

As with so many other communications technologies, if you have video-conferencing
in your house, you are probably running it over the Internet, with a simple, inexpensive
webcam. Still, it seems that people see video-conferencing as a bit gimmicky. Yes, you
can see the person you’re talking to, but there’s something missing.

Why we love video-conferencing

Video-conferencing promises a richer communications experience than the telephone.
Rather than hearing a disembodied voice, the nuances of speech that come from eye-
to-eye communication are possible.

Why video-conferencing may never totally replace voice

There are some challenges to overcome, though, and not all of them are technical.

Consider this: using a plain telephone, people working from their home offices can
have business conversations, unshowered, in their underwear, feet on the desk, coffee
in hand. A similar video conversation would require half an hour of grooming to prepare
for, and couldn’t happen in the kitchen, on the patio, or... well, you get the idea.

Also, the promise of eye-to-eye communication over video will never happen as long
as the focal points of the participants are not in line with the cameras. If you look at
the camera, your audience will see you looking at them, but you won’t see them. If you
look at your screen to see whom you are talking to, the camera will show you looking
down at something—not at your audience. That looks impersonal. Perhaps if a video-
phone could be designed like a TelePromptR, where the camera was behind the screen,
it wouldn’t feel so unnatural. As it stands, there’s something psychological that’s miss-
ing. Video ends up being a gimmick.

Wireless
Since Asterisk is fully VoIP-enabled, wireless is all part of the package.

Wi-Fi

Wi-Fi is going to be the office mobility solution for VoIP phones. This technology is
already quite mature. The biggest hurdle is the cost of handsets, which can be expected
to improve as competitive pressure from around the world drives down prices.

The Future of Asterisk | 329

Wi-MAX

Since we are so bravely predicting so many things, it’s not hard to predict that Wi-MAX
spells the beginning of the end for traditional cellular telephone networks.

With wireless Internet access within the reach of most communities, what value will
there be in expensive cellular service?

Unified Messaging
This is a term that has been hyped by the telecom industry for years, but adoption has
been far slower than predicted.

Unified Messaging is the concept of tying voice and text-messaging systems into one.
With Asterisk, the two don’t need to be artificially combined, as Asterisk already treats
them the same way.

Just by examining the terms, unified and messaging, we can see that the integration of
email and voicemail must be merely the beginning; Unified Messaging needs to do a
lot more than just that if it is to deserve its name.

Perhaps we need to define “messaging” as communication that does not occur in real
time. In other words, when you send a message, you expect that the reply may take
moments, minutes, hours, or even days to arrive. You compose what you wish to say,
and your audience is expected to compose a reply.

Contrast this with conversing, which happens in real time. When you talk to someone
on a telephone connection, you expect no more than a few seconds’ delay before the
response arrives.

In 2002, Tim O’Reilly delivered a speech titled “Watching the Alpha Geeks: OS X and
the Next Big Thing” (http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreil
ly_wwdc_keynote.html), in which he talked about someone piping IRC through a text-
to-speech engine. One could imagine doing the reverse as well, allowing us to join an
IRC or instant messaging chat over our Wi-Fi phone, our Asterisk PBX providing the
speech-to-text-to-speech translations.

Peering
As monopoly networks such as the PSTN give way to community-based networks like
the Internet, there will be a period of time where it is necessary to interconnect the two.
While the traditional providers would prefer that the existing model be carried into the
new paradigm, it is increasingly likely that telephone calls will become little more than
another application the Internet happily carries.

But a challenge remains: how to manage the telephone numbering plan with which we
are all familiar and comfortable?

330 | Chapter 15: Asterisk: The Future of Telephony

http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html
http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html

E.164

The ITU defined a numbering plan in its E.164 specification. If you’ve used a telephone
to make a call across the PSTN, you can confidently state that you are familiar with the
concept of E.164 numbering. Prior to the advent of publicly available VoIP, nobody
cared about E.164 except the telephone companies—nobody needed to.

Now that calls are hopping from PSTN to Internet to who-knows-what, some consid-
eration must be given to E.164.

ENUM

In response to this challenge, the IETF has sponsored the Telephone Number Mapping
(ENUM) working group, the purpose of which is to map E.164 numbers into the Do-
main Name System (DNS).

While the concept of ENUM is sound, it requires cooperation from the telecom industry
to achieve success. However, cooperation is not what the telecom industry is famous
for and, thus, far ENUM has foundered.

e164.org

The folks at e164.org are trying to contribute to the success of ENUM. You can log on
to this site, register your phone number, and inform the system of alternative methods
of communicating with you. This means that someone who knows your phone number
can connect a VoIP call to you, as the e164.org DNS zone will provide the IP addressing
and protocol information needed to connect to your location.

As more and more people publish VoIP connectivity information, fewer and fewer calls
will be connected through the PSTN.

DUNDi

Distributed Universal Number Discovery (DUNDi) is an open routing protocol de-
signed to maintain dynamic telecom routing tables between compatible systems (see
Chapter 14 for more information). While Asterisk is currently the only PBX to support
DUNDi, the openness of the standard ensures that anyone can implement it.

DUNDi has huge potential, but it is very much in its infancy. This is the one to watch.

Challenges
As is true with any worthwhile thing, Asterisk will face challenges. Let’s take a glance
at what some of them may be.

Too much change, too few standards

These days, the Internet is changing so fast, and offers so much diverse content, that it
is impossible for even the most attentive geek to keep on top of it all. While this is as

The Future of Asterisk | 331

it should be, it also means that an enormous amount of technology churn is an inevi-
table part of keeping any communications system current.

VoIP spam

Yes, it’s coming. There will always be people who believe they have the right to incon-
venience and harass others in their pursuit of money. Efforts are under way to try and
address this, but only time will tell how efficacious they will be.

Fear, uncertainty, and doubt

The industry is making the transition from ignorance to laughter. If Gandhi is correct,
we can expect the fight to begin soon.

As their revenue streams become increasingly threatened by open source telephony,
the traditional industry players are certain to mount a fear campaign, in hopes of un-
dermining the revolution.

Bottleneck engineering

There is a rumor making the rounds that the major network providers will begin to
artificially cripple VoIP traffic by tagging and prioritizing the traffic of their premium
VoIP services and, worse, detecting and bumping any VoIP traffic generated by services
not approved by them.

Some of this is already taking place, with service providers blocking traffic of certain
types through their networks, ostensibly due to some public service being rendered
(such as blocking popular file-sharing services to protect us from piracy). In the United
States, the FCC has taken a clear stand on the matter and fined companies that engage
in such practices. In the rest of the world, regulatory bodies are not always as accepting
of VoIP.

What seems clear is that the community and the network will find ways around block-
ages, just as they always have.

Regulatory wars

The recently departed Chairman of the United States Federal Communications Com-
mission, Michael Powell, delivered a gift that may well have altered the path of the VoIP
revolution. Rather than attempting to regulate VoIP as a telecom service, he has champ-
ioned the concept that VoIP represents an entirely new way of communicating and
requires its own regulatory space in which to evolve.

VoIP will become regulated, but not everywhere as a telephony service. Some of the
regulations that may be created include:

332 | Chapter 15: Asterisk: The Future of Telephony

Presence information for emergency services
One of the characteristics of a traditional PSTN circuit is that it is always in the
same location. This is very helpful to emergency services, as they can pinpoint the
location of a caller by identifying the address of the circuit from which the call was
placed. The proliferation of cell phones has made this much more difficult to ach-
ieve, since a cell phone does not have a known address. A cell phone can be plugged
into any network and can register to any server. If the phone does not identify its
physical location, an emergency call from it will provide no clue as to the where
the caller is. VoIP creates similar challenges.

Call monitoring for law enforcement agencies
Law enforcement agencies have always been able to obtain wiretaps on traditional
circuit-switched telephone lines. While regulations are being enacted that are de-
signed to achieve the same end on the network, the technical challenge of delivering
this functionality will probably never be completely solved. People value their pri-
vacy, and the more governments want to stifle it, the more effort will be put toward
maintaining it.

Anti-monopolistic practices
These practices are already being seen in the U.S., with fines being levied against
network providers who attempt to filter traffic based on content.

When it comes to regulation, Asterisk is both a saint and a devil: a saint because it feeds
the poor, and a devil because it empowers the phrackers and spammers like nothing
ever has. The regulation of open source telephony may in part be determined by how
well the community regulates itself. Concepts such as DUNDi, which incorporate anti-
spam processes, are an excellent start. On the other hand, concepts such as Caller ID-
spoofing are ripe with opportunities for abuse.

Quality of service

Due to the best-effort reality of the TCP/IP-based Internet, it is not yet known how well
increasing realtime VoIP traffic will affect overall network performance. Currently,
there is so much excess bandwidth in the backbone that best-effort delivery is generally
quite good indeed. Still, it has been proven time and time again that whenever we are
provided with more bandwidth, we figure out a way to use it up. The 1 MB DSL con-
nection undreamt of five years ago is now barely adequate.

Perhaps a corollary of Moore’s Law† will apply to network bandwidth. QoS may be-
come moot, due to the network’s ability to deliver adequate performance without any
special processing. Organizations that require higher levels of reliability may elect to
pay a premium for a higher grade of service. Perhaps the era of paying by the minute
for long-distance connections will give way to paying by the millisecond for guaranteed
low latency, or by the percentage point for reduced packet loss. Premium services will

† Gordon Moore wrote a paper in 1965 that predicted the doubling of transistors on a processor every few years.

The Future of Asterisk | 333

offer the five-nines reliability‡ the traditional telecom companies have always touted as
their advantage over VoIP.

Complexity

Open systems require new approaches toward solution design. Just because the hard-
ware and software are cheap doesn’t mean the solution will be. Asterisk does not come
out of the box ready to run; it has to be designed and built, and then maintained. While
the base software is free, and the hardware costs will be based on commodity pricing,
it is fair to say that the configuration costs for a highly customized system will be a
sizeable part of the solution costs—in many cases, because of its high degree of com-
plexity and configurability, more than would be expected with a traditional PBX.

The rule of thumb is generally considered to be something like this: if it can be done
in the dialplan, the system design will be roughly the same as for any similarly featured
traditional PBX. Beyond that, only experience will allow one to accurately estimate the
time required to build a system.

There is much to learn.

Opportunities
Open source telephony creates limitless opportunities. Here are some of the more
compelling ones.

Tailor-made private telecommunications networks

Some people would tell you that price is the key, but we believe that the real reason
Asterisk will succeed is because it is now possible to build a telephone system as one
would a web site: with complete, total customization of each and every facet of the
system. Customers have wanted this for years. Only Asterisk can deliver.

Low barrier to entry

Anyone can contribute to the future of communicating. It is now possible for someone
with an old $200 PC to develop a communications system that has intelligence to rival
the most expensive proprietary systems. Granted, the hardware would not be produc-
tion-ready, but there is no reason the software couldn’t be. This is one of the reasons
why closed systems will have a hard time competing. The sheer number of people who
have access to the required equipment is impossible to equal in a closed shop.

‡ This term refers to 99.999%, which is touted as the reliability of traditional telecom networks. Achieving five
nines requires that service interruptions for an entire year total no more than 5 minutes and 15 seconds. Many
people believe that VoIP will need to achieve this level of reliability before it can be expected to fully replace
the PSTN. Many other people believe that the PSTN doesn’t even come close to five-nines reliability. We
believe that this could have been an excellent term to describe high reliability, but marketing departments
abuse it far too frequently.

334 | Chapter 15: Asterisk: The Future of Telephony

Hosted solutions of similar complexity to corporate web sites

The design of a PBX was always a kind of art form, but before Asterisk, the art lay in
finding creative ways to overcome the limitations of the technology. With limitless
technology, those same creative skills can now be properly applied to the task of com-
pletely answering the needs of the customer. Open source telephony engines such as
Asterisk will enable this. Telecom designers will dance for joy, as their considerable
creative skills will now actually serve the needs of their customers, rather than be fo-
cused on managing kludge.

Proper integration of communications technologies

Ultimately, the promise of open source comes to nothing if it cannot fulfill the need
people have to solve problems. The closed industries lost sight of the customer and
tried to fit the customer to the product.

Open source telephony brings voice communications in line with other information
technologies. It is finally possible to properly begin the task of integrating email, voice,
video, and anything else we might conceive of over flexible transport networks (whether
wired or wireless), in response to the needs of the user, not the whims of monopolies.

Welcome to the future of telecom!

The Future of Asterisk | 335

APPENDIX A

VoIP Channels

VoIP channels in Asterisk represent connections to the protocols they support. Each
protocol you wish to use requires a configuration file, containing general parameters
defining how your system handles the protocol as well as specific parameters for each
channel (or device) you will want to reference in your dialplan. In this appendix, we’ll
take an in-depth look at the IAX and SIP configuration files.

IAX
The IAX configuration file (iax.conf) contains all of the configuration information As-
terisk needs to create and manage IAX protocol channels. The sections in the file are
separated by headings, which are formed by a word framed in square brackets ([]). The
name in the brackets will be the name of the channel, with one notable exception: the
[general] section, which is not a channel, is the area where global protocol parameters
are defined.

This section examines the various general and channel-specific settings for iax.conf.
We will define each parameter and then give an example of its use. Certain options
may have several valid arguments. These arguments are listed beside the option, sep-
arated with the pipe symbol (|). For example, bandwidth=low|medium|high means that
the bandwidth option accepts one of the values low, medium, or high as its argument.

You can insert comments anywhere in the iax.conf file, by preceding the comment text
with the semicolon character (;). Everything to the right of the semicolon will be ig-
nored. Feel free to use comments liberally.

General IAX Settings
The first non-comment line in your iax.conf file must be the heading [general]. The
parameters in this section will apply to all connections using this protocol, unless de-
fined differently in a specific channel’s definition. Since some of these settings can be
defined on a per-channel basis, we have identified settings that are always global with
the tag “(global)” and those that can optionally be configured for individual channels

337

with the tag “(channel).” If you define a channel parameter under the [general] section,
you do not need to define it in each channel; its value becomes the default. Keep in
mind that setting a parameter in the [general] section does not prevent you from setting
it differently for specific channels; it merely makes this setting the default. Also keep
in mind that not defining these parameters may, in some cases, cause a system default
to be used instead.

Here are the parameters that you can configure:

accountcode (channel)
The account code can be defined on a per-user basis. If defined, this account code
will be assigned to a call record whenever no specific user account code is set. The
accountcode name configured will be used as the filename.csv in
the /var/log/asterisk/cdr-csv/ directory to store Call Detail Records (CDRs) for the
user/peer/friend:

accountcode=iax-username

adsi (channel)
Support for ADSI (Analog Display Services Interface) can be enabled if you have
ADSI-compatible CPE equipment:

adsi=yes|no

allow and disallow (channel)
Specific codecs can be allowed or disallowed, limiting codec use to those preferred
by the system designer. allow and disallow can also be defined on a per-channel
basis. Keep in mind that allow statements in the [general] section will carry over
to each of the channels, unless you reset with a disallow=all. Codec negotiation
is attempted in the order in which the codecs are defined. Best practice suggests
that you define disallow=all, followed by explicit allow statements for each codec
you wish to use. If nothing is defined, allow=all is assumed:

disallow=all
allow=ulaw
allow=gsm
allow=ilbc

amaflags (channel)
Automatic Message Accounting (AMA) is defined in the Telcordia Family of Docu-
ments listed under FR-AMA-1. These documents specify standard mechanisms for
generation and transmission of CDRs. You can specify one of four AMA flags to
apply to all IAX connections:

amaflags=default|omit|billing|documentation

authdebug (global)
You can minimize the amount of authorization debugging by disabling it with
authdebug=no. Authorization debugging is enabled by default if not explicitly
disabled:

338 | Appendix A: VoIP Channels

authdebug=no

autokill (global)
To minimize the danger of stalling when a host is unreachable, you can set
autokill to yes to specify that any new connection should be torn down if an ACK
is not received within 2,000 ms. (This is obviously not advised for hosts with high
latency.) Alternatively, you can replace yes with the number of milliseconds to wait
before considering a peer unreachable. autokill configures the wait for all IAX2
peers, but you can configure it differently for individual peers with the use of the
qualify command:

autokill=1500

bandwidth (channel)
bandwidth is a shortcut that may help you get around using disallow=all and mul-
tiple allow statements to specify which codecs to use. The valid options are:

high
Allows all codecs (G.723.1, GSM, µlaw, alaw, G.726, ADPCM, slinear, LPC10,
G.729, Speex, iLBC)

medium
Allows all codecs except slinear, µlaw, and alaw

low
Allows all medium codecs except G.726 and ADPCM

bandwidth=low|medium|high

bindport and bindaddr (global)
These optional parameters allow you to control the IP interface and port on which
you wish to accept IAX connections. If omitted, the port will be set to 4569, and
all IP addresses in your Asterisk system will accept incoming IAX connections. If
multiple bind addresses are configured, only the defined interface will accept IAX
connections.* The address 0.0.0.0 tells Asterisk to listen on all interfaces:

bindport=4569
bindaddr=192.168.0.1

codecpriority (channel)
The codecpriority option controls which end of an inbound call leg will have
priority over the negotiation of codecs. If set in the [general] section, the selected
options will be inherited by all user entries in the channel configuration file; how-
ever, they can be defined in the individual user entries for more granular control.
If set in both the [general] and user sections, the user entry will override the entry

* Currently, Asterisk will only work with a single bindaddr option. If you wish to listen to more than one address,
you’ll need to use 0.0.0.0. Note that Asterisk will work in a multihomed environment, but not with multi-
address interfaces. Asterisk will use the system’s routing table to select which interface it sends the packet
out on and it will use the primary address on that interface as the source.

IAX | 339

that is configured in the [general] section. If this parameter is not configured, the
value defaults to host.

Valid options include:

caller
The inbound caller has priority over the host.

host
The host has priority over the inbound caller.

disabled
Codec preferences are not considered; this is the default behavior before the
implementation of codec preferences.

reqonly
Codec preferences are ignored, and the call is accepted only if the requested
codec is available:

codecpriority=caller|host|disabled|reqonly

delayreject (global)
If an incorrect password is received on an IAX channel, this will delay the sending
of the REGREQ or AUTHREP reject messages, which will help to secure against brute-
force password attacks. The delay time is 1,000 ms:

delayreject=yes|no

forcejitterbuffer (channel)
Since Asterisk attempts to bridge channels (endpoints) directly together, the end-
points are normally allowed to perform jitter buffering themselves. However, if the
endpoints have a poor jitter buffer implementation, you may wish to force Asterisk
to perform jitter buffering no matter what. You can force jitter buffering to be
performed with forcejitterbuffer=yes:

forcejitterbuffer=yes

iaxthreads and iaxmaxthreads (global)
The iaxthreads setting specifies the number of IAX helper threads that are created
on startup to handle IAX communications.

The iaxmaxthreads setting specifies the maximum number of additional IAX helper
threads that may be spawned to handle higher IAX traffic levels:

iaxthreads=10
iaxmaxthreads=100

jitterbuffer (channel)
Jitter refers to the varying latency between packets. When packets are sent from
an end device, they are sent at a constant rate with very little latency variation.
However, as the packets traverse the Internet, the latency between the packets may
become varied; thus, they may arrive at the destination at different times, and
possibly even out of order.

340 | Appendix A: VoIP Channels

The jitter buffer is, in a sense, a staging area where the packets can be reordered
and delivered in a regulated stream. Without a jitter buffer, the user may perceive
anomalies in the stream, experienced as static, strange sound effects, garbled
words, or, in severe cases, missed words or syllables.

The jitter buffer affects only data received from the far end. Any data you transmit
will not be affected by your jitter buffer, as the far end will be responsible for the
de-jittering of its incoming connections.

The jitter buffer is enabled with the use of jitterbuffer=yes:

jitterbuffer=yes|no

language (channel)
This sets the language flag to whatever you define. The global default language is
English. The language that is set is sent by the channel as an information element.
It is also used by applications such as SayNumber() that have different files for dif-
ferent languages. Keep in mind that languages other than English are not explicitly
installed on the system, and it is up to you to configure the system to ensure that
the language you specify is handled properly:

language=en

mailboxdetail (global)
If mailboxdetail is set to yes, the new/old message count is sent to the user, instead
of a simple statement of whether new and old messages exist. mailboxdetail can
also be set on a per-peer basis:

mailboxdetail=yes

maxjitterbuffer (channel)
This parameter is used to set the maximum size of the jitter buffer, in milliseconds.
Be sure not to set maxjitterbuffer too high, or you will needlessly increase your
latency:

maxjitterbuffer=500

maxjitterinterps (channel)
The maximum number of interpolation frames the jitter buffer should return in a
row. Since some clients do not send CNG/DTX frames to indicate silence, the jitter
buffer will assume silence has begun after returning this many interpolations. This
prevents interpolating throughout a long silence:

maxjitterinterps=10

maxregexpire and minregexpire (channel)
Specifies the maximum and minimum time intervals for registration expiration, in
seconds:

maxregexpire=180
minregexpire=60

IAX | 341

mohinterpret (channel)
This option specifies a preference for which music-on-hold class this channel
should listen to when put on hold if the music class has not been set on the channel
with Set(CHANNEL(musicclass)=whatever) in the dialplan, and the peer channel
putting this all on hold did not suggest a music class.

If this option is set to passthrough, then the hold message will always be passed
through as signaling instead of generating hold music locally.

This option may be specified globally, or on a per-user or per-peer basis:

mohinterpret=default

mohsuggest (channel)
This option specifies which music-on-hold class (as defined in musiconhold.conf)
to suggest to the peer channel when this channel places the peer on hold. It may
be specified globally or on a per-user or per-peer basis:

mohsuggest=default

nochecksums (global)
If set, Asterisk will disable the calculation of UDP checksums and no longer check
UDP checksums on systems supporting this feature:

nochecksums=yes

regcontext (channel)
By specifying the context that contains the actions to perform, you can configure
Asterisk to perform a number of actions when a peer registers to your server. This
option works in conjunction with regexten, which specifies the extension to exe-
cute. If no regexten is configured, the peer name is used as the extension. Asterisk
will dynamically create and destroy a NoOp at priority 1 for the extension. All actions
to be performed upon registration should start at priority 2. More than one
regexten may be supplied, if separated by an &. regcontext can be set on a per-peer
basis or globally:

regcontext=registered-phones

regexten (channel)
The regexten option is used in conjunction with regcontext to specify the extension
to be executed within the configured context. If regexten is not explicitly config-
ured, the peer name is used as the extension to match:

regexten=myphone

resyncthreshold (channel)
The resynchronize threshold is used to resynchronize the jitter buffer if a significant
change is detected over a few frames, assuming that the change was caused by a
timestamp mixup. The resynchronization threshold is defined as the measured
jitter plus the resyncthreshold value, defined in milliseconds:

resyncthreshold=1000

342 | Appendix A: VoIP Channels

rtautoclear (global)
This specifies whether or not Asterisk should auto-expire friends created on the fly
on the same schedule as if they had just registered. If set to yes, when the registra-
tion expires, the friend will vanish from the configuration until requested again. If
set to an integer, friends expire within that number of seconds instead of the normal
registration interval:

rtautoclear=yes|no|seconds

rtcachefriends (global)
If rtcachefriends is turned on, Asterisk will cache friends that come from the re-
altime engine, just as if they had come from iax.conf. This often helps with items
such as message-waiting indications on realtime peers:

rtcachefriends=yes|no

rtignoreregexpire (global)
If rtignoreregexpire is set to yes, and a realtime peer’s registration has expired
(based on its registration interval), then Asterisk will continue to use the IP address
and port stored in the database:

rtignoreregexpire=yes|no

rtupdate (global)
If set to yes Asterisk will update the IP address, origination port, and registration
period of a peer upon registration. Defaults to yes:

rtupdate=yes|no

tos (global)
Asterisk can set the Type of Service (TOS) bits in the IP header to help improve
performance on routers that respect TOS bits in their routing calculations. The
following values are valid: CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7, AF11, AF12, AF13,
AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43, and ef (expedited forwarding).
You may also use a numeric value for the TOS bits.

For more information, see the doc/ip-tos.txt file in the Asterisk source directory.

trunk (channel)
IAX2 trunking enables Asterisk to send media (as mini-frames) from multiple
channels using a single header. The reduction in overhead makes the IAX2 protocol
more efficient when sending multiple streams to the same endpoint (usually an-
other Asterisk server):

trunk=yes|no

trunkfreq (channel)
trunkfreq is used to control how frequently you send trunk messages, in millisec-
onds. Trunk messages are sent in conjunction with the trunk=yes command:

trunkfreq=20

IAX | 343

trunktimestamps (channel)
Specifies whether or not Asterisk should send timestamps for the individual sub-
frames within trunk frames. There is a small bandwidth penalty for sending these
timestamps (less than 1 kbps/call), but they ensure that frame timestamps get sent
end-to-end properly. If both ends of all your trunks go directly to TDM and your
trunkfreq equals the frame length for your codecs, you can probably suppress
these. The receiver must also support this feature, although it does not also need
to have it enabled:

trunktimestamps=yes|no

Retrieving Dialplan Information from a Remote Asterisk Box
Asterisk can retrieve dialplan information from another Asterisk box with the use of a
switch => statement. When this occurs, the Asterisk IAX channel driver must wait for
a reply from the remote box before it can continue with other IAX-related processes.
This is especially troubling when you have multiple switch statements nested through-
out multiple boxes: if a switch statement has to traverse several boxes, there could be
an appreciable delay before a result is returned.

When the global iaxcompat option is set to yes, Asterisk will spawn a separate thread
when the switch lookup is being performed. The use of this thread allows the main IAX
channel driver to continue on with other processes while the thread waits for the reply.
A small performance hit is incurred with this option:

iaxcompat=yes|no

Registering to Other Servers with register Statements
The register switch (register =>) is used to register your Asterisk box to a remote server
—this lets the remote end know where you are, in case you are configured with a
dynamic IP address. Note that register statements are used only when the remote end
has you configured as a peer, and when host=dynamic.

The basic format for a register statement is:

register => username:password@remote-host

The password is optional (if not configured on the remote system).

Alternatively, you can specify an RSA key by framing the appropriate RSA key name†

in square brackets ([]):

register => username:[rsa-key-name]@remote-host

† Asterisk RSA keys are typically located in /var/lib/asterisk/keys/. You can generate your own keys using the
astkeygen script.

344 | Appendix A: VoIP Channels

By default, register requests will be sent via port 4569. You can direct them to a dif-
ferent port by explicitly specifying it, as follows:

register => username:password@remote-host:1234

IAX Channel Definitions
With the general settings defined, we can now define our channels. Defining a guest
channel is recommended whenever you want to accept anonymous IAX calls. This is
a very common way for folks in the Asterisk community to contact one another. Before
you decide that this is not for you, keep in mind that anyone whom you want to be able
to connect to you via IAX (without you specifically configuring an account for them)
will need to connect as a guest. This account, in effect, becomes your “IAX phone
number.” Your guest channel definition should look something like this:

[guest]
type=user
context=incoming
callerid="Incoming IAX Guest"

No doubt the spammers will find a way to harass these addresses, but
in the short term this has not proven to be a problem. In the long term,
we’ll probably use DUNDi (see Chapter 14 for more information).

If you wish to accept calls from the Free World Dialup network, Asterisk comes with
a predefined security key that ensures that anonymous connections cannot spoof an
incoming Free World Dialup call. You’ll want to set up an iaxfwd channel:

[iaxfwd]
type=user
context=incoming
auth=rsa
inkeys=freeworlddialup

If you have resources advertised on a DUNDi network, the associated user must be
defined in iax.conf:

[dundi]
type=user
dbsecret=dundi/secret
context=dundi-incoming

If you have IAX-based devices (such as an IAXy), or IAX-based users at a remote node,
you may want to provide them with their own user definition with which to connect
to the system.

Let’s say you have a user on a remote node for whom you want to define an IAX user.
We’ll call this hypothetical user sushi. The user definition might look something like
this:

IAX | 345

[sushi]
type=user
context=local_users
auth=md5,plaintext,rsa
secret=wasabi
transfer=no
jitterbuffer=yes
callerid="Happy Tempura" <(800) 555-1234>
accountcode=seaweed
deny=0.0.0.0/0.0.0.0
permit=192.168.1.100/255.255.255.0
language=en

IAX Authentication
IAX provides authentication mechanisms to allow for a reasonable level of security
between endpoints. This does not mean that the audio information cannot be captured
and decoded, but it does mean that you can more carefully control who is allowed to
make connections to your system. Three levels of security are supported on IAX chan-
nels. The auth option defines which authentication method to use on the channel:
plaintext, md5, or rsa.

plaintext, in IAX, offers very little security. While it will prevent connection to the
channel unless a valid password is supplied, the fact that the password is stored in
iax.conf in plain text and is transmitted and received as plain text makes this a very
insecure authentication method.

md5 improves the security on the network connection; however, both ends still require
a plain-text secret in the iax.conf file. Here’s how it works: Box A requests a connection
with Box B, which in turn replies with an authorization request including a randomly
generated number. Box A then generates an MD5 hash using the value supplied in the
secret field of iax.conf and the random number from Box B. The hash is returned in
the authorization reply, and Box B compares it to the hash it generated locally. If the
hashes match, authorization is granted.

The rsa method provides the most security. Before using RSA authentication, each end
must create a public and private key pair through the astgenkey script, typically located
in /usr/src/asterisk/contrib/scripts/. The public key must then be given to the far end.
Each end of the circuit must include the public key of the far end in its channel defini-
tion, using the inkeys and outkey parameters.

RSA keys are stored in /var/lib/asterisk/keys/. Public keys are named name.pub; private
keys are named name.key. Private keys must be encrypted with 3DES.

Incoming calls from this user will arrive in the context local_users and will ask the
system to accept the Caller ID Happy Tempura <(800) 555-1234>. The system will be
willing to accept MD5, plain-text, or RSA authentication from this user, so long as the
password wasabi is provided and the call comes from the IP address 192.168.1.100. All
calls related to this channel will be assigned the account code seaweed. Because we’ve

346 | Appendix A: VoIP Channels

set transfer to no, the media path for this channel will always pass through Asterisk;
it cannot be redirected to another IAX node.

If you yourself are a remote node, and you need to connect into a remote node as a
user, you would define that main node as your peer:

[sashimi_platter]
type=peer
username=sushi
secret=wasabi
host=192.168.1.101
qualify=yes
trunk=yes

A peer is called from the dialplan by using Dial() with the name contained in square
brackets. If you need to authenticate to the peer with a username, you can set that
username and secret in the username and secret fields.

Remember, an incoming call from a user specified in iax.conf must au-
thenticate using the name specified in square brackets. When Asterisk
itself is calling to an outside peer however, you can use the username
setting to set the authentication username.

host is specified using either IP dotted notation or a fully qualified domain name
(FQDN). You can determine the latency between you and the remote host, and whether
the peer is alive, with qualify=yes. To minimize the amount of overhead for multiple
calls going to the same peer, you can trunk them.

Trunking is unique to IAX and is designed to take advantage of the fact that two large
sites may have multiple, simultaneous VoIP connections between them. IAX trunking
reduces overhead by loading the audio from several concurrent calls into each signaling
packet.‡ You can enable trunking for a channel with trunk=yes in iax.conf.

Figure A-1 shows a channel with trunking disabled, and Figure A-2 shows a channel
with trunking enabled.

Channel-specific parameters

Now, let’s take a look at the channel-specific parameters:

‡ You can think of IAX trunking as carpooling for VoIP packets. This becomes very useful in many situations,
as the IP overhead (UDP headers, IP headers, and so forth) is often bigger than the audio payload it carries.
If you have several concurrent calls between two Asterisk boxes, you definitely want to turn on IAX trunking!

Signaling and
framing (converted)

Payload
(voice)

Signaling and
framing (converted)

Payload
(voice)

Signaling and
framing (converted)

Payload
(voice)

Figure A-1. Trunking disabled

IAX | 347

callerid
You can set a suggested Caller ID string for a user or peer with callerid. If you
define a Caller ID field for a user, any calls that come in on that channel will have
that Caller ID assigned to them, regardless of what the far end sends to you. If you
define Caller ID for a peer, you are requesting that the far end use that to identify
you (although you have no way of ensuring it will do so). If you want incoming
users to be able to define their own Caller IDs (i.e., for guests), make sure you do
not set the callerid field:

callerid=John Smith <(800) 555-1234>

defaultip
The defaultip setting complements host=dynamic. If a host has not yet registered
with your server, you’ll attempt to send messages to the default IP address config-
ured here:

defaultip=192.168.1.101

inkeys
You can use the inkeys option to authenticate a user with the use of an RSA key.
To associate more than one RSA key with a user channel definition, separate the
key names with a colon (:). Any one of those keys will be sufficient to validate a
connection. The “inkey” is the public key you distribute to your users:

inkeys=server_one:server_two

mailbox
If you associate a mailbox with a peer within the channel definition, voicemail will
send a message waiting indication (MWI) to the nodes on the end of that channel.
If the mailbox number is in a voicemail context other than default, you can specify
it as mailbox @ context. To associate multiple mailboxes with a single peer, use
multiple mailbox statements:

mailbox=1000@internal

outkey
You can use the outkey option to authenticate a peer with the use of an RSA key.
Only one RSA key may be used for outgoing authentication. The “outkey” is not
distributed; it is your private key:

outkey=private_key

Signaling and
framing (overhead)

Payload
(voice)

Payload
(voice)

Payload
(voice)

Figure A-2. Trunking enabled

348 | Appendix A: VoIP Channels

qualify
You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes,
PING messages will be sent periodically to the remote peers to determine whether
they are available and what the latency between replies is. The peers will respond
with PONG messages. A peer will be determined unreachable if no reply is received
within 2,000 ms (to change this default, instead set qualify to the number of mil-
liseconds to wait for the reply).

qualifyfreqok and qualifyfreqnotok
These two settings are used to determine how frequently Asterisk should ping a
peer when qualify is set. The qualifyfreqok setting determines how often to ping
the peer when it’s in an OK state, and qualifyfreqnotok determines how often to
ping the peer when it’s not in an OK state.

qualifysmoothing
You can set qualifysmoothing to yes or no. If enabled, Asterisk will take the average
of the last two qualify times. This helps eliminate having peers marked as LAGGED,
especially on a lossy network.

sendani
The SS7 PSTN network uses Automatic Number Identification (ANI) to identify a
caller, and Caller ID is what is delivered to the user. The Caller ID is generated
from the ANI, so it’s easy to confuse the two. Blocking Caller ID sets a privacy flag
on the ANI, but the backbone network still knows where the call is coming from:

sendani=yes

ANI has been around for a while. Its original purpose was to deliver
the billing number of the originating party on a long-distance call
to the terminating office. Unlike Caller ID, ANI does not require
SS7, as it can be transmitted using DTMF. Also, ANI cannot be
blocked.

transfer
You can set transfer to yes, no, or mediaonly. If set to yes, Asterisk will transfer the
call away from itself if it can, in order to make the packet path shorter between the
two endpoints. (This obviously won’t work if Asterisk needs to transcode or trans-
late between protocols, or if network conditions don’t allow the two endpoints to
talk directly to each other.) If it is set to no, Asterisk will not try to transfer the call
away from itself.

If set to mediaonly, Asterisk will attempt to transfer the media stream so that it goes
directly between the two endpoints, but the call signaling (call setup and teardown
messages) will still go through Asterisk. This is useful because it ensures that call
detail records are still accurate, even though the media is no longer flowing through
the Asterisk box.

IAX | 349

SIP
Just as with IAX, the SIP configuration file (sip.conf) contains configuration information
for SIP channels. The headings for the channel definitions are formed by a word framed
in square brackets ([])—again, with the exception of the [general] section, where we
define global SIP parameters. Don’t forget to use comments generously in your
sip.conf file. Precede the comment text with a semicolon; everything to the right will
be ignored.

General SIP Parameters
The following options are to be used within the [general] section of sip.conf:

allowexternalinvites
If set to no, this setting disables INVITE and REFER messages to non-local do-
mains. See the domain setting.

allowexternalinvites=yes|no

allowguest
If set to no, this disallows guest SIP connections. The default is to allow guest
connections. SIP normally requires authentication, but you can accept calls from
users who do not support authentication (i.e., do not have a secret field defined).
Certain SIP appliances (such as the Cisco Call Manager v4.1) do not support au-
thentication, so they will not be able to connect if you set allowguest=no:

allowguest=no|yes

allowoverlap
If set to no, overlap dialing is disabled:

allowoverlap=no|yes

allowsubscribe
Specifies whether or not to allow external devices to subscribe to extension status
(as set in the hint priority). Defaults to yes:

allowsubscribe=yes|no

allowtransfers
If set to no, transfers are disabled for all SIP calls, unless specifically enabled on a
per-user or per-peer basis:

allowtransfers=no|yes

alwaysauthreject
If this option is enabled, whenever Asterisk rejects an INVITE or REGISTER, it
will always reject it with a 401 Unauthorized message instead of letting the caller
know whether there was a matching user or peer for his request:

alwaysauthreject=no|yes

350 | Appendix A: VoIP Channels

autodomain
Set this option to yes to have Asterisk add the local hostname and local IP addresses
to the domain list:

autodomain=yes|no

bindaddr and bindport
These optional parameters allow you to control the IP interface and port on which
you wish to accept SIP connections. If omitted, the port will be set to 5060, and all
IP addresses in your Asterisk system will accept incoming SIP connections. If mul-
tiple bind addresses are configured, only those interfaces will listen for connections.
The address 0.0.0.0 tells Asterisk to listen on all interfaces:

bindaddr=0.0.0.0
bindport=5060

buggymwi
This setting allows Asterisk to send a message-waiting indication to certain Cisco
SIP phones with firmware that doesn’t fully support the message-waiting Internet
RFC. Enable this option to avoid getting error messages when sending MWI mes-
sages on phones with this bug:

buggymwi=no|yes

callevents
Set this to yes when you want SIP to generate Manager events. This will be im-
portant if you have external programs that use the Asterisk Manager interface, such
as the Flash Operator Panel:

callevents=yes

checkmwi
This option specifies the default amount of time, in seconds, between mailbox
checks for peers:

checkmwi=30

compactheaders
You can set compactheaders to yes or no. If it’s set to yes, the SIP headers will use
a compact format, which may be required if the size of the SIP header is larger than
the maximum transmission unit (MTU) of your IP headers, causing the IP packet
to be fragmented. Do not use this option unless you know what you are doing:

compactheaders=yes|no

defaultexpiry
This sets the default SIP registration expiration time, in seconds, for incoming and
outgoing registrations. A client will normally define this value when it initially
registers, so the default value you set here will be used only if the client does not
specify a timeout when it registers. If you are registering to another user agent server
(UAS), this is the registration timeout that it will send to the far end:

SIP | 351

defaultexpiry=300

directrtpsetup
This setting configures the direct RTP setup between two endpoints without the
need for RE-INVITEs.

directrtpsetup=yes|no

As of the time that this book was written, directrtpsetup was still
considered experimental, and as such should not be enabled unless
you fully understand the consequences. This option will not work
for video calls and cases where the called party sends RTP payloads
and FMTP headers in the 200 OK response that do not match the
caller’s INVITE request.

domain
Sets the default domain for this Asterisk server. If configured, Asterisk will allow
INVITE and REFER messages only to nonlocal domains. You can use the CLI com-
mand sip show domains to list the local domains:

domain=example.com

dumphistory
You can set dumphistory to yes or no to enable or disable the printing of the SIP
history report at the end of the SIP dialog. The SIP history is printed to the DEBUG
logging channel:

dumphistory=yes|no

externhost
externhost takes a fully qualified domain name as its argument. If Asterisk is behind
NAT, the SIP header will normally use the private IP address assigned to the server.
If you set this option, Asterisk will perform periodic DNS lookups on the hostname
and replace the private IP address with the IP address returned from the DNS
lookup:

externhost=my.hostname.tld

The use of externhost is not recommended in production systems,
because if the IP address of the server changes, the wrong IP address
will be set in the SIP headers until the next lookup is performed.
The use of externip is recommended instead.

externip
externip takes an IP address as its argument. If Asterisk is behind NAT, the SIP
header will normally use the private IP address assigned to the server. The remote
server will not know how to route back to this address; thus, it must be replaced
with a valid, routeable address:

352 | Appendix A: VoIP Channels

externip=216.239.39.104

externrefresh
If externhost is used, externrefresh configures how long, in seconds, should pass
between DNS lookups:

externrefresh=30

g726nonstandard
This parameter can be set when dealing with peers that incorrectly use the wrong
encoding for the G.726 codec. This setting tells Asterisk to use AAL2 packing order
instead of RFC3551 packing order if the peer negotiates G726-32 audio. Ordina-
rily, that would be contrary to the RFC3551 specification, as the peer should be
negotiating AAL2-G726-32 instead. You may need to set this option if you’re using
a Sipura or Grandstream device:

g726nonstandard=yes

ignoreregexpire (global)
If ignoreregexpire is set to yes, Asterisk could do one of two things, for:

Non-realtime peers
When their registration expires, the information will not be removed from
memory or the Asterisk database. If you attempt to place a call to the peer, the
existing information will be used in spite of it having expired.

Realtime peers
When the peer is retrieved from realtime storage, the registration information
will be used regardless of whether it has expired or not; if it expires while the
realtime peer is still in memory (due to caching or other reasons), the infor-
mation will not be removed from realtime storage:

ignoreregexpire=yes|no

jbenable
Enables the use of an RTP jitter buffer on the receiving side of a SIP channel. De-
faults to no. An enabled jitter buffer will be used only if the sending side can create
and the receiving side cannot accept jitter. The SIP channel can accept jitter; thus
a jitter buffer on the receiving side will be used only if it is forced and enabled:

jbenable=yes|no

jbforce
Forces the use of the RTP jitter buffer on the receiving side of a SIP channel. Defaults
to no:

jbforce=yes|no

jbimpl
This setting is used to specify which jitter buffer implementation to use, the
fixed jitter buffer or the adaptive jitter buffer. If the fixed jitter buffer is used, it
will always be the size defined by jbmaxsize. If the adaptive jitter buffer is specified,

SIP | 353

then the jitter buffer will vary in size up to the maximum size specified by jbmax
size. This setting defaults to fixed:

jbimpl=fixed|adaptive

jblog
Specifies whether or not to enable jitter buffer frame logging. Defaults to no:

jblog=yes|no

jbmaxsize
Sets the maximum length of the jitter buffer, in milliseconds:

jbmaxsize=200

jbresyncthreshold
Jump in the frame timestamps over which the jitter buffer is resynchronized. This
is useful to improve the quality of the voice, with big jumps in/broken timestamps
that are usually sent from exotic devices and programs. Defaults to 1000:

jbresyncthreshold=1000

limitonpeers
This setting tells Asterisk to apply call limits to peers only. This will improve call
limits and status notification for devices set to type=friend because the peer limit
will be checked, and not create a separate limit for the user and peer portions of a
friend:

limitonpeers=yes|no

localnet
localnet is used to tell Asterisk which IP addresses are considered local, so that
the address in the SIP header can be translated to that specified by externip or the
IP address can be looked up with externhost. The IP addresses should be specified
in CIDR notation:

localnet=192.168.1.0/24
localnet=172.16.0.0/16

matchexterniplocally
Specifies that Asterisk should substitute the externip or externhost setting only if
it matches your localnet setting. Unless you have some sort of strange network
setup you will not need to enable this:

matchexterniplocally=yes|no

maxexpiry
This sets the maximum amount of time, in seconds, until a peer’s registration
expires:

maxexpiry=3600

354 | Appendix A: VoIP Channels

minexpiry
This sets the minimum amount of time, in seconds, allowed for a registration or
subscription:

maxexpiry=3600

notifymimetype
This takes as its argument a string specifying the MIME type used for the message-
waiting indication (MWI) in the SIP NOTIFY message. The most common setting
for this field is text/plain, although it can be customized if need be:

notifymimetype=text/plain

notifyringing
Specifies whether Asterisk should notify subscriptions on RINGING state:

notifyringing=yes|no

notifyhold
Specifies whether Asterisk should notify subscriptions on HOLD state:

notifyhold=yes|no

pedantic
You can set pedantic to yes or no. Setting it to yes enables slow pedantic checking
for phones that require it, such as the Pingtel, and enables more strict SIP RFC
compliancy. In an effort to improve performance, SIP RFC compliance is not nor-
mally strictly adhered to:

pedantic=yes

realm
This option sets the realm for digest authentication. Set realm to your fully qualified
domain name, which must be globally unique:

realm=mybox.example.com

recordhistory
You can set recordhistory to yes or no to enable or disable SIP history recording
for all channels:

recordhistory=yes|no

registerattempts
Specifies how many times Asterisk will attempt its outbound registrations before
giving up. This setting defaults to 0, which means that Asterisk will retry
indefinitely:

registerattempts=0

registertimeout
Specifies how often Asterisk should attempt to re-register to other devices:

registertimeout=30

SIP | 355

relaxdtmf
You can set relaxdtmf to yes or no. Setting it to yes will relax the DTMF detection
handling. Use this if Asterisk is having a difficult time determining the DTMF on
the SIP channel. Note that this may cause “talkoff,” where Asterisk incorrectly
detects DTMF when it should not:

relaxdtmf=yes|no

rtautoclear (global)
This specifies whether or not Asterisk should auto-expire friends created on the fly
on the same schedule as if they had just registered. If set to yes, when the registra-
tion expires, the friend will vanish from the configuration until requested again. If
set to an integer, friends expire within that number of seconds instead of the normal
registration interval:

rtautoclear=yes|no|seconds

rtcachefriends (global)
If rtcachefriends is turned on, Asterisk will cache friends that come from the
realtime engine, just as if they had come from sip.conf. This often helps with items
such as message-waiting indications on realtime peers:

rtcachefriends=yes|no

rtsavesysname (global)
Specifies whether or not Asterisk should save the systemname in the realtime
database at the time of registration:

rtsavesysname=yes|no

rtupdate (global)
If set to yes Asterisk will update the IP address, origination port, and registration
period of a peer upon registration. Defaults to yes:

rtupdate=yes|no

sipdebug
Specifies whether or not Asterisk should turn on SIP debugging from the time that
Asterisk loads the SIP channel driver:

sipdebug=yes|no

sendrpid
Specifies whether or not Asterisk should send a Remote-Party-ID header:

sendrpid=yes|no

srvlookup
DNS SRV records are a way of setting up a logical, resolvable address where you
can be reached. This allows calls to be forwarded to different locations without the
need to change the logical address. By using SRV records, you gain many of the

356 | Appendix A: VoIP Channels

advantages of DNS, whereas disabling them removes the ability to place SIP calls
based on domain names.

Currently, the support for SRV records in Asterisk is somewhat
lacking. If multiple SRV records are returned, Asterisk will use only
the first record.

Using DNS SRV record lookups is highly recommended. To enable them, set
srvlookup=yes in the [general] section of sip.conf:

srvlookup=yes

t1min
This is the minimum round-trip time for messages to monitored hosts in
milliseconds. Defaults to 100 milliseconds:

t1min=100

subscribecontext
Limits SUBSCRIBE requests to the specified context. This is useful if you want to
limit subscriptions to internal extensions, for example.

This option may also be set on a per-user or per-peer basis:

subscribecontext=internal

t38pt_udptl
Setting t38pt_udptl to yes enables T.38 fax (UDPTL) passthrough on SIP-to-SIP
calls, provided both parties have T.38 support. This setting must be enabled in the
general section for all devices to work. You can then disable it on a per-device basis:

t38pt_udptl=yes|no

T.38 fax passthrough works only in SIP-to-SIP calls, without any
local or agent channel being used. Asterisk cannot currently orig-
inate or terminate T.38 fax calls; it can only passthrough UDPTL
from one device to another.

tos_sip, tos_audio, and tos_video
Asterisk can set the TOS bits in the IP header to help improve performance on
routers that respect TOS bits in their routing calculations. The tos_sip,
tos_audio, and tos_video settings control the TOS bits for the SIP messages, the
RTP audio, and RTP video respectively. Valid: CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7,
AF11, AF12, AF13, AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43, and ef (expe-
dited forwarding). You may also use a numeric value for the TOS bits.

For more information, see the doc/ip-tos.txt file in the Asterisk source directory.

SIP | 357

trustrpid
Specifies whether or not Asterisk should trust the value in the Remote-Party-ID
header:

trustrpid=yes|no

useragent
useragent takes as its argument a string specifying the value for the useragent field
in the SIP header. The default value is asterisk:

useragent=Asterisk PBX v1.4

usereqphone
The usereqphone option tells Asterisk to add ;user=phone to SIP URIs that contain
a valid phone number:

usereqphone

videosupport (both)
You can set videosupport to yes or no. You can turn it off on a per-peer basis if
general video support is enabled, but you can’t enable it for one peer only without
enabling it in the general section:

videosupport=yes|no

vmexten
This option sets the dialplan extension to reach the voicemailbox, and will be sent
in the Message-Account section of the MWI NOTIFY message. Set this if your SIP
device supports the Message-Account setting. This option defaults to asterisk:

vmexten=8500

SIP Channel Definitions
Now that we’ve covered the global SIP parameters, we will discuss the channel-specific
parameters. These parameters can be defined for a user, a peer, or both (as noted in
parentheses):

accountcode (both)
The account code can be defined on a per-user basis. If defined, this account code
will be assigned to a call record whenever no specific user account code is set. The
accountcode name configured will be used as the <filename>.csv in
the /var/log/asterisk/cdr-csv/ directory to store CDRs for the user/peer/friend:

accountcode=iax-username

allow and disallow (both)
Specific codecs can be allowed or disallowed, limiting codec use to those preferred
by the system designer. allow and disallow can also be defined on a per-channel
basis. Keep in mind that allow statements in the [general] section will carry over
to each of the channels, unless you reset with a disallow=all. Codec negotiation

358 | Appendix A: VoIP Channels

is attempted in the order in which the codecs are defined. Best practice suggests
that you define disallow=all, followed by explicit allow statements for each codec
you wish to use. If nothing is defined, allow=all is assumed:

disallow=all
allow=ulaw
allow=gsm
allow=ilbc

amaflags (both)
Automatic Message Accounting (AMA) is defined in the Telcordia Family of Docu-
ments listed under FR-AMA-1. These documents specify standard mechanisms for
generation and transmission of CDRs. You can specify one of four AMA flags
(default, omit, billing, or documentation) to apply to all SIP connections:

amaflags=documentation

callerid (both)
You can set a suggested Caller ID string for a user or peer with callerid. If you
define a Caller ID field for a user, any calls that come in on that channel will have
that Caller ID assigned to them, regardless of what the far end sends to you. If
Caller ID is defined for a peer, you are requesting that the far end use that to identify
you (keep in mind, however, that you have no way to ensure that it will do so). If
you want incoming callers to be able to define their own Caller IDs (i.e., for guests),
make sure you do not set the callerid field:

callerid=John Smith <(800) 555-1234>

callgroup and pickupgroup (both)
You can use the callgroup parameter to assign a channel definition to one or more
groups, and you can use the pickupgroup option in conjunction with this parameter
to allow a ringing phone to be answered from another extension. The
pickupgroup option is used to control which callgroups a channel may pick up—a
channel is given authority to answer another ringing channel if it is assigned to the
same pickupgroup as the ringing channel’s callgroup. By default, remote ringing
extensions can be answered with *8 (this is configurable in the features.conf file):

callgroup=1,3-5
pickupgroup=1,3-5

callingpres (both)
Sets Caller ID presentation for this user/peer. This setting takes one of the following
options:

allowed_not_screened
Presentation allowed, not screened

allowed_passed_screen
Presentation allowed, passed screen

SIP | 359

allowed_failed_screen
Presentation allowed, failed screen

allowed
Presentation allowed, network number

prohib_not_screened
Presentation prohibited, not screened

prohib_passed_screen
Presentation prohibited, passed screen

prohib_failed_screen
Presentation prohibited, failed screen

prohib
Presentation prohibited, network number

unavailable
Number unavailable

=yes|no

canreinvite (both)
The SIP protocol tries to connect endpoints directly. However, Asterisk must re-
main in the transmission path between the endpoints if it is required to detect
DTMF (for more information, see Chapter 4):

canreinvite=no

context (both)
A context is assigned to a channel definition to direct incoming calls into the
matching context in extensions.conf, where call handling is performed (see Chap-
ters Chapter 4 and Chapter 5). Any channel connecting to an Asterisk machine has
to have a context defined into which it will arrive. The context is essential for any
user channel definition; if you do not define a context, incoming calls will be di-
rected to the default context:

context=incoming

You should be aware of an unusual scenario that will require a
context definition for a peer. When a call comes through the SIP
channel, it first tries to find a matching user definition (based on
the user name in square brackets and the secret). If it can’t find any
matching users, it then looks for matching peers, based on the IP
address that the call is coming from. Since peers don’t normally
have contexts, this will cause such a call to arrive in the default
context. While this will work, the default context shouldn’t really
be used to handle incoming calls. The solution is to define a con-
text, on a per-peer basis, for any peers that might match on
incoming calls. To experiment with this, you can call your Free
World Dialup number; the call will come right back to you.

360 | Appendix A: VoIP Channels

defaultip (peer)
The defaultip setting complements host=dynamic. If a host has not yet registered
with your server, you’ll attempt to send messages to the default IP address config-
ured here:

defaultip=192.168.1.101

deny (both)
Specific IP addresses and ranges can be controlled with the deny option. To restrict
access from a range of IP addresses, use a subnet mask—for example,
deny=192.168.1.0/255.255.255.0. You can also deny all addresses with
deny=0.0.0.0/0.0.0.0 and then allow only certain addresses with the permit com-
mand. Be aware of the security implications of this setting (see also permit):

deny=0.0.0.0/0.0.0.0

disallow (both)
See allow.

dtmfmode (both)
You can set dtmfmode to inband, rfc2833, or info. DTMF digits can be sent either
in band (as part of the audio stream), or out of band (as signaling information),
using the RFC 2833 or INFO methods. The inband method works reliably only
when using an uncompressed codec such as G.711, μlaw, or alaw. The recom-
mended method is to use rfc2833; however, some devices—such as those by
Grandstream—support the info method:

dtmfmode=rfc2833

In Asterisk 1.4, Variable Length DTMF was introduced in order to
allow Asterisk to correctly signal to the far end the duration of a
key press on the phone connected to the incoming channel (per
IETF RFC 2833). Older Asterisk systems do not understand the
variable-length parameter. In older Asterisk systems, DTMF deliv-
ered via RFC 2833 may not be correctly interpreted, leading to
strange effects in sessions such as voicemail. If you want to have
the older (pre-1.4) behaviour of the rfc2833 setting, you must add
the rfc2833compensate=yes option to the peer in sip.conf that de-
fines communication with your pre-1.4 Asterisk system.

fromdomain (peer)
This allows you to set the domain in the From: field of the SIP header. It may be
required by some providers for authentication:

fromdomain=my.hostname.tld

fromuser (peer)
This allows you to set the username with which to authenticate. The name con-
tained within the square brackets of the channel definition is usually used, but this

SIP | 361

can be overridden with the fromuser option. This allows a channel definition to be
referenced with a name other than that used to authenticate:

fromuser=john_smith

host (peer)
This configures the host to which this peer is to connect. Use a fully qualified
domain name:

host=remote.hostname.tld

incominglimit (both)
This option limits the total number of simultaneous calls for a peer or user. It sets
the max number of simultaneous outgoing calls for a peer, or the max number of
incoming calls for a user.

incominglimit=3

insecure (both)
When an INVITE is received from a remote location, Asterisk attempts to authen-
ticate the string of characters before the @ sign on the INVITE line received in the
SIP header with the name of a channel definition in sip.conf. If the remote end is a
user agent, it will authenticate based on a user definition. However, if the remote
end is a SIP proxy service, it will authenticate on the peer entry. When calls come
from a provider such as Free World Dialup, which acts as a proxy for the true
remote end who is calling you, that provider cannot authenticate the call on behalf
of the endpoint. Since it would be impractical to have an authentication configured
for every FWD user, and since FWD cannot respond to a 407 Proxy Authentication
Required response, there must be an alternate way to allow calls from these callers.

If you set insecure=invite, you’ll determine which peer to match on by comparing
the IP address or hostname and port number to those provided in the Contact field
of the SIP header with the host and port options in sip.conf. If a match is found,
authentication will not be required on the initial INVITE, and the call will be al-
lowed.

If you have multiple endpoints behind a NAT device, you need to enable inse
cure=port to match against only the IP address. To not require authentication on
the incoming INVITE for the peer, set insecure=invite,port:

insecure=invite

language (both)
This sets the language flag to whatever you define. The global default language is
English. The language that is set is sent by the channel as an information element.
It is also used by applications such as SayNumber() that have different files for dif-
ferent languages. Keep in mind that languages other than English are not explicitly
installed on the system, and it is up to you to configure the system to ensure that
the language you specify is handled properly:

362 | Appendix A: VoIP Channels

language=en

mailbox (peer)
If you associate a mailbox with a peer within the channel definition, voicemail will
send a MWI to the nodes on the end of that channel. If the mailbox number is in
a voicemail context other than default, you can specify it as mailbox @ context. To
associate multiple mailboxes with a single peer, use multiple mailbox statements:

mailbox=1000@internal

maxcallbitrate (both)
Sets the maximum bitrate for an individual call from this user or to this peer. De-
faults to 384 Kb/s:

maxcallbitrate=384

md5secret (both)
If you do not wish to have plain-text secrets in your sip.conf files, you can use
md5secret to configure the MD5 hash that can be used for authentication. To gen-
erate the MD5 hash from the Linux console, use the following command:

echo -n "username:realm:secret" | md5sum

Be sure to use the -n flag, or echo will add a \n to the end of the string; the line feed
will then be calculated into the MD5 hash, creating the incorrect hash. The
realm, if not specified with the realm option (discussed in the list of general SIP
parameters), defaults to asterisk. If both an md5secret and a secret are specified
in the same channel definition, the secret will be ignored:

md5secret=0bcbe762982374c276fb01af6d272dca

mohinterpret (channel)
This option specifies a preference for which MoH class this channel should listen
to when put on hold if the music class has not been set on the channel with Set
(CHANNEL(musicclass)=whatever) in the dialplan, and the peer channel putting this
one on hold did not suggest a music class.

This option may be specified globally, or on a per-user or per-peer basis:

mohinterpret=default

mohsuggest (channel)
This option specifies which music-on-hold class (as defined in musiconhold.conf)
to suggest to the peer channel when this channel places the peer on hold. It may
be specified globally or on a per-user or per-peer basis:

mohsuggest=default

musicclass (both)
This option sets the default music-on-hold class:

musicclass=classical

SIP | 363

nat (both)
You can set nat to yes, no, or never. If you set it to yes, Asterisk ignores the IP
address in the SIP and SDP headers and responds to the address and port in the IP
header. The never option is for devices that cannot handle rport in the SIP header,
such as the Uniden UIP200:

nat=yes|no|never

permit (both)
See deny.

pickupgroup (both)
See callgroup.

port (peer)
You can use this to define the port on which to listen for SIP signaling, if you want
to listen on a nonstandard port. (The default port for SIP signaling is 5060.)

port=5060

progressinband (both)
You can set progressinband to yes, no, or never, to configure whether or not to
generate in-band ringing. Normally, Asterisk will send the progress of a call via a
few methods, such as 183 Session Progress, 180 Ringing, 486 Busy, and so on. If
you set progressinband=yes, Asterisk will indicate the call progress in band by gen-
erating tones:

progressinband=yes|no|never

promiscredir (both)
You can set promiscredir to yes or no. Normally, when you perform call forwarding
on a phone, Asterisk will use the Local channel (for example, local/
18005551212@peer). If you set promiscredir=yes, Asterisk will use the SIP channel
instead, which enables you to forward the calls to remote boxes:

promiscredir=yes|no

Note that if Asterisk performs a redirect to itself when promiscre
dir=yes, the system will receive an INVITE with the same Caller ID
and detect a loop to itself. SIP does not have the ability to perform
a hairpin call, so the channel will then be destroyed.

qualify (peer)
You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes,
NOTIFY messages will be sent periodically to the remote peers to determine whether
they are available and what the latency between replies is. A peer is determined
unreachable if no reply is received within 2,000 ms (to change this default, instead
set qualify to the number of milliseconds to wait for the reply). Use this option in
conjunction with nat=yes to keep the path through the NAT device alive:

364 | Appendix A: VoIP Channels

qualify=yes|no|seconds

regcontext (peer)
By specifying the context that contains the actions to perform, you can configure
Asterisk to perform a number of actions when a peer registers to your server. This
option works in conjunction with regexten by specifying the extension to execute.
If no regexten is configured, the peer name is used as the extension. Asterisk will
dynamically create and destroy a NoOp at priority 1 for the extension. All actions to
be performed upon registration should start at priority 2. More than one
regexten may be supplied, if separated by an &. regcontext can be set on a per-peer
basis or globally:

regcontext=peer_registrations

regexten (peer)
The regexten option is used in conjunction with regcontext to specify the extension
that is executed within the configured context. If regexten is not explicitly config-
ured, the peer name is used as the extension to match:

regexten=1000

rtpholdtimeout (peer)
This takes as its argument an integer, specified in seconds. It terminates a call if no
RTP data is received while on hold within the time specified. The value of rtphold
timeout must be greater than that of rtptimeout (see also rtptimeout):

rtpholdtimeout=120

rtpkeepalive (peer)
Specifies how often Asterisk should send keepalives in the RTP stream, in seconds.
Defaults to zero, which means Asterisk won’t send any RTP keepalives:

rtpkeepalive=45

rtptimeout (peer)
This takes as its argument an integer, specified in seconds. It terminates a call if no
RTP data is received within the time specified:

rtptimeout=60

secret (both)
This sets the password to use for authentication:

secret=welcome

setvar (both)
This sets a channel variable, which will be available when a channel to the peer or
user is created and will be destroyed when the call is hung up. For example, to set
the channel variable foo with a value of bar, use:

setvar=foo=bar

SIP | 365

username (peer)
The username field allows you to attempt contact with a peer before it has registered
with you. At registration, a SIP device tells Asterisk which SIP URI to use to contact
it. The username is used in conjunction with defaultip to create the SIP URI in the
SIP INVITE header. This might be useful following a reboot, in order to place a call.
The endpoints will not attempt to register with the server until their registration
timeouts expire, so you will not know their locations. For nondynamic hosts, you
will require the username to be specified, as it is used to construct the authoriza-
tion username:

username=john_smith

366 | Appendix A: VoIP Channels

APPENDIX B

Application Reference

Applications are the core functionality of the dialplan. Generally these all will operate
on the channel, whereas functions, described in Appendix F, merely return values that
can be used by applications. There are a few applications that still simply return values,
but these will probably be deprecated in a future version and replaced with dialplan
functions.

There are a few things to keep in mind about applications. First, when they exit, they
will either terminate normally or abnormally. Abnormal termination almost always
occurs when an application detects that the channel has hung up (or if it doesn’t, the
dialplan will detect that shortly thereafter). An application may also exit abnormally
when it wishes to indicate to the dialplan that some condition has not been satisfied
and that it should force a hangup. In all other cases, an application will exit normally,
which indicates that processing should continue at the next priority in the dialplan.

In many cases, if you wish to override the application’s wish to cause a hangup, you
may wrap the application in a TryExec().

In many places throughout this reference, you will see what’s described as a label. This
is shorthand for describing a location in the dialplan, whether it is simply a priority;
an extension and a priority; or a context, an extension, and a priority. Note that if a
text label is defined for a particular priority, the priority may be replaced with that
text label in any of those cases. See the GotoIf() application for more information
and an example.

You will find many of the examples in this appendix to contain num-
bered priorities, which is not the preferred method of writing dialplans.
We prefer the use of the 'n' priority for all priority numbers except 1
(which is required), but we have decided to utilize them in order to make
some of the examples more clear.

AddQueueMember() Dynamically adds queue members to the specified call queue

AddQueueMember(queuename[,interface[,penalty,[option,[membername]]]])

367

Dynamically adds the specified interface to an existing queue named queuename, as
specified in queues.conf. If specified, penalty sets the penalty for queues to use this
member. Members with a lower penalty are called before members with a higher
penalty.

The AddQueueMember() application sets a channel variable named AQMSTATUS upon com-
pletion. The AQMSTATUS variable will be set to one of the following values:

ADDED
MEMBERALREADY
NOSUCHQUEUE

Calling AddQueueMember() without an interface argument will use the interface that the
caller is currently using.

If the option argument is set to j, Asterisk cannot add the interface to the specified
queue, and there exists an n+101 priority (where n is the number of the current priority),
the call will jump to that priority.

The membername argument may be set to the name of the queue member. Consequently,
this name will show up in the entries of the queue_log as well as Asterisk Manager
Interface events, making it easier to identify the agent for reporting purposes:

; add SIP/3000 to the techsupport queue, with a penalty of 1
exten => 123,1,AddQueueMember(techsupport,SIP/3000,1)

See Also
Queue(), RemoveQueueMember(), PauseQueueMember(), UnpauseQueueMember(), AgentLogin
() , queues.conf

ADSIProg() Loads an ADSI script into an ADSI-capable phone

ADSIProg(script)

Programs an Analog Display Services Interface (ADSI) phone with the given script. If
none is specified, the default script, asterisk.adsi, is used. The path for the script is
relative to the Asterisk configuration directory (usually /etc/asterisk/). You may also
provide the full path to the script.

To get the CPE ID and other information from your ADSI-capable phone, use the
GetCPEID() application:

; program the ADSI phone with the telcordia-1.adsi script
exten => 123,1,ADSIProg(telcordia-1.adsi)

See Also
GetCPEID(), adsi.conf

368 | Appendix B: Application Reference

AgentCallbackLogin() Enables agent login with callback

AgentCallbackLogin([AgentNumber][,[options][,[exten]@context]])

Allows a call agent identified by AgentNumber to log in to the call queue system, to be
called back when a call comes in for that agent.

When a call comes in for the agent, Asterisk calls the specified exten (with an optional
context).

The options argument may contain the letter s, which causes the login to be silent:

; silently log in as agent number 42, and have Asterisk
; call extension 123 in the internal context
; when a call comes in for this agent
exten => 123,1,AgentCallbackLogin(42,s,123@internal)

This application is deprecated, and the functionality has been replaced
with AEL dialplan logic located in the doc/queues-with-callback-mem
bers.txt file within the Asterisk source.

See Also
Queue(), AgentLogin(), AddQueueMember(), RemoveQueueMember(), PauseQueueMember(),
UnpauseQueueMember(), AGENT, agents.conf, queues.conf

AgentLogin() Allows a call agent to log in to the system

AgentLogin([AgentNumber][,options])

Logs the current caller in to the call queue system as a call agent (optionally identified
by AgentNumber). While logged in, the agent can receive calls and will hear a beep on
the line when a new call comes in. The agent can hang up the current call by pressing
the asterisk (*) key. If AgentNumber is not specified, the caller will be prompted to enter
her agent number. Agents are defined in agents.conf.

The options argument may contain the letter s, which causes the login to be silent:

; silently log in the caller as agent number 42, as defined in agents.conf
exten => 123,1,AgentLogin(42,s)

See Also
Queue(), AddQueueMember(), RemoveQueueMember(), PauseQueueMember(), UnpauseQueue-
Member(), AGENT, agents.conf, queues.conf

AgentMonitorOutgoing() Records an agent’s outgoing calls

AgentMonitorOutgoing([options])

AgentCallbackLogin() | 369

Records all outbound calls made by a call agent.

This application tries to figure out the ID of the agent who is placing an outgoing call
based on a comparison of the Caller ID of the current interface and the global variable
set by the AgentCallbackLogin() application. As such, it should be used only in con-
junction with (and after!) the AgentCallbackLogin() application. It uses the monitoring
functions in the chan_agent module instead of the Monitor() application to record the
calls. This means that call recording must be configured correctly in the agents.conf file.

By default, recorded calls are saved to the /var/spool/asterisk/monitor/ directory. This
may be overridden by changing the savecallsin parameter in agents.conf.

If the Caller ID and/or agent ID are not found, this application will go to priority n+1,
if it exists (where n is the current priority).

Returns 0 unless overridden by one of the options.

The options argument may include one or more of the following:

d
Make this application return -1 if there is an error condition and there is no ex-
tension n+101.

c
Change the Call Detail Record so that the source of the call is recorded as Agent/
agent_id.

n
Don’t generate warnings when there is no Caller ID or if the agent ID is not known.
This option is useful if you want to have a shared context for agent and non-agent
calls.

; record outbound calls for this agent, and change the CDR to reflect
; that the call is being made by an agent
exten => 123,1,AgentMonitorOutgoing(c)

See Also
AgentCallbackLogin(), agents.conf

AGI() Executes an AGI-compliant application

[E]AGI(program[,arguments])

Executes an Asterisk Gateway Interface-compliant program on the current channel. AGI
programs allow external programs (written in almost any language) to control the tel-
ephony channel by playing audio, reading DTMF digits, and so on. Asterisk commu-
nicates with the AGI program on STDIN and STDOUT. The specified arguments are passed
to the AGI program.

370 | Appendix B: Application Reference

The program must be set as executable in the underlying filesystem. The program path
is relative to the Asterisk AGI directory, which by default is /var/lib/asterisk/agi-bin/.

If you want to run an AGI when no channel exists (such as in an h extension), use the
DeadAGI() application instead. You may want to use the FastAGI() application if you
want to do AGI processing across the network.

If you want access to the inbound audio stream from within your AGI program, use
EAGI() instead of AGI(). Inbound audio can then be read in on file descriptor 3.

If the channel hangs up prematurely, the process initiated by the AGI command will be
sent a HUP signal to tell it that the channel has hung up. If your program does not catch
this signal, it will be terminated. You can override this behavior by setting the channel
variable AGISIGHUP to 0:

; call the demo AGI program
exten => 123,1,AGI(agi-test)
exten => 123,2,EAGI(eagi-test)

See Also
DeadAGI(), FastAGI(), Chapter 9

AlarmReceiver() Provides support for receiving alarm reports from a burglar or fire alarm panel

AlarmReceiver()

Emulates an alarm receiver, and allows Asterisk to receive and decode special data from
fire and/or burglar alarm panels. At this time, only the Ademco Contact ID format is
supported.

When called, AlarmReceiver() will handshake with the alarm panel, receive events,
validate them, handshake them, and store them until the panel hangs up. Once the
panel hangs up, the application will run the command line specified by the eventcmd
setting in alarmreceiver.conf and pipe the events to the standard input of the applica-
tion. alarmreceiver.conf also contains settings for DTMF timing and for the loudness
of the acknowledgment tones.

; set up Asterisk to answer a call from a supported fire alarm panel
exten => s,1,AlarmReceiver()

This application is not guaranteed to be reliable, so don’t depend on it
unless you have extensively tested it. If you use this application without
extensive testing, you may be putting your life and property at great risk.

See Also
alarmreceiver.conf

AlarmReceiver() | 371

AMD() Answering machine detection

AMD([initialSilence[,greeting[,afterGreetingSilence[,totalAnalysisTime
[,minimumWordLength[,betweenWordsSilence[,maximumNumberOfWords
[,silenceThreshold]]]]]]]])

This application attempts to detect an answering machine, based on the timing pat-
terns. This application is usually used by outbound calls originated from either call files
or from the Asterisk manager Interface. This application sets AMDSTATUS variable is set
to one of the following, to show what type of call was detected:

MACHINE
The called party is believed to be an answering machine.

HUMAN
The called party is believed to be a human being, and not an answering machine.

NOTSURE
The application was unable to tell whether the called party was a human or an
answering machine.

HANGUP
A hangup occurred during the detection.

The AMD() application also sets a channel variable named AMDCAUSE with the cause that
lead to the conclusion stated in the AMDSTATUS variable. The AMDCAUSE variable will be
set to one of the following values:

TOOLONG-total_time
INITIALSILENCE-silence_duration-initial_silence
HUMAN-silence_duration-after_greeting_silence
MAXWORDS-word_count-maximum_number_of_words
LONGGREETING-voice_duration-greeting

The parameters to this application all help tune it so that it can more effectively tell the
difference between a human and an answering machine. If the parameters are not
passed to this application, Asterisk will read the default values as configured in
amd.conf. The parameters are:

initialSilence
The maximum silence duration before the greeting. If exceeded, then the AMDSTA
TUS variable will be set to MACHINE.

greeting
The maximum length of the greeting. If exceeded, then the AMDSTATUS variable will
set to MACHINE.

afterGreetingSilence
The maximum silence after detecting a greeting. If exceeded, then the AMDSTATUS
variable will be set to MACHINE.

372 | Appendix B: Application Reference

totalAnalysisTime
The maximum time allowed for the algorithm to decide whether the called party
is a human or an answering machine.

minimumWordLength
If the duration of the voice activity is shorter than minimumWordLength, it will not be
considered to be human speech.

betweenWordsSilence
The minimum duration of silence after a word to consider the audio that follows
as a new word.

maximumNumberOfWords
The maximum number of words detected in the greeting. If exceeded, then the
AMDSTATUS variable will set to MACHINE.

silenceThreshold
How sensitive the algorithm should be when detecting silence

; Use answering machine detection. If the called party
; is human, connect them to Bob. Otherwise, play a
; message and hang up
exten => 123,1,Answer()
exten => 123,n,AMD()
exten => 123,n,GotoIf($["${AMDSTATUS}" = "HUMAN"]?human:machine)
exten => 123,n(machine),WaitForSilence(2000)
exten => 123,n,Playback(asterisk-friend)
exten => 123,n,Hangup()
exten => 123,n(human),Verbose(3, We've got a human on the line!)
exten => 123,n,Playback(transfer)
exten => 123,n,Dial(SIP/bob)
exten => 123,n,Playback(im-sorry)
exten => 123,n,Hangup()

See Also
WaitForSilence()

Answer() Answers a channel, if it is ringing

Answer([delay])

Causes Asterisk to answer the channel if it is currently ringing. If the current channel
is not ringing, this application does nothing.

If a delay is specified, Asterisk will answer the call and then wait delay milliseconds
before going on to the next priority in the dialplan.

It is often a good idea to use Answer() on the channel before calling any other applica-
tions, unless you have a very good reason not to. There are several key applications that
require that the channel be answered before they are called, and may not work correctly
otherwise:

Answer() | 373

exten => 123,1,Answer(750)
exten => 123,n,Playback(tt-weasels)

See Also
Hangup()

AppendCDRUserField() Appends a value to the user field of the Call Detail Record

AppendCDRUserField(value)

Appends value to the user field of the Call Detail Record (CDR). The user field is often
used to store arbitrary data about the call, which may not be appropriate for any of the
other fields:

; set the user field to 'abcde'
exten => 123,1,SetCDRUserField(abcde)
; now append 'xyz'
exten => 123,1,AppendCDRUserField(xyz)

This application has been deprecated in favor of the CDR function.

exten => 123,1,Set(CDR(userfield)=${CDR(userfield)}12345)

See Also
SetCDRUserField(), ForkCDR(), NoCDR(), ResetCDR(), the CDR

Authenticate() Requires that the caller enter a correct password before continuing

Authenticate(password[,options[,maxdigits]])

Requires a caller to enter a given password in order to continue execution of the next
priority in the dialplan. Authenticate() gives the caller three chances to enter the pass-
word correctly. If the password is not correctly entered after three tries, the channel is
hung up.

If password begins with the / character, it is interpreted as a file that contains a list of
valid passwords (one per line). Passwords may also be stored in the Asterisk database
(AstDB); see the d option below.

The maxdigits parameter sets the maximum number of digits that may be entered by
the caller. It not set, the application will accept an unlimited number of digits and will
wait for the caller to press the # key after entering his authentication code.

A set of options may be provided, consisting of one or more of the letters in the following
list:

374 | Appendix B: Application Reference

a
Sets the CDR field named accountcode and the channel variable ACCOUNTCODE to the
password that is entered

d
Interprets the path as the database key from the Asterisk database in which to find
the password, not a literal file. When using a database key, the value associated
with the key can be anything.

j
Supports jumping to priority n+101 if authentication fails

m
Interprets the given path as a file that contains a list of account codes and password
hashes delimited with : (colon character), listed one per line in the file. When one
of the passwords is matched, the channel will have its account code set to the
corresponding account code in the file.

r
Removes the database key upon successful entry (valid with d only).

; force the caller to enter the password before continuing,
; and set the CDR field named 'accountcode' to the entered password
exten => 123,1,Answer()
exten => 123,n,Authenticate(1234,a)
exten => 123,n,Playback(pin-number-accepted)
exten => 123,n,SayDigits(${ACCOUNTCODE})

See Also
VMAuthenticate(), DISA(), Chapter 6

Background() Plays a file while accepting touch-tone (DTMF) digits

Background(filename1[&filename2...][,options[,language]])

Plays the specified audio file(s) while waiting for the user to begin entering DTMF digits.
Once the user begins to enter DTMF digits, the playback is terminated. Asterisk tries
to find a matching extension in the destination context (or the current context if none
is specified), and execution of the dialplan will continue at the matching extension as
soon as an unambiguous match is found.

The filename should be specified without a file extension, as Asterisk will automatically
find the file format with the lowest translation cost.

Valid options include one of the following:

s
Causes the playback of the message to be skipped if the channel is not in the “up”
state (i.e., hasn’t yet been answered). If s is specified, the application will return
immediately should the channel not be off-hook.

Background() | 375

n
Does not answer the channel before playing the specified file. Without this option,
the channel will automatically be answered before the sound is played. Not all
channels support playing messages before being answered.

m
Only break if a digit hit matches a one-digit extension in the destination context.

The language argument may be used to specify a language to use for playing the prompt,
if it differs from the current language of the channel.

exten => 123,1,Answer()
exten => 123,2,Background('exter-ext-of-person');

See Also
ControlPlayback(), WaitExten(), BackgroundDetect(), TIMEOUT

BackgroundDetect() Plays a file in the background and detects talking

BackgroundDetect(filename[,sil[,min[,max]]])

Similar to Background(), but attempts to detect talking.

During the playback of the file, audio is monitored in the receive direction. If a period
of non-silence that is greater than min milliseconds yet less than max milliseconds and
is followed by silence for at least sil milliseconds occurs, the audio playback is aborted
and processing jumps to the talk extension, if available.

If unspecified, sil, min, and max default to 1,000 ms, 100 ms, and infinity, respectively.

exten => 123,1,BackgroundDetect(tt-monkeys)
exten => 123,2,Playback(im-sorry)
exten => talk,1,Playback(yes-dear)

See Also
Playback(), Background()

Busy() Indicates a busy condition to the channel

Busy([timeout])

Requests that the channel indicate the busy condition and then waits for the user to
hang up or for the optional timeout (in seconds) to expire.

This application signals a busy condition only to the bridged channel. Each particular
channel type has its own way of communicating the busy condition to the caller. You
can use Playtones(busy) to play a busy tone to the caller.

376 | Appendix B: Application Reference

exten => 123,1,Playback(im-sorry)
exten => 123,2,Playtones(busy)
exten => 123,3,Busy()

See Also
Congestion(), Progress(), Playtones(), Hangup()

ChangeMonitor() Changes the monitoring filename of a channel

ChangeMonitor(filename_base)

Changes the name of the recorded file created by monitoring a channel with the
Monitor() application. This application has no effect if the channel is not monitored.
The argument filename_base is the new filename base to use for monitoring the chan-
nel.

; start recording this channel with a basename of 'sample'
exten => 123,1,Monitor(sample)
; change the filename base to 'example'
exten => 123,2,ChangeMonitor(example)

See Also
Monitor(), StopMonitor(), MixMonitor()

ChanIsAvail() Finds out if a specified channel is currently available

ChanIsAvail(technology1/resource1[&technology2/resource2...][,option])

Checks to see if any of the requested channels are available. This application also sets
the following channel variables:

AVAILCHAN
The name of the available channel, including the call session number used to per-
form the test

AVAILORIGCHAN
The canonical channel name that was used to create the channel—that is, the
channel name without any session number

AVAILSTATUS
The status code for the channel

If the option s (which stands for “state”) is specified, Asterisk will consider the channel
unavailable whenever it is in use, even if it can take another call.

If the j option is specified, and none of the requested channels are available, the new
priority will be n+101 (where n is the current priority), if that priority exists.

; check both Zap/1 and Zap/2 to see if they're available
exten => 123,1,ChanIsAvail(Zap/1&Zap/2)

ChangeMonitor() | 377

; print the available channel name to the Asterisk CLI
exten => 123,2,Verbose(0,${AVAILORIGCHAN})

This application does not work correctly on MGCP channels.

ChannelRedirect() Redirects a channel to a new location in the dialplan

ChannelRedirect(channel,[[context,]extension,]priority)

This application redirects the specified channel to a new priority in the dialplan. If
extension is not specified, the current extension is assumed. If context is not specified,
the current context will be assumed:

; Transfer SIP/Bob to hold music when extension 123 is dialed
exten => 123,1,ChannelRedirect(SIP/Bob,124,1)

exten => 124,1,Answer()
exten => 124,2,MusicOnHold()

See Also
Transfer()

ChanSpy() Listens to the audio on a channel, and optionally whisper to the calling channel

ChanSpy([chanprefix[,options]])

This application is used to listen to the audio going to and from an Asterisk channel.
If the chanprefix parameter is specified, only channels beginning with this value will
be spied upon.

While a channel is being spied upon, the following actions may be performed:

• Dialing # cycles the volume level.

• Dialing * will cause the application to spy on the next available channel.

• Dialing a series of digits followed by # builds a channel name (which will be ap-
pended to chanprefix). For example, placing ChanSpy(Zap) and then dialing the
digits 42# while spying will begin spying on the channel Zap/42.

The options parameter may contain zero or more of the following options:

b
Only spy on channels that are involved in a bridged call.

g(group)
Only spy on channels that contain a channel variable named SPYGROUP, which
should contain group in an optional colon-delimited list.

378 | Appendix B: Application Reference

q
Quiet mode. Tells the application not to beep or read the selected channel’s name
when spying begins.

r[(basename)]
Records the channel audio to the monitor spool directory (usually /var/spool/aster
isk/monitor). An optional basename set the base filename of the recordings, which
defaults to chanspy.

v([value])
Adjusts the volume of the audio being listened to. The value must be in the range
of 4 to -4. A negative value will make the volume quieter, while a positive value
will make it louder.

w
Whisper mode. This allows the spying channel to talk to the spied-upon channel,
without any other bridged channel being able to hear the audio.

W
Private whisper mode. This enables the spying channel to speak to the spied-upon
channel without being able to hear the audio from the spied-upon channel.

; Spy on the Zap channels in whisper mode
exten => 123,1,ChannelSpy(Zap,w)

See Also
ExtenSpy()

Congestion() Indicates congestion on the channel

Congestion([timeout])

Requests that the channel indicate congestion and then waits for the user to hang up
or for the optional timeout (in seconds) to expire.

This application signals congestion only to the far end; it doesn’t actually play a con-
gestion tone to the user. Use Playtones(congestion) to play a congestion tone to the
caller.

If you use this command without a timeout, you run the risk of having
a channel get stuck in this state. This is not really needed when you want
to indicate congestion to a user. Just use Playtones(congestion) so they
hear the fast-busy, and then Hangup().

Always exits abnormally:

; if the Caller ID number is 555-1234, always play congestion
exten => 123,1,GotoIf($[${CALLERID(num)} = 5551234]?5:2)
exten => 123,2,Playtones(congestion)
exten => 123,3,Congestion(3)

Congestion() | 379

exten => 123,4,Hangup()
exten => 123,5,Dial(Zap/1)

See Also
Busy(), Progress(), Playtones(), Hangup()

ContinueWhile() Restart a While() loop

ContinueWhile()

Return to the top of a While loop and re-evaluate the conditional.

See Also
While(), ExitWhile()

ControlPlayback() Plays a file, with the ability to fast forward and rewind the file

ControlPlayback(file[,skipms[,ff[,rew[,stop[,pause[,restart[,options]]]]]]])

Plays back a given file (without the file extension), while allowing the caller to move
forward and backward through the file by pressing ff and rew keys. By default, you can
use * and # to rewind and fast-forward the playback of the file, respectively.

The skipms option specifies how far forward or backward to jump in the file with each
press of ff or rew.

If stop is specified, the application will stop playback when stop is pressed.

A pause argument may also be specified, which when pressed will pause playback of
the file. Pressing pause again will continue the playback of the file.

If the restart parameter is specified, the specified key may be used to restart the play-
back of the file.

If the options parameter is set to j, and the file does not exist, the application jumps
to priority n+101, if present (where n is the current priority number).

The ControlPlayback() application sets a channel variable named CPLAYBACKSTATUS
upon completion. The CPLAYBACKSTATUS variable will be set to one of the following
values:

SUCCESS
USERSTOPPED
ERROR

; allow the caller to control the playback of this file
exten => 123,1,ControlPlayback(tt-monkeys|3000|#|*|5|0)

380 | Appendix B: Application Reference

See Also
Playback(), Background(), Dictate(),

DateTime() Says the date and/or time in the user-specified format

DateTime([unixtime[,timezone[,format]]])

If the unixtime parameter is specified, this application says that date and time. Other-
wise, it says the current date and time. If a timezone is specified, the date and time is
calculated according to that time zone. Otherwise, the time zone setting of the Asterisk
server is used. If the format parameter is specified, the date and time will be said ac-
cording to that format. (See the sample voicemail.conf file for more information on the
date and time format.)

; say the current date and time in several time zones
exten => 123,1,DateTime(,America/New_York)
exten => 123,2,DateTime(,America/Chicago)
exten => 123,3,DateTime(,America/Denver)
exten => 123,4,DateTime(,America/Los_Angeles)

DBdel() Deletes a key from the AstDB

DBdel(family/key)

Deletes the key specified by key from the key family named family in the AstDB.

exten => 123,1,DBput(test/name=John) ; add name to AstDB
exten => 123,2,DBget(NAME=test/name) ; retrieve name from AstDB
exten => 123,3,DBdel(test/name) ; delete from AstDB

This application is deprecated and the functionality has been replaced
with the DB_DELETE() function.

See Also
DB_DELETE(), DBdeltree(), DB

DBdeltree() Deletes a family or key tree from the AstDB

DBdeltree(family[/keytree])

Deletes the specified family or keytree from the AstDB.

; create a couple of entries in the AstDB
exten => 123,1,DBput(test/blue)
exten => 123,2,DBput(test/green)

DateTime() | 381

; now delete the key family named test
exten => 123,3,DBdeltree(test)

See Also
DB_DELETE(), DBdel(), DB

DeadAGI() Executes an AGI-compliant script on a dead (hung-up) channel

DeadAGI(program,args)

Executes an AGI-compliant program on a dead (hung-up) channel. AGI allows Asterisk
to launch external programs written in almost any language to control a telephony
channel, play audio, read DTMF digits, and so on by communicating with the AGI
protocol on STDIN and STDOUT. The arguments specified by args will be passed to the
program.

This application has been written specifically for dead channels, as the normal AGI
interface doesn’t work correctly if the channel has been hung up.

Use the show agi command on the command-line interface to list all of the available
AGI commands.

exten => h,1,DeadAGI(agi-test)

See Also
AGI(), FastAGI()

Dial() Attempts to connect channels

Dial(tech/username:password@hostname/extension[&tech2/peer2...]
 [,ring-timeout[,flags[,URL]]])

Allows you to connect together all of the various channel types.* Dial() is the most
important application in Asterisk; you’ll want to read through this section a few times.

Any valid channel type (such as SIP, IAX2, H.323, MGCP, Local, or Zap) is acceptable
to Dial(), but the parameters that need to be passed to each channel will depend on
the information the channel type needs to do its job. For example, a SIP channel will
need a network address and user to connect to, whereas a Zap channel is going to want
some sort of phone number.

When you specify a channel type that is network-based, you can pass the destination
host (name or IP address), username, password, and remote extension as part of the

* The fact that Asterisk will happily connect IAX, SIP, H.323, Skinny, PRI, FX(O/S), and anything else is
amazing, but possibly the most amazing of all is the Local channel. By allowing a single Dial() command to
connect to multiple Local channels, one Dial() event can trigger a multitude of completely independent and
unique actions in other parts of the dialplan. The power of this concept is truly revolutionary and has to be
experienced to be believed.

382 | Appendix B: Application Reference

options to Dial(), or you can refer to the name of a channel entry in the appropri-
ate .conf file; all the required information will then need to be obtained from that file.
The username and password can be replaced with the name contained within square
brackets ([]) of the channel configuration file. The hostname is optional.

This is a valid Dial statement:

exten => s,1,Dial(SIP/sake:arigato@thathostoverthere.tld)

This is effectively identical:

exten => s,1,Dial(SIP/some_SIP_friend)

but will work only if there is a channel defined in sip.conf as [some_SIP_friend], whose
channel definition contains fromuser=sake, password=arigato, and host=thathostover
there.tld.

An extension number is often attached after the address information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500)

This asks the far end to connect the call to extension 500 in the context in which the
channel arrived. The extension is not required by Dial(), as the information in the
remote end’s channel configuration file may be used, or the remote server will pass the
call to the s extension in the context in which the call came in. Ultimately, the far end
controls what happens to the call; you can only request a specific treatment.

If no ring-timeout is specified, the channel will ring indefinitely. This is not always a
bad thing, so don’t feel you need to set it; just be aware that “indefinitely” could mean
a very long time. ring-timeout is specified in seconds. The ring timeout always follows
the addressing information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,ring-timeout)

Much of the power of the Dial() application is in the flags. These are assigned following
the addressing and timeout information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,60,flags)

If you don’t have a timeout specified, and you want to assign flags, you
must still assign a spot for the timeout. You do this by adding an extra
comma in the spot where the timeout would normally go, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,,flags)

The valid flags that may be used with the Dial() application are:

A(x)
Plays an announcement to the called party; x is the filename of the sound file to
play as the announcement.

Dial() | 383

C
Resets the Call Detail Record for the call. Since the CDR time is set to when you
Answer() the call, you may wish to reset the CDR so the end user is not billed for
the time prior to the Dial() application being invoked.

d
Allows the user to dial a one-digit extension while waiting for a call to be answered.
The call will then exit to that extension (either in the current context, if it exists,
or in the context specified by the EXITCONTEXT variable).

D([called][: calling])
Sends DTMF digits after the call has been answered, but before the call is bridged.
The called parameter is passed to the called party, and the calling parameter is
passed to the calling party. Either parameter may be used individually.

f
Forces the Caller ID of the calling party to be set as the extension associated with
the channel using a dialplan hint. This is often used when a provider doesn’t allow
the Caller ID to be set to anything other than a number that is assigned to you. For
example, if you had a PRI, you would use the f flag to override any Caller ID set
locally on a SIP phone.

g
Execution of the dialplan goes on in the current context if the destination channel
hangs up.

G(context ^ extension ^ priority)
When the call is answered, the calling party is transferred to the specified priority
and the called party to the specified priority+1. You cannot use any additional
action post-answer options in conjunction with this option.

h
Allows the called user to hang up the channel by pressing the * key.

H
Allows the calling user to hang up the channel by pressing the * key.

i
Causes Asterisk to ignore any forwarding requests it may receive on this dial
attempt.

j
Causes Asterisk to jump to priority n+101 if all the requested channels were busy
(where n is the current priority).

L(x [: y][: z])
Limits the call to x milliseconds, warning when y milliseconds are left and repeating
every z milliseconds until the limit is reached. The x parameter is required; the y
and z parameters are optional. The following special variables may also be set to
provide additional control:

384 | Appendix B: Application Reference

LIMIT_PLAYAUDIO_CALLER=yes|no
Specifies whether to play sounds to the caller. Defaults to yes.

LIMIT_PLAYAUDIO_CALLEE=yes|no
Specifies whether to play sounds to the callee.

LIMIT_TIMEOUT_FILE= filename
Specifies which file to play when time is up.

LIMIT_CONNECT_FILE= filename
Specifies which file to play when call begins.

LIMIT_WARNING_FILE= filename
Specifies the file to play if the argument y is defined. Defaults to saying the
time remaining.

m[class]
Provides music to the calling party until the call is answered. You may also op-
tionally indicate the music-on-hold class, as defined in musiconhold.conf.

M(x [^arg])
Executes the macro x upon the connection of a call, optionally passing arguments
delimited by ^. The macro can also set the MACRO_RESULT channel variable to one of
the following values, to determine what should happen after the macro has
finished:

ABORT
Hangs up both legs of the call.

CONGESTION
Acts as if the line encountered congestion.

BUSY
Acts as if the line was busy. If the j option is specified, it sends the call to
priority n+101, where n is the current priority.

CONTINUE
Hangs up the called party and continues on in the dialplan.

GOTO:<context>^<extension>^<priority>
Transfers the call to the specified destination.

You cannot use any additional action post-answer options in con-
junction with this option. Also, PBX services are not run on the
called channel, so you will not be able to set timeouts via the TIME
OUT function in this macro.

n
This option is a modifier for the screen/privacy mode. It specifies that no intro-
ductions are to be saved in the priv-callerintros directory.

Dial() | 385

N
This option is a modifier for the screen/privacy mode. It tells Asterisk not to screen
the call if Caller ID is present.

o
Uses the Caller ID received on the inbound leg of the call for the Caller ID on the
outbound leg of the call. This is useful if you are accepting a call and then
forwarding it to another destination, but you wish to pass the Caller ID from the
inbound leg of the call instead of overwriting it with the local Caller ID settings.
This was the default behavior on Asterisk versions prior to 1.0.

O[x]
This option turns on Operator Services mode on a Zaptel channel. If this option is
used on a non-Zaptel interface, it will be ignored. When the destination answers
(presumably an operator services station), the originator no longer has control of
her line. She may hang up, but the switch will not release her line until the desti-
nation party (the operator) hangs up. Specified without an arg, or with 1 as an arg,
the originator hanging up will cause the phone to ring back immediately. With a
2 specified as the argument, when the “operator” flashes the trunk, it will ring the
caller’s phone.

p
This option enables screening mode. This is basically Privacy mode without
memory.

P[(x)]
Sets the privacy mode, optionally specifying x as the family/key value in the local
AstDB database. This option is useful for accepting calls based on a blacklist (ex-
plicitly denying calls from listed numbers) or whitelist (explicitly accepting calls
from listed numbers). See also LookupBlacklist().

r
Indicates ringing to the calling party, without passing any audio until the call is
answered. This flag is not normally required to indicate ringing, as Asterisk will
signal ringing if a channel is actually being called.

S(x)
Hangs up the call x seconds after the called party has answered the call.

t
Permits the called party to transfer a call by pressing the # key. Please note that if
this option is used, reinvites are disabled, as Asterisk needs to monitor the call to
detect when the called party presses the # key.

T
Permits the caller to transfer a connected call by pressing the # key. Again, note
that if this option is used, reinvites are disabled, as Asterisk needs to monitor the
call to detect when the caller presses the # key.

386 | Appendix B: Application Reference

w
Permits the called user to start and stop recording the call audio to disk by pressing
the automon sequence (as configured in features.conf). If the variable TOUCH_MONI
TOR is set, its value will be passed as the arguments to the Monitor() application
when recording is started. If it is not set, the default values of WAV||m are passed to
Monitor().

W
Permits the calling user to record the call audio to disk by pressing the automon
sequence (as configured in features.conf).

k
Permits the called party to park the call by sending the DTMF sequence defined
for call parking in features.conf.

K
Permits the calling party to park the call by sending the DTMF sequence defined
for call parking in features.conf.

If the URL argument is included, that URL will be sent to the channel (if supported).

If the channel variable named OUTBOUND_GROUP is set before Dial() is
called, all peer channels created by this application will be put in to that
call group. In the following example, all peer channels created by the
Dial() application will be part of the test call group:

; using OUTBOUND_GROUP
exten => 123,1,Set(OUTBOUND_GROUP=test)
exten => 123,n,Dial(IAX2/anotherbox/12345)

If the OUTBOUND_GROUP_ONCE variable is set, all peer channels created by
this application will be put in to that group. Unlike OUTBOUND_GROUP,
however, the variable will be unset after use.

The Dial() application sets the following variables upon exiting:

DIALEDTIME
The total time elapsed from execution of Dial() until completion.

ANSWEREDTIME
The total time elapsed during the call.

DIALSTATUS
The status of the call, set as one of the following values:

CHANUNAVAIL
The channel is unavailable.

CONGESTION
The channel returned a congestion signal, usually indicating that it was unable
to complete the connection.

Dial() | 387

NOANSWER
The channel did not answer in the time indicated by the ring-timeout option.

BUSY
The dialed channel is currently busy.

ANSWER
The channel answered the call.

CANCEL
The call was cancelled.

DONTCALL
The call was set to DONTCALL by the screening or privacy options.

TORTURE
The call was set to TORTURE by the screening or privacy options.

INVALIDARGS
Invalid arguments were passed to the Dial() application.

; dial a seven-digit number on Zap channel 4
exten => 123,1,Dial(Zap/4/2317154)

; dial the same number, but this time only have it ring for 10 seconds
; before continuing on with the dialplan
exten => 124,1,Dial(Zap/4/2317154,10)
exten => 124,2,Playback(im-sorry)
exten => 124,3,Hangup()

; dial the same number, but this time with no timeout, and using the
; t, T, and m flags
exten => 125,1,Dial(Zap/4/2317154,,tTm)

; dial extension 500 at a remote host (over the IAX protocol), using
; the specified username and password
exten => 126,1,Dial(IAX2/username:password@remotehost/500)

; dial a number, but limit the call to 5 minutes (300,000 milliseconds)
; start warning the caller 4 minutes (240,000 milliseconds) in to the call,
; and repeat the warning every 30 seconds (30,000 milliseconds)
exten => 127,1,Dial(Zap/4/2317154,,L[300000:240000:30000])

See Also
RetryDial()

Dictate() Virtual dictation machine

Dictate([base_dir[,filename]])

This application allows the recording and playback of files, similar to a traditional
dictation machine. The base_dir parameter specifies the directory in which Asterisk

388 | Appendix B: Application Reference

will write the recorded files. If not specified, it defaults to the dictate subdirectory of
the Asterisk spool directory (as defined in asterisk.conf).

If the filename parameter is specified, it will be used when the file is written. If not
specified, Asterisk will prompt the caller for a numeric filename for the file.

Asterisk writes the files in raw, headerless, signed-linear format. If you’d
like to convert the file to another format, you can use an outside utility
such as sox, or use the file convert command from the Asterisk com-
mand-line interface.

The Dictate() application has two main modes: recording mode and playback mode.
The caller can press the 1 key to switch between these modes. In both modes, the 0 key
can be used to get help. The * key is used to pause or unpause the recording or playback.
The # key allows the caller to choose a new filename.

In recording mode, the 8 key can be used to erase the entire recording and start over.

In playback mode, the 7 key rewinds the recording a few frames, and the 8 key forwards
the recording a few frames. The 2 key is used to toggle the playback speed (either 1x,
2x, 3x, or 4x).

; begin dictating, and save the files in the /tmp/dictate directory
exten => 123,1,Dictate(/tmp/dictate)

See Also
Playback(), Background(), ControlPlayback(),

Directory() Provides a dialable directory of extensions

Directory(vm-context[,dial-context[,options]])

Presents users with a directory of extensions from which they may select by name. The
list of names and extensions is discovered from voicemail.conf. The vm-context argu-
ment is required; it specifies the context of voicemail.conf to use.

The dial-context argument is the context to use for dialing the users, and it defaults
to vm-context if unspecified. If the options argument is set to f, Asterisk will find a
directory match based on the first name in voicemail.conf instead of the last name. If
the e option is specified, Asterisk will read the extension of the directory match as well
as the person’s name.

If the user enters 0 (zero) and there exists an extension o (the lowercase letter o) in the
current context, the call control will go to that extension. Entering * will exit similarly,
but to the a extension, much like Voicemail()’s behavior.

Directory() | 389

exten => *,1,Directory(default,incoming)
exten => #,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming,fe)

See Also
voicemail.conf

DISA() Direct Inward System Access: allows inbound callers to make outbound calls

DISA(password[,context[,callerid[,mailbox[@vmcontext]]]])
DISA(password-file[,callerid[,mailbox[@vmcontext]]])

Allows outside callers to obtain an “internal” system dial tone and to place calls from
it as if they were placing calls from within the switch. The user is given a dial tone, after
which she should enter her passcode, followed by #. If the passcode is correct, the user
is then given a system dial tone on which a call may be placed.

Obviously, this type of access has serious security implications, and
extreme care must be taken not to compromise the security of your
phone system.

The password argument is a numeric passcode that the user must enter to be able to
make outbound calls. Using this syntax, all callers to this extension will use the same
password. To allow users to use DISA() without a password, use the string no-pass
word instead of the password.

The context argument specifies the context in which the user will be dialing. If no
context is specified, the DISA() application defaults the context to disa.

The callerid argument specifies a new Caller ID string that will be used on the out-
bound call.

The mailbox argument is the mailbox number (and optional voicemail context, vmcon-
text) of a voicemail box. The caller will hear a stuttered dial tone if there are any new
messages in the specified voicemail box.

Additionally, you may use an alternate syntax and pass the name of a global password
file instead of the password and context arguments. On each line, the file may contain
either a passcode, or a passcode and context, separated by a pipe character (|). If a
context is not specified, the application defaults to the context named disa.

If the user login is successful, the application parses the dialed number in the specified
context:

; allow outside callers to call 1-800 numbers, as long
; as they know the passcode. Set their Caller IDs to make
; it appear that they are dialing from within the company
[incoming]
exten => 123,1,DISA(4569,disa,"Company ABC" <(234) 123-4567>)

390 | Appendix B: Application Reference

[disa]
exten => _1800NXXXXXX,1,Dial(Zap/4/${EXTEN})

See Also
Authenticate(), VMAuthenticate()

DumpChan() Dumps information about the calling channel to the console

DumpChan([min_verbose_level])

Displays information about the calling channel, as well as a listing of all channel vari-
ables. If min_verbose_level is specified, output is displayed only when the verbosity
level is currently set to that number or greater.

If you have many channel variables set, DumpChan() will show only the
first 1,024 characters of your channel variable listing.

exten => s,1,Answer()
exten => s,2,DumpChan()
exten => s,3,Background(enter-ext-of-person)

See Also
NoOp(), Verbose()

EAGI()

See AGI().

Echo() Echoes inbound audio back to the caller

Echo()

Echoes audio read from the channel back to the channel. This application is often used
to test the latency and voice quality of a VoIP link. The caller may press the # key to exit.

exten => 123,1,Echo()
exten => 123,2,Playback(vm-goodbye)

See Also
Milliwatt()

DumpChan() | 391

EndWhile() Ends a while loop

EndWhile()

Returns to the previously called While() application. See While() for a complete de-
scription of how to use a while loop.

exten => 123,1,Set(COUNT=1)
exten => 123,2,While($[${COUNT} < 5])
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} + 1]
exten => 123,5,EndWhile()

See Also
While(), ExitWhile(), GotoIf()

Exec() Executes an Asterisk application dynamically

Exec(appname(arguments))

Allows an arbitrary application to be invoked even when not hard-coded in to the
dialplan. Exits exactly the same as the underlying application, or abnormally, if the
underlying application cannot be found. The arguments are passed to the called
application.

This application allows you to dynamically call applications by pulling them from a
database or other external source.

exten => 123,1,Set(MYAPP=SayDigits(12345))
exten => 123,2,Exec(${MYAPP})

See Also
The EVAL, TryExec(), ExecIf()

ExecIf() Conditionally executes an Asterisk application

ExecIf(expression,application,arguments)

If expression is true, executes the given application with arguments as its arguments,
and returns the result. For more information on Asterisk expressions, see Chapter 6 or
the channelvariables.txt file in the doc/ subdirectory of the Asterisk source.

If expression is false, execution continues at the next priority.

exten => 123,1,ExecIf($[${CALLERIDNUM} = 101],SayDigits,12345)
exten => 123,2,SayDigits(6789)

392 | Appendix B: Application Reference

See Also
The EVAL, Exec(), TryExec()

ExitWhile() Exit from a While() loop, whether or not the conditional has been satisfied

ExitWhile()

Will cause a While() loop to exit whether or not the conditional expression has been
satisfied.

exten => 123,1,Set(COUNT=1)
exten => 123,n,While($[${COUNT} < 5])
exten => 123,n,GotoIf($[${COUNT} != 3]?continue)
exten => 123,n,ExitWhile()
exten => 123,n(continue),NoOp()
exten => 123,n,SayNumber(${COUNT})
exten => 123,n,Set(COUNT=$[${COUNT} + 1])
exten => 123,n,EndWhile()

See Also
While(), ContinueWhile(), EndWhile()

ExtenSpy() Listen to the audio on an extension, and optionally whisper to the calling channel

ExtenSpy([exten@context[,options]])

This application is used to listen to the audio going to and from an Asterisk channel.
Only channels created by outgoing calls for the specified extension will be selected for
spying.

While a channel is being spied upon, the following actions may be performed:

• Dialing # cycles the volume level

• Dialing * will cause the application to spy on the next available channel

The options parameter may contain zero or more of the following options:

b
Only spy on channels that are involved in a bridged call.

g(group)
Only spy on channels that contain a channel variable named SPYGROUP, which
should contain group in an optional colon-delimited list.

q
Quiet mode. Tells the application not to beep or read the selected channel’s name
when spying begins.

ExitWhile() | 393

r[(basename)]
Records the channel audio to the monitor spool directory (usually /var/spool/aster
isk/monitor). An optional basename set the base filename of the recordings, which
defaults to chanspy.

v([value])
Adjusts the volume of the audio being listened to. The value must be in the range
of 4 to -4. A negative value will make the volume quieter, while a positive value
will make it louder.

w
Whisper mode. This allows the spying channel to talk to the spied-upon channel,
without any other bridged channel being able to hear the audio.

W
Private whisper mode. This enables the spying channel to speak to the spied-upon
channel without being able to hear the audio from the spied-upon channel.

; Spy on channels created by extension 125 in the lab context
 exten => 123,1,ExtenSpy(125@lab,w)

See Also
ChanSpy()

ExternalIVR() Interfaces with an external IVR application

ExternalIVR(command[,arg1[,arg2...]])

Forks a process to run the specified ExternalIVR-compliant command, and starts a gen-
erator on the channel. The generator’s play list is controlled by the external application,
which can add and clear entries via simple commands issued over STDOUT. The external
application will receive notifications of all DTMF events received on the channel, and
notification if the channel is hung up. The application will not be forcibly terminated
when the channel is hung up.

See doc/externalivr.txt in the Asterisk source code for the specification of the External-
IVR interface.

; Run a test external IVR program, passing an argument
 exten => 123,1,ExternalIVR(test_program,${MYARGUMENT})

See Also
AGI()

FastAGI() Executes an AGI-compliant script across a network connection

FastAGI(agi://hostname[:port][/script],args)

394 | Appendix B: Application Reference

Executes an AGI-compliant program across the network. This application is very sim-
ilar to AGI(), except that it calls a specially written FastAGI script across a network
connection. The main purposes for using FastAGI are to offload CPU-intensive AGI
scripts to remote servers and to help reduce AGI script startup times (the FastAGI
program is already running before Asterisk connects to it).

FastAGI() tries to connect directly to the running FastAGI program, which must already
be listening for connections on the specified port on the server specified by hostname.
If port is not specified, it defaults to port 4573. If script is specified, it is passed to the
FastAGI program as the agi_network_script variable. The arguments specified by
args will be passed to the program.

See agi/fastagi-test in the Asterisk source directory for a sample FastAGI
script. This should serve as a good roadmap for writing your own
FastAGI programs.

Returns -1 if the application requested a hangup, or 0 on a non-hangup exit.

; connect to the sample fastagi-test program, which must already be running
; on the local machine
exten => 123,1,Answer()
exten => 123,2,FastAGI(agi://localhost)

; connect to a FastAGI script on a host named "calvin" on port 8000, and
pass along
; a script name of "testing", with the argument "12345"
exten => 124,1,Answer()
exten => 124,2,FastAGI(agi://calvin:8000/testing,12345)

See Also
AGI(), DeadAGI()

Festival() Uses the Festival text-to-speech engine to read text to the caller

Festival(text[,intkeys])

Connects to the locally running Festival server, sends it the text specified by text, and
plays the resulting sound file back to the user. This application allows the caller to press
a key (specified by intkeys) to immediately stop the playback and return the value of
intkeys. If intkeys is set to any, Festival() will send control of the channel to the
extension entered by the user.

See Chapter 14 for more in-depth information on using Festival with Asterisk and the
README.festival file located in the contrib/ subdirectory of the Asterisk source.

You must start the Festival server before starting Asterisk, and you must use the
Answer() application to answer the channel before calling Festival().

Festival() | 395

exten => 123,1,Answer()
exten => 123,2,Festival('This is sample speech from Festival',#)

Flash() Flashes a Zap trunk

Flash()

Sends a flash on a Zap channel. This is only a hack for people who want to perform
transfers and other actions that require a flash via an AGI script. It is generally quite
useless otherwise.

Returns 0 on success, or -1 if this is not a Zap trunk.

exten => 123,1,Flash()

FollowMe() Find me/follow me functionality

FollowMe(followmeid[,options])

This application attempts to locate the callee by dialing many different destinations
either serially or in parallel, as defined in followme.conf.

The followmeid identifies the section of followme.conf that specifies how this callee
should be found. The options parameter can be zero or more of the following:

s
Playback the incoming status message prior to starting the follow-me step(s)

a
Record the caller’s name so it can be announced to the callee on each step

n
Playback the unreachable status message if we’ve run out of steps to reach the callee
or the callee has elected not to be reachable

exten => 123,1,Answer()
exten => 123,2,FollowMe(123,san)
exten => 123,3,VoiceMail(123,u)

ForkCDR() Creates an additional CDR from the current call

ForkCDR([options])

Creates an additional Call Detail Record for the remainder of the current call.

This application is often used in calling-card applications to distinguish the inbound
call (the original CDR) from the billable call time (the second CDR).

If the v option is specified, all the CDR variables from the current record will be inherited
by the new CDR record.

396 | Appendix B: Application Reference

exten => 123,1,Answer()
exten => 123,2,ForkCDR(v)
exten => 123,3,Playback(tt-monkeys)
exten => 123,4,Hangup()

See Also
CDR function, NoCDR(), ResetCDR()

GetCPEID() Gets the CPE ID from an ADSI-capable telephone

GetCPEID()

Obtains the CPE ID and other information and displays it on the Asterisk console. This
information is often needed in order to properly set up zapata.conf for on-hook oper-
ations with ADSI-capable telephones.

Returns -1 on hangup only.

; use this extension to get the necessary information to set up ADSI
; telephones
exten => 123,1,GetCPEID()

See Also
ADSIProg(), adsi.conf, zapata.conf

Gosub() Branches to a new location, saving the return address

Gosub(context,extension,priority)
Gosub(extension,priority)
Gosub(priority)

Branches to the location specified, similar to Goto(), except that Gosub() saves the return
location, to be returned to later by invoking Return().

See Also
GosubIf(), Macro(), Goto(), Return(), StackPop()

GosubIf() Conditionally branches to a new location, saving the return address

GosubIf(condition?labeliftrue:labeliffalse)

Based upon the evaluation of condition, Gosub will branch execution either to label-
iftrue() or labeliffalse. You may return to this same place in the dialplan by later
calling Return.

GetCPEID() | 397

The word label is often used to denote that you may specify a prior-
ity; an extension and a priority; or a context, an extension and a
priority. We use the word label to avoid having to spell out all of the
possible options each time.

; Specify a default outgoing Caller*ID if one is not set by a specific channel.
exten => _NXXXXXX,1,GosubIf($["${CALLERID(num)}" = ""]?setcallerid,1)
exten => _NXXXXXX,n,Dial(Zap/g1/${EXTEN})
exten => _1NXXNXXXXXX,1,GosubIf($["${CALLERID(num)}" = ""]?setcallerid,1)
exten => _1NXXNXXXXXX,n,Dial(Zap/g1/${EXTEN})
exten => setcallerid,1,Set(CALLERID(num)=6152345678)
exten => setcallerid,n,Return

See Also
Gosub(), Return(), MacroIf(), IF, GotoIf(),

Goto() Sends the call to the specified priority, extension, and context

Goto([[context,]extension,]priority)
Goto(named_priority)

Sends control of the current channel to the specified priority, optionally setting the
destination extension and context.

Optionally, you can use the application to go to the named priority specified by the
named_priority argument. Named priorities work only within the current extension.

exten => 123,1,Answer()
exten => 123,2,Set(COUNT=1)
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} + 1])
exten => 123,5,Goto(3)

; same as above, but using a named priority
exten => 124,1,Answer()
exten => 124,2,Set(COUNT=1)
exten => 124,3(repeat),SayNumber(${COUNT})
exten => 124,4,Set(COUNT=$[${COUNT} + 1])
exten => 124,5,Goto(repeat)

See Also
GotoIf(), GotoIfTime(), Gosub(), Macro()

GotoIf() Conditionally goes to the specified priority

GotoIf(condition?label1:label2)

398 | Appendix B: Application Reference

Sends the call to label1 if condition is true or to label2 if condition is false. Either
label1 or label2 may be omitted (in that case, we just don’t take the particular branch),
but not both.

A label can be any one of the following:

• A priority, such as 10

• An extension and a priority, such as 123,10

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Each type of label is explained in this example:

[globals]
; set TEST to something else besides 101 to see what GotoIf()
; does when the condition is false
TEST=101
;
[incoming]
; set a variable
; go to priority 10 if ${TEST} is 101, otherwise go to priority 20
exten => 123,1,GotoIf($[${TEST} = 101]?10:20)
exten => 123,10,Playback(the-monkeys-twice)
exten => 123,20,Playback(tt-somethingwrong)
;
; same thing as above, but this time we'll specify an extension
; and a priority for each label
exten => 124,1,GotoIf($[${TEST} = 101]?123,10:123,20)
;
; same thing as above, but these labels have a context, extension, and
; priority
exten => 125,1,GotoIf($[${TEST} = 101]?incoming,123,10:incoming,123,20)
;
; same thing as above, but this time we'll go to named priorities
exten => 126,1,GotoIf($[${TEST} = 101]?passed:failed)
exten => 126,15(passed),Playback(the-monkeys-twice)
exten => 126,25(failed),Playback(the-monkeys-twice)

See Also
Goto(), GotoIfTime(), GosubIf(), MacroIf()

GotoIfTime() Conditionally branches, depending on the time and day

GotoIfTime(times,days_of_week,days_of_month,months?label)

Branches to the specified extension, if the current time matches the specified time. Each
of the elements may be specified either as * (for always) or as a range.

The arguments to this application are:

GotoIfTime() | 399

times
Time ranges, in 24-hour format

days_of_week
Days of the week (mon, tue, wed, thu, fri, sat, sun)

days_of_month
Days of the month (1-31)

months
Months (jan, feb, mar, apr, etc.)

; If we're open, then go to the open context
; We're open from 9am to 6pm Monday through Friday
exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)
;
; We're also late on Tuesday and Thursday
exten => s,n,GotoIfTime(09:00-19:59,tue&thru,*,*?open,s,1)
;
; We're also open from 9am to noon on Saturday
exten => s,n,GotoIfTime(09:00-11:59,sat,*,*?open,s,1)
;
; Otherwise, we're closed
exten => s,n,Goto(closed,s,1)

See Also
GotoIf(), IFTIME

Hangup() Unconditionally hangs up the current channel

Hangup(cause-code)

Unconditionally hangs up the current channel. If supported on the channel, cause-
code will be specified to the remote end as the reason for ending the call. cause-code
defaults to 16 (normal call clearing). Acceptable values for cause-code are the following:

16
Normal call clearing

17
Busy

19
No answer

21
Rejected

34
Congestion

exten => 123,1,Answer()
exten => 123,2,Playback(im-sorry)
exten => 123,3,Hangup()

400 | Appendix B: Application Reference

See Also
Answer(), Busy(), Congestion()

HasNewVoicemail() Checks to see if there is new voicemail in the indicated voicemail box

HasNewVoicemail(vmbox[@context][:folder][,varname[,options]])

The application has been deprecated in favor of the VMCOUNT() function.

Similar to HasVoicemail(). This application sets the VMSTATUS to 1 or 0, to indicate
whether there is new (unheard) voicemail in the voicemail box indicated by vmbox. The
context argument corresponds to the voicemail context, and folder corresponds to a
voicemail folder. If the voicemail folder is not specified, it defaults to the INBOX folder.
If the varname argument is present, HasNewVoicemail() assigns the number of messages
in the specified folder to that variable.

If the options argument is set to the letter j, then Asterisk will send the call to priority n
+101 if there is new voicemail.

; check to see if there's unheard voicemail in INBOX of mailbox 123
; in the default voicemail context
exten => 123,1,Answer()
exten => 123,n,HasNewVoicemail(123@default)
exten => 123,n,GotoIf($[${HASVMSTATUS} > 0]?newvm)
exten => 123,n,Playback(vm-youhave)
exten => 123,n,Playback(vm-no)
exten => 123,n,Playback(vm-messages)
exten => 123,n,Goto(done)
exten => 123,n(newvm),Playback(vm-youhave)
exten => 123,n,SayNumber(${HASVMSTATUS})
exten => 123,n,Playback(vm-INBOX)
exten => 123,n,Playback(vm-messages)
exten => 123,n(done),NoOp()

See Also
HasVoicemail(), MailboxExists(), VMCOUNT

HasVoicemail() Indicates whether there is voicemail in the indicated voicemail box

HasVoicemail(vmbox[@context][:folder][|varname[,options]])

Sets the HASVMSTATUS channel variable to indicate whether there is voicemail in the voi-
cemail box indicated by vmbox. The context argument corresponds to the voicemail
context, and folder corresponds to a voicemail folder. If the folder is not specified, it

HasNewVoicemail() | 401

defaults to the INBOX folder. If the varname argument is passed, this application assigns
the number of messages in the specified folder to that variable.

If the options argument is set to the letter j, then Asterisk will send the call to priority
n+101 if there is voicemail in the specified folder.

; check to see if there's any voicemail at all in INBOX of mailbox 123
; in the default voicemail context
exten => 123,1,Answer()
exten => 123,2,HasVoicemail(123@default,COUNT)
exten => 123,3,GotoIf(${VMSTATUS}?1000)
exten => 123,4,Playback(vm-youhave)
exten => 123,5,Playback(vm-no)
exten => 123,6,Playback(vm-messages)
exten => 123,1000,Playback(vm-youhave)
exten => 123,1001,SayNumber($COUNT)
exten => 123,1002,Playback(vm-messages)

See Also
The HasVoicemail(), MailboxExists()

IAX2Provision() Provisions a calling IAXy device

IAX2Provision([template])

Provisions a calling IAXy device (assuming that the calling entity is an IAXy) with the
given template. If no template is specified, the default template is used. IAXy provi-
sioning templates are defined in the iaxprov.conf configuration file.

; provision IAXy devices with the default template when they dial this extension
exten => 123,1,IAX2Provision(default)

ICES() Streams audio to an Icecast server

ICES([config])

Streams audio to an Icecast (or compatible) server using the ices application.

See contrib/asterisk-ices.xml for a sample config file.

exten => 123,1,Answer()
exten => 123,n,ICES(/tmp/my-ices-config.xml)

ImportVar() Sets a variable based on a channel variable from a different channel

ImportVar(newvar=channel,variable)

Sets variable newvar to variable as evaluated on the specified channel (instead of the
current channel). If newvar is prefixed with _, single inheritance is assumed. If prefixed
with _ _, infinite inheritance is assumed.

402 | Appendix B: Application Reference

; read the Caller ID information from channel Zap/1
exten => 123,1,Answer()
exten => 123,n,ImportVar(cidinfo=Zap/1,CALLERID(all))

See Also
Set()

Log() Logs a custom message from the dialplan

Log(level|message)

Sends a custom message to the logfiles from the dialplan. This application can be useful
to log an exceptional condition to the logfiles, for later examination. Level may be one
of the following:

DEBUG
Debugging message. This is generally not logged on a production system.

NOTICE
An informational message.

WARNING
A condition that may be serious, but is not a definite error.

ERROR
Something went terribly wrong.

See Also
NoOp(), Verbose()

LookupBlacklist() Performs a lookup of a Caller ID name/number from the blacklist database

LookupBlacklist([options])

This application has been deprecated in favor of GotoIf(${BLACKLIST
()}?context|extension|priority)

Looks up the Caller ID number on the active channel in the Asterisk database (family
blacklist). If the Caller ID number is found in the blacklist, Asterisk sets the LOOKUPBL
STATUS channel variable to FOUND. Otherwise, the variable is set to NOTFOUND.

If the j option is used in the options parameter, and the number is found, and if there
exists a priority n+101 (where n is the priority of the current instance), the channel will
be set up to continue at that priority level.

Log() | 403

To add to the blacklist from the Asterisk CLI, type database put blacklist name /
number.

; send blacklisted numbers to an endless loop
; otherwise, dial the number defined by the variable ${JOHN}
exten => 123,1,Answer()
exten => s,2,LookupBlacklist()
 ; if the Caller ID number is found in the blacklist, jump to the "goaway" label
 exten => 123,n,GotoIf($["${LOOKUPBLSTATUS}" = "FOUND"]?goaway)
 ; otherwise, go ahead and call John
exten => 123,n,Dial(${JOHN})
exten => 123,n(goaway),Busy(5)
exten => 123,n,Hangup()

See Also
BLACKLIST

LookupCIDName() Performs a lookup of a Caller ID name from the AstDB

LookupCIDName()

This application has been deprecated in favor of Set(CALLERID(name)=
${DB(cidname/${CALLERID(num)})})

Uses the Caller ID number on the active channel to retrieve the Caller ID name from
the AstDB (family cidname). This application does nothing if no Caller ID was received
on the channel. This is useful if you do not subscribe to Caller ID name delivery, or if
you want to change the Caller ID names on some incoming calls.

; look up the Caller ID information from the AstDB, and pass it along
; to Jane's phone
exten => 123,1,Answer()
exten => 123,2,LookupCIDName()
exten => 123,3,Dial(SIP/Jane)

See Also
DB

Macro() Calls a previously defined dialplan macro

Macro(macroname,arg1,arg2...)

Executes a macro defined in the context named macro- macroname, jumping to the s
extension of that context and executing each step, then returning when the steps end.

404 | Appendix B: Application Reference

The calling extension, context, and priority are stored in ${MACRO_EXTEN}, ${MACRO_CON
TEXT}, and ${MACRO_PRIORITY}, respectively. Arguments arg1, arg2, etc. become $
{ARG1}, ${ARG2}, etc. in the macro context.

Macro() exits abnormally if any step in the macro exited abnormally or indicated a
hangup. If ${MACRO_OFFSET} is set at termination, this application will attempt to con-
tinue at priority MACRO_OFFSET+n+1 if such a step exists, and at n+1 otherwise. (In both
cases, n stands for the current priority.)

If you call the Goto() application inside of the macro to specify a context outside of the
currently executing macro, the macro will terminate and control will go to the desti-
nation of the Goto().

; define a macro to count down from the specified value
[macro-countdown]
exten => s,1,Set(COUNT=${ARG1})
exten => s,2,While($[${COUNT} > 0])
exten => s,3,SayNumber(${COUNT})
exten => s,4,Set(COUNT=$[${COUNT} - 1])
exten => s,5,EndWhile()

; call our macro with two different values
[example]
exten => 123,1,Macro(countdown,10)
exten => 124,1,Macro(countdown,5)

While a macro is being executed, it becomes the current context. This
means that if a hangup occurs, for instance, the macro will be searched
for an h extension, not the context from which the macro was called.
So, make sure to define all appropriate extensions in your macro (you
can use catch in AEL).

Because of the way Macro() is implemented (it executes the priorities
contained within it via sub-engine), and a fixed per-thread memory
stack allowance, macros are limited to seven levels of nesting (macro
calling macro calling macro, etc.); It may be possible that stack-intensive
applications in deeply nested macros could cause Asterisk to crash ear-
lier than this limit.

See Also
MacroExit(), Goto(), Gosub(), Chapter 6

MacroExclusive() Runs a macro, exclusive of any other channel

MacroExclusive(macroname[,arguments])

MacroExclusive() | 405

Runs the specified macro, but ensures that only one channel is running inside that
macro at one time. If another channel is already executing that macro, then
MacroExclusive() will pause the channel until that channel has exited the macro.

See Also
Macro()

MacroExit() Explicitly returns from a macro

MacroExit()

Explicitly return from a macro. Normally, Macro() automatically exits when it runs out
of priorities. MacroExit() provides a method by which a macro may be terminated early.

See Also
Macro()

MacroIf() Conditionally calls a previously defined macro

MacroIf(condition?macroiftrue,args:macroiffalse,args)

Evaluates condition, then executes one of either macroiftrue or macroiffalse. Once
beyond the condition, however, note that MacroIf() behaves identically to Macro().

; define a macro to count down from the specified value
[macro-countdown]
exten => s,1,Set(COUNT=${ARG1})
exten => s,2,While($[${COUNT} > 0])
exten => s,3,SayNumber(${COUNT})
exten => s,4,Set(COUNT=$[${COUNT} - 1])
exten => s,5,EndWhile()

; define a macro to count up to the specified value
[macro-countup]
exten => s,1,Set(COUNT=1)
exten => s,2,While($[${COUNT} < ${ARG1}])
exten => s,3,SayNumber(${COUNT})
exten => s,4,Set(COUNT=$[${COUNT} + 1])
exten => s,5,EndWhile()

; call our macro with two different values
[example]
exten => 123,1,MacroIf($[${foo} < 5]?countup,${foo}:countdown,${foo})

See Also
GotoIf(), GosubIf(), IF, Chapter 6

406 | Appendix B: Application Reference

MailboxExists() Conditionally branches if the specified voicemail box exists

MailboxExists(mailbox[@context[,options]])

Checks to see if the mailbox specified by the mailbox argument exists in the Asterisk
voicemail system. You may pass a voicemail context if the mailbox is not in the
default voicemail context.

This application sets a channel variable named VMBOXEXISTSSTATUS. If the mailbox exists,
it will be set to SUCCESS. Otherwise, it will be set to FAILED.

If the j option is passed as the options parameter, the application will jump to priority n
+101 (where n is the current priority) if the voicemail box specified by the mailbox
argument exists.

exten => 123,1,Answer()
exten => 123,n,Set(MYMAILBOX=123@default)
exten => 123,n,MailboxExists(${MYMAILBOX})
exten => 123,n,GotoIf($["${VMBOXEXISTSSTATUS}" = "SUCCESS"]?exists)
exten => 123,n,Playback(im-sorry)
exten => 123,n,Hangup()
exten => 123,n(exists),Voicemail(u123)

See Also
HasVoicemail(), HasNewVoicemail()

MeetMe() Puts the caller in to a MeetMe conference bridge

MeetMe([confno[,options[,PIN]]])

Places the caller in to the audio conference bridge specified by the confno argument. If
the conference number is omitted, the user will be prompted to enter one.

If the PIN argument is passed, the caller must enter that PIN number to successfully
enter the conference.

The options string may contain zero or more of the characters in the following list:

a
Sets admin mode.

A
Sets marked mode.

b
Runs the AGI script specified in ${MEETME_AGI_BACKGROUND}; default:
conf-background.agi. (Note: this does not work with non-Zap channels in the same
conference.)

c
Announces user(s) count upon joining a conference.

MailboxExists() | 407

d
Dynamically adds conference.

D
Dynamically adds conference, prompting for a PIN.

e
Selects an empty conference.

E
Selects an empty Pinless conference.

F
Passes DTMF digits through the conference to other participants. DTMF digits
used to enable conference features will not be passed through.

i
Announces user join/leave with review.

I
Announces user join/leave without review.

l
Sets listen only mode (listen only, no talking).

m
Sets the participant as initially muted.

M
Enables music on hold when the conference has a single caller.

o
Turns on talker optimization. With talker optimization, Asterisk treats talkers who
aren’t speaking as being muted, meaning that no encoding is done on transmission
and that received audio that is not registered as talking is omitted, causing no
buildup in background noise.

p
Allows user to exit the conference by pressing #.

P
Always prompts for the PIN even if it is specified.

q
Sets quiet mode. In quiet mode, Asterisk won’t play sounds as conference partic-
ipants enter or leave.

r
Records conference (as ${MEETME_RECORDINGFILE} using format ${MEETME_RECORD
INGFORMAT}). The default filename is meetme-conf-rec-${CONFNO}-{UNIQUEID} and
the default format is .wav.

s
Presents the menu (user menu or admin menu, depending on whether the caller is
marked as an administrator) when * is received.

408 | Appendix B: Application Reference

t
Sets talk-only mode (talk only, no listening).

T
Sets talker detection. Asterisk will sends events on the Manager Interface identi-
fying the channel that is talking. The talker will also be identified on the output of
the meetme list CLI command.

w[(seconds)]
Waits for a marked admin to join the conference. If seconds is not specified, the
conference will wait indefinitely for the admin to join. If seconds is specified, the
conference will wait the specified number of seconds. If the admin still hasn’t
joined, the call will continue on with the next priority in the dialplan.

x
Closes the conference when the last marked user exits.

X
Allows user to exit the conference by entering a valid single-digit extension (set via
the variable ${MEETME_EXIT_CONTEXT}), or the number of an extension in the current
context if that variable is not defined.

1
Doesn’t play initial message when the first person joins the conference.

exten => 123,1,Answer()
; add the caller to conference number 501 with pin 1234
exten => 123,2,MeetMe(501,DpM,1234)

A suitable Zaptel timing interface must be installed for MeetMe con-
ferencing to work.

See Also
MeetMeAdmin(), MeetMeCount()

MeetMeAdmin() Performs MeetMe conference administration

MeetMeAdmin(confno,command[,user])

Runs the specified MeetMe administration command on the specified conference. On
some commands, you may specify the user on which to run the specified command.
The command may be one of the following:

e
Ejects the last user that joined.

k
Kicks the specified user out of the conference.

MeetMeAdmin() | 409

K
Kicks all users out of the conference.

l
Unlocks the conference.

L
Locks the conference.

m
Unmutes the specified user.

M
Mutes the specified user.

n
Unmutes the entire conference.

N
Mutes all non-admin participants in the conference.

r
Resets the volume settings for the specified user.

R
Resets the volume settings for all participants.

s
Lowers the speaking volume for the entire conference.

S
Raises the speaking volume for the entire conference.

t
Lowers the speaking volume for the specified user.

T
Raises the speaking volume for the specified user.

u
Lowers the listening volume for the specified user.

U
Raises the listening volume for the specified user.

v
Lowers the listening volume for the entire conference.

V
Raises the listening volume for the entire conference.

; mute conference 501
exten => 123,1,MeetMeAdmin(501,N)

; kick user 1234 from conference 501
exten => 124,1,MeetMeAdmin(501,k,1234)

410 | Appendix B: Application Reference

You can find a list of users in the conference by using the meetme list
command from the Asterisk CLI, or by using the Asterisk Manager
Interface.

See Also
MeetMe(), MeetMeCount()

MeetMeCount() Counts the number of participants in a MeetMe conference

MeetMeCount(confno[,variable])

Plays back the number of users in the MeetMe conference identified by confno. If a
variable is specified by the variable argument, playback will be skipped and the count
will be assigned to variable.

; count the number of users in conference 501, and assign that number
to ${COUNT}
exten => 123,1,MeetMeCount(501,COUNT)

See Also
MeetMe(), MeetMeAdmin()

Milliwatt() Generates a 1,000 Hz tone

Milliwatt()

This application generates a constant 1,000 Hz tone at 0 dbm (μlaw). This application
is often used for testing the audio properties of a particular channel.

; generate a 1000HZ tone
exten => 123,1,Milliwatt()

Please note that there is a service that the carriers use to test circuits for
loss, that folks in the industry have nicknamed “1,000-cycles.” The
thing is, the tone the carrier equipment sends is actually 1,004 Hz, so if
you want to test circuit loss on an analog channel from Asterisk,
Milliwatt() may not give you exactly what you want.

See Also
Echo(), Playtones()

MixMonitor() Records a channel in the background, mixing both directions synchronously

MixMonitor(filename.ext,options,command)

MeetMeCount() | 411

Records the audio on the current channel to the specified file. If the filename is an
absolute path, MixMonitor() uses that path; otherwise it creates the file in the configured
monitoring directory from asterisk.conf.

If command is specified, it will be run when recording ends, either by hangup or by calling
StopMixMonitor().

The options parameter can contain zero or more of the following options:

a
Append to the file, instead of overwriting it.

b
Only save audio when the channel is bridged.

This does not include conferences or sounds played to each bridged
party.

v(x)
Adjust the heard volume by a factor of x (range -4 to 4).

V(x)
Adjust the spoken volume by a factor of x (range -4 to 4).

W(x)
Adjust both the heard and the spoken volumes by a factor of x (range -4 to 4).

; Record channel
exten => 123,1,MixMonitor(/var/lib/asterisk/sounds/123.wav)

See Also
Monitor(), StopMixMonitor(), PauseMonitor(), UnpauseMonitor()

Monitor() Monitors (records) the audio on the current channel

Monitor([file_format[:urlbase][,fname_base][,options]])

Starts monitoring a channel. The channel’s input and output voice packets are logged
to files until the channel hangs up or monitoring is stopped by the StopMonitor()
application.

Monitor() takes the following arguments:

file_format
Specifies the file format. If not set, defaults to wav.

fname_base
If set, changes the filename used to the one specified.

412 | Appendix B: Application Reference

options
One of two options can be specified:

m
When the recording ends, mix the two leg files in to one and delete the original
leg files. If the variable ${MONITOR_EXEC} is set, the application referenced in it
will be executed instead of soxmix, and the raw leg files will not be deleted
automatically. soxmix (or ${MONITOR_EXEC}) is handed three arguments: the
two leg files and the filename for the target mixed file, which is the same as the
leg filenames but without the in/out designator. If ${MONITOR_EXEC_ARGS} is set,
the contents will be passed on as additional arguments to ${MONITOR_EXEC}.
Both ${MONITOR_EXEC} and the m flag can be set from the administrator interface.

b
Don’t begin recording unless a call is bridged to another channel.

exten => 123,1,Answer()
; record the current channel, and mix the audio channels at the end of
; recording
exten => 123,2,Monitor(wav,monitor_test,mb)
exten => 123,3,SayDigits(12345678901234567890)
exten => 123,4,StopMonitor()

See Also
ChangeMonitor(), StopMonitor(), MixMonitor(), PauseMonitor(), UnpauseMonitor()

MorseCode() Plays Morse code

MorseCode(string)

Plays the string, encoded in International Morse Code. The following channel variables
will affect the playback:

MORSEDITLEN
The length, in milliseconds, of a DIT. Defaults to 80 ms.

All of the other tone and silence lengths are defined in the Inter-
national Morse Code standard with respect to the length of a DIT,
and therefore, each of the other lengths will be adjusted suitably.

MORSETONE
The tone, in Hertz (Hz), which will be used. Defaults to 800 Hz.

; dah-dit-dah dit-dit dit-dit-dit-dit-dah dah-dit-dah dit-dit-dah dit-dah
exten => 123,1,Answer()
exten => 123,2,MorseCode(KI4KUA)

MorseCode() | 413

See Also
SayAlpha(), SayPhonetic()

MP3Player() Plays an MP3 file or stream

MP3Player(location)

Uses the mpg123 program to play the given location to the caller. The specified loca-
tion can be either a filename or a valid URL. The caller can exit by pressing any key.

The correct version of mpg123 must be installed for this application to
work properly. Asterisk currently works best with mpg123-0.59r. Other
versions may give less than desirable results.

exten => 123,1,Answer()
exten => 123,2,MP3Player(test.mp3)

exten => 123,1,Answer()
exten => 123,2,MP3Player(http://example.com/test.mp3)

MusicOnHold() Plays music on hold indefinitely

MusicOnHold(class)

Plays hold music specified by class, as configured in musiconhold.conf. If omitted, the
default music class for the channel will be used. You can use the MUSICCLASS dialplan
function to set the default music class for the channel.

; transfer telemarketers to this extension to keep them busy
exten => 123,1,Answer()
exten => 123,n,Playback(tt-allbusy)
exten => 123,n,MusicOnHold(default)

See Also
SetMusicOnHold(), WaitMusicOnHold(), MUSICCLASS

NBScat() Plays an NBS local stream

NBScat()

Uses the nbscat8k program to listen to the local Network Broadcast Sound (NBS)
stream. (For more information, see the nbs module in Digium’s Subversion server.) The
caller can exit by pressing any key.

Returns -1 on hangup; otherwise, does not return.

414 | Appendix B: Application Reference

exten => 123,1,Answer()
exten => 123,2,NBScat()

NoCDR() Disables Call Detail Records for the current call

NoCDR()

Disables CDRs for the current call.

; don't log calls to 555-1212
exten => 5551212,1,Answer()
exten => 5551212,2,NoCDR()
exten => 5551212,3,Dial(Zap/4/5551212)

See Also
AppendCDRUserField(), ForkCDR(), SetCDRUserField()

NoOp() Does nothing

NoOp(text)

Does nothing—this application is simply a placeholder. This application is often used
as a debugging tool. Whenever Asterisk’s core verbosity level is set to 3 or above, As-
terisk evaluates and prints each line of the dialplan before executing it. This means that
any arguments passed to the NoOp() application (in the text parameter) are printed to
the console. By watching the console output, a skilled Asterisk administrator can use
this output to debug problems in the dialplan.

exten => 123,1,NoOp(CallerID is ${CALLERID})

You don’t have to place quotes around the text. If quotes are placed
within the brackets, they will show up on the console.

When to use NoOp() and Verbose()
The difference between Verbose() and NoOp() is subtle. Here are some suggestions as
to how you can discern when to use each. The Verbose() application is handy when
you want to output something to the console. Using the set verbose command (fol-
lowed by the level of verbosity you desire—0 to 4), you can set the output to a level
that will not show you all of the activity on the system, but rather only those things
that are equal to or less than that the current level. (Actually, you can set the verbosity
to whatever you want. The set verbose 999 will work just fine, but we have not been
able to find anything that outputs at a level higher than 4, so anything from 4 to infinity
will be effectively the same for the time being.) This means that you can display all

NoCDR() | 415

kinds of information pertaining to a section of code you are testing, without having to
see all of the other activity in the system. If you set the following in your dial plan:

exten => _X.,n,Verbose(2, ${SOME_VAR})

You can then use the CLI to set the verbosity to 2 or less (core set verbose 2), and you
will see output from the various calls to Verbose(), but very little else.

Read the section on Verbose() later in this appendix for more on how to use it. The
NoOp() application is best used as a place holder. For example, if you are setting a
Goto() point in your dialplan that is using a priority label, you can use NoOp() as the
destination point for that goto. For example,

exten => _X.,n(call_forward),NoOp()

is an excellent marker for pointing a jump in your dialplan to a spot. From that point
you can carry on with whatever logic you wanted to apply to that part of the extension
(judging by the label, it’d have something to do with call forwarding). The value of the
NoOp() is that when you don’t really know what sort of things you might want to move
around in relation to what follows that label, you can be sure you’ll never have to recode
the label itself. It will never do anything other than provide a destination for the
Goto(), so you can put it wherever you like and be sure it won’t introduce any unex-
pected behavior.

If this seems confusing, it is due to our inability to describe it right. Experiment with
Verbose() and NoOp() all in your dialplan (you can use them anywhere), and you will
quickly gain an understanding of how they can help you (especially if you are like us
and cause a lot of syntax errors).

See Also
Verbose(), Log()

Page() Opens one-way audio to multiple phones

Page(Tech/chan1[&Tech/chan2]&[...][&Tech/chanN][|options])

Places outbound calls to the given technology/resource and dumps them in to a con-
ference bridge as muted participants. The original caller is dumped in to the conference
as a speaker, and the room is destroyed when the original caller leaves. The following
options may be specified:

d
Full duplex audio. Allow the paged persons to respond to the caller.

q
Quiet. Do not play a beep to the caller.

r
Record the page. See the r option to MeetMe for more information.

exten => 123,1,Page(SIP/101&SIP/102&IAX2/iaxy123)

416 | Appendix B: Application Reference

See Also
MeetMe()

Park() Parks the current call

Park()

Parks the current call (typically in combination with a supervised transfer to determine
the parking space number). This application is always registered internally and does
not need to be explicitly added in to the dialplan, although you should include the
parkedcalls context. Parking configuration is set in features.conf.

; explicitly park the caller
include => parkedcalls
exten => 123,1,Answer()
exten => 123,n,Park()

See Also
ParkAndAnnounce(), ParkedCall()

ParkAndAnnounce() Parks the current call and announces the call over the specified channel

ParkAndAnnounce(template,timeout,channel[,return_context])

Parks the current call in the parking lot and announces the call over the specified
channel. The template is a colon-separated list of files to announce; the word PARKED is
replaced with the parking space number of the call. The timeout argument is the time
in seconds before the call returns to the return_context. The channel argument is the
channel to call to make the announcement. Console/dsp calls the console. The
return_context argument is a Goto()-style label to jump the call back in to after timeout,
which defaults to n+1 (where n is the current priority) in the return_context context.

include => parkedcalls
exten => 123,1,Answer()
exten => 123,2,ParkAndAnnounce(vm-youhave:a:pbx-transfer:at:vm-extension:PARKED,120,
Console/dsp)
exten => 123,3,Playback(vm-nobodyavail)
exten => 123,4,Playback(vm-goodbye)
exten => 123,5,Hangup()

See Also
Park(), ParkedCall()

ParkedCall() Answers a parked call

ParkedCall(parkingslot)

Park() | 417

Connects the caller to the parked call in the parking space identified by parkingslot.
This application is always registered internally and does not need to be explicitly added
in to the dialplan, although you should include the parkedcalls context.

; pick up the call parked in parking space 701
exten => 123,1,Answer()
exten => 123,2,ParkedCall(701)

See Also
Park(), ParkAndAnnounce()

PauseMonitor() Suspends monitoring of a channel

PauseMonitor()

Temporarily suspends the monitoring (recording) of the current channel

exten => 123,1,Answer()
exten => 123,n,Monitor(wav,monitor_test)
exten => 123,n,Playback(demo-congrats)
 ; temporarily pause the monitoring while we gather some secret info
exten => 123,n,PauseMonitor()
exten => 123,n,Read(NEWPASS,vm-newpassword)
exten => 123,n,SayDigits(${NEWPASS})
exten => 123,n,UnpauseMonitor()
exten => 123,n,Dial(${JOHN})

See Also
Monitor(), StopMonitor(), UnpauseMonitor()

PauseQueueMember() Temporarily blocks a queue member from receiving calls

PauseQueueMember([queuename],interface[,options])

Pauses the specified queue interface. This prevents any calls from being distributed
from the queue to the interface until it is unpaused by the UnpauseQueueMember() ap-
plication or the Manager Interface. If no queuename is given, the interface is paused in
every queue it is a member of.

This application sets a channel variable named PQMSTATUS to either PAUSED or NOTFOUND
upon completion.

If the options parameter is set to j and the interface is not in the named queue, or if
no queue is given and the interface is not in any queue, it will jump to priority n+101
(where n is the current priority), if it exists.

exten => 123,1,PauseQueueMember(,SIP/300)
exten => 124,1,UnpauseQueueMember(,SIP/300)

418 | Appendix B: Application Reference

See Also
UnpauseQueueMember()

Pickup() Answers a ringing call from another phone

Pickup(extension[@context][&extension2[@context2][...])

Picks up any ringing channel that is ringing the specified extension. If multiple exten-
sions are specified, Pickup() will retrieve the first matching call found. If no context is
specified, the current context will be used.

There is also a special context name of PICKUPMARK. If specified, Pickup will find the first
ringing channel with the channel variable PICKUPMARK set, with a value corresponding
to the value of extension.

Playback() Plays the specified audio file to the caller

Playback(filename[&filename2...][,options])

Plays back a given filename to the caller. The filename should not contain the file ex-
tension, as Asterisk will automatically choose the audio file with the lowest conversion
cost. Zero or more options may also be included. The skip option causes the playback
of the message to be skipped if the channel is not in the “up” state (i.e., it hasn’t yet
been answered). If skip is specified, the application will return immediately should the
channel not be off-hook. Otherwise, unless noanswer is specified, the channel will be
answered before the sound file is played. (Not all the channels support playing messages
while still on-hook.) If j is passed as one of options and the file does not exist, this
application jumps to priority n+101 (where n is the current priority), if it exists.

exten => 123,1,Answer()
exten => 123,n,Playback(tt-weasels)

See Also
Background(), ControlPlayback()

Playtones() Plays a tone list

Playtones(tonelist)

Plays a tone list. Execution immediately continues with the next step, while the tones
continue to play. The tonelist is either the tone name defined in the indications.conf
configuration file, or a specified list of frequencies and durations. See indications.conf
for a description of the specification of a tone list.

Use the StopPlaytones() application to stop the tones from playing.

Pickup() | 419

; play a busy signal for two seconds, and then a congestion tone
for two seconds
exten => 123,1,Playtones(busy)
exten => 123,2,Wait(2)
exten => 123,3,StopPlaytones()
exten => 123,4,Playtones(congestion)
exten => 123,5,Wait(2)
exten => 123,6,StopPlaytones()
exten => 123,7,Goto(1)

See Also
StopPlaytones(), indications.conf, Busy(), Congestion(), Progress(), Ringing()

PrivacyManager() Requires a caller to enter his phone number, if no Caller ID information is received

PrivacyManager([maxretries[,minlength[,options]]])

If no Caller ID is received, this application answers the channel and asks the caller to
enter his phone number. By default, the caller is given three attempts.
PrivacyManager() sets a channel variable named PRIVACYMGRSTATUS to either SUCCESS or
FAILURE. If Caller ID is received on the channel, PrivacyManager() does nothing.

If the options parameter is set to j and the caller fails to enter his Caller ID number,
the call will continue at priority n+101 (where n is the current priority).

The privacy.conf configuration file changes the functionality of the PrivacyManger()
application. It contains the following two lines:

maxretries
Specifies the maximum number of attempts the caller is allowed to input a Caller
ID number (default: 3).

minlength
Specifies the minimum allowable digits in the input Caller ID number (default: 10).

The maxretries and minlength settings may also be passed to the application as pa-
rameters. Parameters passed to the application override any settings in privacy.conf.

exten => 123,1,Answer()
exten => 123,n,PrivacyManager()
exten => 123,n,GotoIf($["${PRIVACYMGRSTATUS}" = "FAILURE"]?bad)
exten => 123,n,Dial(Zap/1)
exten => 123,n,Hangup()
exten => 123,n(bad),Playback(im-sorry)
exten => 123,n,Playback(vm-goodbye)
exten => 123,n,Hangup()

See Also
Zapateller()

420 | Appendix B: Application Reference

Progress() Indicates progress

Progress()

Requests that the channel indicate that in-band progress is available to the user. Each
channel type in Asterisk has its own way of signaling progress on the call.

; indicate progress to the calling channel, wait 5 seconds,
; and then answer the call
exten => 123,1,Progress()
exten => 123,n,Wait(5)
exten => 123,n,Answer()

See Also
Busy(), Congestion(), Ringing(), Playtones()

Queue() Places the current call in to the specified call queue

Queue(queuename[,options[,URL[,announceoverride[,timeout[,AGI]]]]])

Places an incoming call in to the call queue specified by queuename, as defined in
queues.conf.

The options argument may contain zero or more of the following characters:

d
Specifies a data-quality (modem) call (minimum delay).

h
Allows callee to hang up by hitting *.

H
Allows caller to hang up by hitting *.

i
Ignores call forward requests from queue members and does nothing when they
are requested.

n
Disallows retries on the timeout; exits this application and goes to the next step.

r
Rings instead of playing music on hold.

t
Allows the called user to transfer the call.

T
Allows the calling user to transfer the call.

w
Allows the called user to write the conversation to disk.

Progress() | 421

W
Allows the calling user to write the conversation to disk.

In addition to being transferred, a call may be parked and then picked up by another
user.

The announceoverride argument overrides the standard announcement played to queue
agents before they answer the specified call.

The optional URL will be sent to the called party if the channel supports it.

The timeout will cause the queue to fail out after a specified number of seconds, checked
between each queues.conf timeout and retry cycle. The call will continue on with the
next priority in the dialplan.

This application sets a channel variable named QUEUESTATUS upon completion. It will
take one of the following values:

TIMEOUT
The call was in the queue too long, and timed out. See the timeout parameter.

FULL
The queue was already full. See the maxlen setting for the queue in queues.conf.

JOINEMPTY
The caller could not join the queue, as there were no queue members to answer
the call. See the joinempty setting for the queue in queues.conf.

LEAVEEMPTY
The caller joined the queue, but then all queue members left. See the
leavewhenempty setting for the queue in queues.conf.

JOINUNAVAIL
The caller could not join the queue, as there were no queue members available to
answer the call. See the joinempty setting for the queue in queues.conf.

The caller joined the queue, but then all of the queue members became unavailable.
See the leavewhenempty setting for the queue in queues.conf.

; place the caller in the techsupport queue
exten => 123,1,Answer()
exten => 123,2,Queue(techsupport,t)

See Also
AddQueueMember(), RemoveQueueMember(), PauseQueueMember(), UnpauseQueueMember(),
AgentLogin(), queues.conf, QUEUE_MEMBER_COUNT, QUEUE_MEMBER_LIST,
QUEUE_WAITING_COUNT

QueueLog() Writes arbitrary queue events to the queue log

QueueLog(queuename,uniqueid,member,event[,additionalinfo])

422 | Appendix B: Application Reference

Writes an arbitrary queue event to the queue log. The queuename parameter specifies
the name of the queue. The uniqueid parameter specifies the unique identifier for the
channel. The member parameter specifies which queue member the event pertains to.
The event and additionalinfo parameters may be set to arbitrary data, as needed.

; Write an arbitary event to the queue log
exten => 123,1,QueueLog(myqueue,${UNIQUEID},Agent/123,MyTestEvent)

See Also
Queue()

Random() Conditionally branches, based upon a probability

Random([probability]:[[context,]extension,]priority)

This application has been deprecated in favor of:

GotoIf($[${RAND(1,100)} > num]?label)

Conditionally jumps to the specified priority (and optional extension and context),
based on the specified probability. probability should be an integer between 1 and
100. The application will jump to the specified destination priority percent of the time.

; choose a random number over and over again
exten => 123,1,SayNumber(${RAND(1|10)})
exten => 123,n,Goto(1)

See Also
RAND

Read() Reads DTMF digits from the caller and assigns the result to a variable

Read(variable[,filename[,maxdigits[,option[,attempts[,timeout]]]]])

Reads a #-terminated string of digits from the user in to the given variable.

Other arguments include:

filename
Specifies the file to play before reading digits.

maxdigits
Sets the maximum acceptable number of digits. If this argument is specified, the
application stops reading after maxdigits have been entered (without requiring the

Random() | 423

user to press the # key). Defaults to 0 (no limit, wait for the user to press the # key).
Any value below 0 means the same. The maximum accepted value is 255.

option
Zero or more of the following options:

s
Return immediately if the line is not answered.

i
Interpret the filename as an indication tone setting from indications.conf.

n
Read digits even if the line has not been answered.

attempts
If greater than 1, that many attempts will be made in the event that no data is
entered.

timeout
If greater than 0, that value will override the default timeout.

; read a two-digit number and repeat it back to the caller
exten => 123,1,Read(NUMBER,,2)
exten => 123,2,SayNumber(${NUMBER})
exten => 123,3,Goto(1)

See Also
SendDTMF()

ReadFile() Reads the contents of a file in to a variable

ReadFile(variable=filename,length)

ReadFile captures the contents of filename, with a maximum size of length.

; read the first 80 characters of a file in to a variable
exten => 123,1,Answer()
exten => 123,n,ReadFile(TEST=/tmp/test.txt,80)
exten => 123,n,SayAlpha(${TEST})

See Also
System(), Read()

RealTime Looks up information from the RealTime configuration handler

RealTime(family,colmatch,value[,prefix])

Uses the RealTime configuration handler system to read data in to channel variables.
All unique column names (from the specified family) will be set as channel variables,

424 | Appendix B: Application Reference

with an optional prefix to the name (e.g., a prefix of var_ would make the column
name become the variable ${var_name}).

; retrieve all columns from the sipfriends table where the name column
; matches "John", and prefix all the variables with "John_"
exten => 123,1,RealTime(sipfriends,name,John,John_)
; now, let's read the value of the column named "port"
exten => 123,n,SayNumber(${John_port})

See Also
RealTimeUpdate()

RealTimeUpdate() Updates a value via the RealTime configuration handler

RealTimeUpdate(family,colmatch,value,newcol,newval)

Uses the RealTime configuration handler system to update a value. The column new-
col in family matching column colmatch = value will be updated to newval.

A channel variable named REALTIMECOUNT will be set with the number of rows updated
or -1 if an error occurs.

; this will update the port column in the sipfriends table to a new
; value of 5061, where the name column matches "John"
exten => 123,1,RealTimeUpdate(sipfriends,name,John,port,5061)

See Also
RealTime

Record() Records channel audio to a file

Record(filename.format[,silence[,maxduration[,options]]])

Records audio from the channel in to the given filename. If the file already exists, it will
be overwritten.

Optional arguments include:

format
Specifies the format of the file type to be recorded.

silence
Specifies the number of seconds of silence to allow before ending the recording and
continuing on with the next priority in the dialplan.

maxduration
Specifies the maximum recording duration, in seconds. If not specified or 0, there
is no maximum.

options
May contain any of the following letters:

RealTimeUpdate() | 425

a
Append to the recording, instead of overwriting it.

n
Do not answer, but record anyway if the line is not yet answered.

q
Quiet mode; do not play a beep tone at the beginning of the recording.

s
Skip recording if the line is not yet answered.

t
Use the alternate * terminator key instead of the default #.

x
Ignore all termination keys and keep recording until hangup.

If the filename contains %d, these characters will be replaced with a number incremented
by one each time the file is recorded.

The user can press # to terminate the recording and continue to the next priority in the
dialplan.

; record the caller's name
exten => 123,1,Playback(pls-rcrd-name-at-tone)
exten => 123,n,Record(/tmp/name.gsm,3,30)
exten => 123,n,Playback(/tmp/name)

RemoveQueueMember() Dynamically removes queue members

RemoveQueueMember(queuename[,interface[,options]])

Dynamically removes the specified interface from the queuename call queue. If inter-
face is not specified, this application removes the current channel from the queue.

If the options parameter is set to j, and the interface is not in the queue and there exists
a priority n+101 (where n is the current priority), the application will jump to that
priority.

; remove SIP/3000 from the techsupport queue
exten => 123,1,RemoveQueueMember(techsupport,SIP/3000)

See Also
Queue(), AddQueueMember(), PauseQueueMember(), UnpauseQueueMember()

ResetCDR() Resets the Call Detail Record

ResetCDR([options])

Causes the Call Detail Record to be reset for the current channel. The options parameter
can be zero or more of the following options:

426 | Appendix B: Application Reference

a
Store any stacked records.

w
Store the current CDR record before resetting it.

v
Save CDR variables.

; write a copy of the current CDR record, and then reset the CDR
exten => 123,1,Answer()
exten => 123,2,Playback(tt-monkeys)
exten => 123,3,ResetCDR(wv)
exten => 123,4,Playback(tt-monkeys)

See Also
ForkCDR(), NoCDR()

RetryDial() Attempts to place a call, and retries on failure

RetryDial(announce,sleep,loops,technology/resource[&Technology2/resource2...]
[,timeout][,options][,URL])

Attempts to place a call. If no channel can be reached, plays the file defined by
announce, waiting sleep seconds to retry the call. If the specified number of attempts
matches loops, the call will continue with the next priority in the dialplan. If loops is
set to 0, the call will retry endlessly.

While waiting, a one-digit extension may be dialed. If that extension exists in either
the context defined in ${EXITCONTEXT} (if defined) or the current one, the call will trans-
fer to that extension immediately.

All arguments after loops are passed directly to the Dial() application.

; attempt to dial the number three times via IAX, retrying every five
seconds
exten => 123,1,RetryDial(priv-trying,5,3,IAX2/VOIP/8885551212,30)
; if the caller presses 9 while waiting, dial the number on the Zap/4
channel
exten => 9,1,RetryDial(priv-trying,5,3,Zap/4/8885551212,30)

See Also
Dial()

Return() Returns from a Gosub() or GosubIf()

Return()

Returns from a previously invoked Gosub() or GosubIf(). If there was no previous in-
vocation of Gosub() or GosubIf(), Return() exits abnormally.

RetryDial() | 427

See Also
Gosub(), StackPop()

Ringing() Indicates ringing tone

Ringing()

Requests that the channel indicate ringing tone to the user. It is up to the channel driver
to specify exactly how ringing is indicated.

Note that this application does not actually provide audio ringing to the caller. Use the
Playtones() application to do this.

; indicate that the phone is ringing, even though it isn't
exten => 123,1,Ringing()
exten => 123,2,Wait(5)
exten => 123,3,Playback(tt-somethingwrong)

See Also
Busy(), Congestion(), Progress(), Playtones()

SayAlpha() Spells a string

SayAlpha(string)

Spells out the specified string, using the current language setting for the channel. See
the CHANNEL function for more information on changing the language for the current
channel.

exten => 123,1,SayAlpha(ABC123XYZ)

See Also
SayDigits(), SayNumber(), SayPhonetic(), CHANNEL

SayDigits() Says the specified digits

SayDigits(digits)

Says the specified digits, using the current language setting for the channel. See the
CHANNEL function for more information on changing the language for the current
channel.

exten => 123,1,SayDigits(1234)

See Also
SayAlpha(), SayNumber(), SayPhonetic(), CHANNEL

428 | Appendix B: Application Reference

SayNumber() Says the specified number

SayNumber(digits[,gender])

Says the specified number, using the current language setting for the channel. See the
CHANNEL function for more information on changing the language for the current
channel.

If the current language supports different genders, you can pass the gender argument
to change the gender of the spoken number. You can use the following gender argu-
ments:

• Use the gender arguments f for female, m for male, and n for neuter in European
languages such as Portuguese, French, Spanish, and German.

• Use the gender argument c for commune and n for neuter in Nordic languages such
as Danish, Swedish, and Norwegian.

• Use the gender argument p for plural enumerations in German.

; say the number in English
exten => 123,1,Set(CHANNEL(language)=en)
exten => 123,2,SayNumber(1234)

For this application to work in languages other than English, you must
have the appropriate sounds for the language you wish to use.

See Also
SayAlpha(), SayDigits(), SayPhonetic(), CHANNEL

SayPhonetic() Spells the specified string phonetically

SayPhonetic(string)

Spells the specified string using the NATO phonetic alphabet.

exten => 123,1,SayPhonetic(asterisk)

See Also
SayAlpha(), SayDigits(), SayNumber()

SayUnixTime() Says the specified time in a custom format

SayUnixTime([unixtime][,[timezone][,format]])

Speaks the specified time according to the specified time zone and format. The argu-
ments are:

SayNumber() | 429

unixtime
The time, in seconds, since January 1, 1970. May be negative. Defaults to now.

timezone
The time zone. See /usr/share/zoneinfo/ for a list. Defaults to the machine default.

format
The format in which the time is to be spoken. See voicemail.conf for a list of formats.
Defaults to "ABdY 'digits/at' IMp".

exten => 123,1,SayUnixTime(,,IMp)

See Also
STRFTIME, STRPTIME, IFTIME

SendDTMF() Sends arbitrary DTMF digits to the channel

SendDTMF(digits[,timeout_ms])

Sends the specified DTMF digits on a channel. Valid DTMF digits include 0–9, *, #,
and A–D. You may also use the letter w as a digit, which indicates a 500 millisecond wait.
The timeout_ms argument is the amount of time between digits, in milliseconds. If not
specified, timeout_ms defaults to 250 milliseconds.

exten => 123,1,SendDTMF(3212333w222w366w3212333322321,250)

See Also
Read()

SendImage() Sends an image file

SendImage(filename,options)

Sends an image on a channel, if image transport is supported. This application sets a
channel variable named SENDIMAGESTATUS to either OK or NOSUPPORT upon completion.

If the options parameter is set to j and the channel does not support image transport,
and there exists a priority n+101 (where n is the current priority), execution will con-
tinue at that step.

exten => 123,1,SendImage(logo.jpg)

See Also
SendText(), SendURL()

SendText() Sends text to the channel

SendText(text,options)

430 | Appendix B: Application Reference

Sends text on a channel, if text transport is supported. Upon completion, a channel
variable named SENDTEXTSTATUS will be set to one of the following values:

SUCCESS
The transmission of the text was successful.

FAILURE
The transmission of the text failed.

NOSUPPORT
The underlying channel does not support the transmission of text.

If the options parameter is set to j and the channel does not support text transport,
and there exists a priority n+101 (where n is the current priority), execution will con-
tinue at that step.

exten => 123,1,SendText(Welcome to Asterisk)

See Also
SendImage(), SendURL()

SendURL() Sends the specified URL to the channel (if supported)

SendURL(URL[,options])

Requests that the client go to the specified URL. The application also sets a channel
variable named SENDURLSTATUS to one of the following values upon completion:

SUCCESS
The transmission of the URL was successful.

FAILURE
The transmission of the URL failed.

NOLOAD
The is web-enabled but failed to load the URL.

NOSUPPORT
The underlying channel does not support the transmission of the URL.

If the options parameter contains the wait option, execution will wait for an acknowl-
edgment that the URL has been loaded before continuing.

If the options parameter contains the j option and the client does not support HTML
transport, and there exists a priority n+101 (where n is the number of the current pri-
ority), execution will continue at that step.

exten => 123,1,SendURL(www.asterisk.org,wait)

See Also
SendImage(), SendText()

SendURL() | 431

Set() Sets a variable to the specified value

Set(n=value,[n2=value2...[,options]])

Sets the variable n to the specified value. Also sets the variable n2 to the value of
value2. If the variable name is prefixed with _, single inheritance is assumed. If the
variable name is prefixed with _ _, infinite inheritance is assumed. Inheritance is used
when you want channels created from the current channel to inherit the variable from
the current channel.

If the options parameter is set to g, the variables will be set as global variables instead
of channel variables.

; set a variable called DIALTIME, then use it
exten => 123,1,Set(DIALTIME=20)
exten => 123,1,Dial(Zap/4/5551212,,${DIALTIME})

The setting of multiple variables and the use of the g option have been
deprecated. Please use multiple calls to Set() and the GLOBAL() dialplan
function instead.

See Also
GLOBAL, SET, ENV, channelvariables.txt

SetAMAFlags() Sets AMA flags in the Call Detail Record

SetAMAFlags(flag)

Sets the AMA flags in the Call Detail Record for billing purposes, overriding any AMA
settings in the channel configuration files. Valid choices are default, omit, billing, and
documentation.

exten => 123,1,SetAMAFlags(billing)

See Also
SetCDRUserField(), AppendCDRUserField()

SetCallerID() Sets the Caller ID for the channel

SetCallerID(clid[,a])

This application has been deprecated in favor of:

Set(CALLERID(all)=Some Name <1234>)

432 | Appendix B: Application Reference

Sets the Caller ID on the channel to a specified value. If the a argument is passed, ANI
is also set to the specified value.

; override the Caller ID for this call
exten => 123,1,Set(CALLERID(all)="John Q. Public <8885551212>”)

See Also
The CALLERID

SetCallerPres() Sets Caller ID presentation flags

SetCallerPres(presentation)

Sets the Caller ID presentation flags on a Q931 PRI connection.

Valid presentations are:

allowed_not_screened
Presentation allowed, not screened

allowed_passed_screen
Presentation allowed, passed screen

allowed_failed_screen
Presentation allowed, failed screen

allowed
Presentation allowed, network number

prohib_not_screened
Presentation prohibited, not screened

prohib_passed_screen
Presentation prohibited, passed screen

prohib_failed_screen
Presentation prohibited, failed screen

prohib
Presentation prohibited, network number

unavailable
Number unavailable

exten => 123,1,SetCallerPres(allowed_not_screened)
exten => 123,2,Dial(Zap/g1/8885551212)

See Also
CALLERID()

SetCDRUserField() Sets the Call Detail Record user field

SetCDRUserField(value)

SetCallerPres() | 433

Sets the CDR user field to the specified value. The CDR user field is an extra field that
you can use for data not stored anywhere else in the record. CDR records can be used
for billing purposes or for storing other arbitrary data about a particular call.

exten => 123,1,SetCDRUserField(testing)
exten => 123,2,Playback(tt-monkeys)

This application has been deprecated in favor of the CDR() function.

exten => 123,1,Set(CDR(userfield)=54321)

See Also
AppendCDRUserField(), SetAMAFlags()

SetGlobalVar() Sets a global variable to the specified value

SetGlobalVar(n=value)

This application has been deprecated in favor of:

Set(GLOBAL(var)=...)

Sets a global variable called n to the specified value. Global variables are available across
channels.

; set the NUMRINGS global variable to 3
exten => 123,1,SetGlobalVar(NUMRINGS=3)

See Also
Set()

SetMusicOnHold() Sets the default music-on-hold class for the current channel

SetMusicOnHold(class)

This application has been deprecated in favor of:

Set(CHANNEL(musicclass)=...)

434 | Appendix B: Application Reference

Sets the default class for music on hold for the current channel. When music on hold
is activated, this class will be used to select which music is played. Classes are defined
in the configuration file musiconhold.conf.

exten=s,1,Answer()
exten=s,2,SetMusicOnHold(default)
exten=s,3,WaitMusicOnHold()

See Also
WaitMusicOnHold(), musiconhold.conf, MusicOnHold()

SetTransferCapability() Sets the ISDN transfer capability of a channel

SetTransferCapability(transfercapability)

This application sets the ISDN transfer capability of the current channel to a new value.
Valid values for transfercapability are:

SPEECH
0x00, speech (default, voice calls)

DIGITAL
0x08, unrestricted digital information (data calls)

RESTRICTED_DIGITAL
0x09, restricted digital information

3K1AUDIO
0x10, 3.1kHz Audio (fax calls)

DIGITAL_W_TONES
0x11, unrestricted digital information with tones/announcements

VIDEO
0x18, video

This application is deprecated and the functionality has been replaced
with Set(CHANNEL(transfercapability)=transfercapability) syntax.

exten => 123,1,Set(CHANNEL(transfercapability)=SPEECH)

SIPAddHeader() Adds a SIP header to the outbound call

SIPAddHeader(Header: Content)

Adds a header to a SIP call placed with the Dial() application. A nonstandard SIP header
should begin with X-, such as X-Asterisk-Accountcode:. Use this application with care
—adding the wrong headers may cause any number of problems.

For more flexibility, see the SIP_HEADER() dialplan function.

SetTransferCapability() | 435

exten => 123,1,SIPAddHeader(X-Asterisk-Testing: Just testing!)
exten => 123,2,Dial(SIP/123)

See Also
SIP_HEADER

SIPDtmfMode() Changes the DTMF method for a SIP call

SIPDtmfMode(method)

Changes the DTMF method for a SIP call. The method can be either inband, info, or
rfc2833.

exten => 123,1,SIPDtmfMode(rfc2833)
exten => 123,2,Dial(SIP/123)

See Also
Appendix A

SLAStation() Shared line appearance station

SLAStation(station)

This application should be executed by an SLA station. The format of the station
parameter depends on how the call was initiated. If the phone was just taken off hook,
then the station parameter should contain only the station name. If the call was initi-
ated by pressing a line key, then the station name should be preceded by an underscore
and the trunk name associated with that line button (station1_line2, for example).

For more information on shared line appearances, see the doc/sla.pdf file in the Asterisk
source.

exten => 123,1,SLAStation(station1)

 exten => 124,1,SLAStation(station1_line2)

See Also
SLATrunk(), sla.conf

SLATrunk() Shared line appearance trunk

SLATrunk(trunk)

This application should be executed by an SLA trunk on an inbound call. The channel
calling this application should correspond to the SLA trunk specified by the trunk
parameter.

436 | Appendix B: Application Reference

For more information on shared line appearances, see the doc/sla.pdf file in the Asterisk
source.

exten => 123,1,SLATrunk(line2)

See Also
SLAStation(), sla.conf

SoftHangup() Performs a soft hangup of the requested channel

SoftHangup(technology/resource,options)

Hangs up the requested channel. The options argument may contain the letter a, which
causes all channels on the specified device to be hung up (currently, the options argu-
ment may contain only a).

; hang up all calls using Zap/4 so we can use it
exten => 123,1,SoftHangup(Zap/4,a)
exten => 123,2,Wait(2)
exten => 123,3,Dial(Zap/4/5551212)

See Also
Hangup()

StackPop() Removes last address from Gosub() stack

StackPop()

Removes the last address from the Gosub() stack. This is frequently used when handling
error conditions within Gosub() routines when it is no longer appropriate to return
control of the dialplan back to where the Gosub() routine was called from.

exten => s,1,Read(input,get-input)
exten => s,n,Gosub(validate,1)
exten => s,n,Dial(SIP/${input})
; Ensure that input is between 400 and 499
exten => validate,1,GotoIf($[${input} > 499]?error,1)
exten => validate,n,GotoIf($[${input} < 400]?error,1)
exten => validate,n,Return
exten => error,1,StackPop()
exten => error,2,Goto(s,1)

See Also
Return(), Gosub()

StartMusicOnHold() Starts music on hold

StartMusicOnHold([class])

SoftHangup() | 437

Plays hold music specified by class, as configured in musiconhold.conf. If omitted, the
default music class for the channel will be used. You can use the
CHANNEL(musicclass) function to set the default music class for the channel.

Returns immediately.

; transfer telemarketers to this extension to keep them busy
exten => 123,1,Answer()
exten => 123,2,Playback(tt-allbusy)
exten => 123,3,StartMusicOnHold(default)
exten => 123,4,Wait(600)
exten => 123,5,StopMusicOnHold()

See Also
WaitMusicOnHold(), StopMusicOnHold()

StopMixMonitor() Stops monitoring a channel

StopMixMonitor()

Stops monitoring (recording) a channel. This application has no effect if the channel
is not currently being monitored.

exten => 123,1,Answer()
exten => 123,2,MixMonitor(monitor_test.wav)
exten => 123,3,SayDigits(12345678901234567890)
exten => 123,4,StopMixMonitor()

See Also
MixMonitor()

StopMonitor() Stops monitoring a channel

StopMonitor()

Stops monitoring (recording) a channel. This application has no effect if the channel
is not currently being monitored.

exten => 123,1,Answer()
exten => 123,2,Monitor(wav,monitor_test,mb)
exten => 123,3,SayDigits(12345678901234567890)
exten => 123,4,StopMonitor()

See Also
ChangeMonitor()

StopPlaytones() Stops playing a tone list

StopPlaytones()

438 | Appendix B: Application Reference

Stops playing the currently playing tone list.

exten => 123,1,Playtones(busy)
exten => 123,2,Wait(2)
exten => 123,3,StopPlaytones()
exten => 123,4,Playtones(congestion)
exten => 123,5,Wait(2)
exten => 123,6,StopPlaytones()
exten => 123,7,Goto(1)

See Also
Playtones(), indications.conf

StopMusicOnHold() Stops music on hold

StopMusicOnHold()

Ends playing music on hold on a channel. If music on hold was not already playing,
has no effect.

; transfer telemarketers to this extension to keep them busy
exten => 123,1,Answer()
exten => 123,2,Playback(tt-allbusy)
exten => 123,3,StartMusicOnHold(default)
exten => 123,4,Wait(600)
exten => 123,5,StopMusicOnHold()

See Also
WaitMusicOnHold(), StartMusicOnHold()

System() Executes an operating system command

System(command)

Executes a command in the underlying operating system. This application sets a channel
variable named SYSTEMSTATUS to either FAILURE or SUCCESS, depending on whether or
not Asterisk was successfully able to run the command.

This application is very similar to the TrySystem() application, except that it will return
-1 if it is unable to execute the system command, whereas the TrySystem() application
will always return 0.

exten => 123,1,System(echo hello > /tmp/hello.txt)

See Also
TrySystem()

StopMusicOnHold() | 439

Transfer() Transfers the caller to a remote extension

Transfer([Technology/]destination[,options)

Requests that the remote caller be transferred to the given (optional Technology and)
destination. If the Technology is set to IAX2, SIP, Zap, etc., then transfer will happen
only if the incoming call is of the same channel type.

Upon completion, this application sets a channel variable named TRANSFERSTATUS to
one of the following values:

SUCCESS
The transfer was successful.

FAILURE
The transfer was not successful.

UNSUPPORTED
The transfer was not supported by the underlying channel driver.

If the options parameter is set to the letter j and the transfer is not supported or suc-
cessful, and there exists a priority n+101 (where n is the current priority), that priority
will be taken next.

; transfer calls from extension 123 to extension SIP/123@otherserver
exten => 123,1,Transfer(SIP/123@otherserver)

TryExec() Tries to execute an Asterisk application

TryExec(app(args))

Attempts to run the specified Asterisk application.

This application is very similar to the Exec() application, except that it always returns
normally, whereas the Exec() application will act as if the underlying application was
natively called, including exit status. This application can be used to catch a condition
that would normally cause the underlying application to exit abnormally.

exten => 123,1,TryExec(VMAuthenticate(@default))

See Also
Exec()

TrySystem() Tries to execute an operating system command

TrySystem(command)

Attempts to execute a command in the underlying operating system. The result of the
command will be placed in the SYSTEMSTATUS channel variable and will be one of the
following:

440 | Appendix B: Application Reference

FAILURE
The specified command could not be executed.

SUCCESS
The specified command executed successfully.

APPERROR
The specified command executed, but returned an error code.

This application is very similar to the System() application, except that it always returns
normally, whereas the System() application will return abnormally if it is unable to
execute the system command.

exten => 123,1,TrySystem(echo hello > /tmp/hello.txt)

See Also
System()

UnpauseMonitor() Resumes monitoring of a channel

UnpauseMonitor()

Resumes monitoring a channel, after being suspended by PauseMonitor().

exten => 123,1,Answer()
exten => 123,n,Monitor(wav,monitor_test)
exten => 123,n,Playback(demo-congrats)
 ; temporarily pause the monitoring while we gather some secret info
exten => 123,n,PauseMonitor()
exten => 123,n,Read(NEWPASS,vm-newpassword)
exten => 123,n,SayDigits(${NEWPASS})
 ; unpause the recording and continue recording the call
exten => 123,n,UnpauseMonitor()
exten => 123,n,Dial(${JOHN})

See Also
Monitor(), StopMonitor(), Page()

UnpauseQueueMember() Unpauses a queue member

UnpauseQueueMember([queuename,]interface[,options])

Unpauses (resumes calls to) a queue member. This is the counterpart to PauseQueue
Member(), and it operates exactly the same way, except it unpauses instead of pausing
the given interface.

Upon completion, this application sets a channel variable named UPQMSTATUS to either
UNPAUSED or NOTFOUND.

UnpauseMonitor() | 441

If the options parameter is set to the letter j and the queue member can not be found,
and there exists a priority n+101 (where n is the current priority), control of the call
will continue at that priority

exten => 123,1,PauseQueueMember(myqueue,SIP/300)
exten => 124,1,UnpauseQueueMember(myqueue,SIP/300)

See Also
PauseQueueMember()

UserEvent() Sends an arbitrary event to the Manager Interface

UserEvent(eventname[,body])

Sends an arbitrary event to the Manager Interface, with an optional body representing
additional arguments. The format of the event is:

Event: UserEvent
UserEvent: eventname
 body

If the body is not specified, only the Event and UserEvent fields will be present in the
Manager event.

exten => 123,1,UserEvent(BossCalled,${CALLERID(name)} has called the boss!)
exten => 123,2,Dial(${BOSS})

See Also
manager.conf, Asterisk Manager Interface

Verbose() Sends arbitrary text to verbose output

Verbose([level,]message)

Sends the specified message to verbose output. The level must be an integer value. If
not specified, level defaults to 0.

exten => 123,1,Verbose(Somebody called extension 123)
exten => 123,2,Playback(extension)
exten => 123,3,SayDigits(${EXTEN})

The optional argument level is not so optional, if you include the de-
limiter | in your invocation of Verbose(). If the delimiter is found,
Verbose() assumes that you meant to specify level (and chops off ev-
erything preceding the initial |). It is therefore probably best to get in
the habit of always specifying the level.

442 | Appendix B: Application Reference

See also
NoOp(), Log()

VMAuthenticate() Authenticates the caller from voicemail passwords

VMAuthenticate([mailbox][@context[,options]])

Behaves identically to the Authenticate() application, with the exception that the pass-
words are taken from voicemail.conf.

If mailbox is specified, only that mailbox’s password will be considered valid. If mail-
box is not specified, the channel variable AUTH_MAILBOX will be set with the authenticated
mailbox.

If the options parameter is set to the letter s, Asterisk will skip the initial prompts.

; authenticate off of any mailbox password in the default voicemail context
; and tell us the matching mailbox number
exten => 123,1,VMAuthenticate(@default)
exten => 123,2,SayDigits(${AUTH_MAILBOX})

See Also
Authenticate(), voicemail.conf

VoiceMail() Leaves a voicemail message in the specified mailbox

VoiceMail(mailbox[@context][&mailbox[@context]][...]|options)

Leaves voicemail for a given mailbox (must be configured in voicemail.conf). If more
than one mailbox is specified, the greetings will be taken from the first mailbox
specified.

Options:

s
Skip the playback of instructions.

u
Play the user’s unavailable greeting.

b
Play the user’s busy greeting.

g(num)
Amplify the recording by num decibels (dB).

j
If the requested mailbox does not exist, and there exists a priority n+101 (where
n is the current priority), that priority will be taken next.

VMAuthenticate() | 443

If the caller presses 0 (zero) during the prompt, the call jumps to the o (lowercase letter
o) extension in the current context, if operator=yes was specified in voicemail.conf.

If the caller presses * during the prompt, the call jumps to extension a in the current
context. This is often used to send the caller to a personal assistant.

Upon completion, this application sets a channel variable named VMSTATUS. It will con-
tain one of the following values:

SUCCESS
The call was successfully sent to voicemail.

USEREXIT
The caller exited from the voicemail system.

FAILED
The system was not able to send the call to voicemail.

; send caller to unavailable voicemail for mailbox 123
exten => 123,1,VoiceMail(123@default,u)

See Also
VoiceMailMain(), voicemail.conf

VoiceMailMain() Enters the voicemail system

VoiceMailMain([mailbox][@context][,options)

Enters the main voicemail system for the checking of voicemail. Passing the mailbox
argument will stop the voicemail system from prompting the user for the mailbox
number. You should also specify a voicemail context.

The options string can contain zero or more of the following options:

s
Skip the password check.

p
This option tells Asterisk to interpret the mailbox as a number that should be pre-
pended to the mailbox entered by the caller. This is most often used when many
voicemail boxes for different companies are hosted on the same Asterisk server.

g(gain)
When recording voicemail messages, increase the volume by gain. This option
should be specified in an integer number of decibels.

a(folder)
Skip the folder prompt and go directly to the specified folder. This option defaults
to the INBOX.

; go to voicemail menu for mailbox 123 in the default voicemail context
exten => 123,1,VoiceMailMain(123@default)

444 | Appendix B: Application Reference

See Also
VoiceMail(), voicemail.conf

Wait() Waits for a specified number of seconds

Wait(seconds)

Waits for the specified number of seconds. You can pass fractions of a second. For
example, setting seconds to 1.5 would make the dialplan wait 1.5 seconds before going
on to the next priority in the dialplan.

; wait 1.5 seconds before playing the prompt
exten => s,1,Answer()
exten => s,2,Wait(1.5)
exten => s,3,Background(enter-ext-of-person)

WaitExten() Waits for an extension to be entered

WaitExten([seconds][,options])

Waits for the user to enter a new extension for the specified number of seconds. You
can pass fractions of a second (e.g., 1.5 = 1.5 seconds). If seconds is unspecified, the
default extension timeout will be used. Most often, this application is used without
specifying the seconds options.

The options parameter may be set to the following option:

m[(class)[
Provide music on hold to the caller while waiting for an extension. Optionally, you
can specify the music on hold class within parentheses.

; wait 15 seconds for the user to dial an extension
exten => s,1,Answer()
exten => s,2,Playback(enter-ext-of-person)
exten => s,3,WaitExten(15)

See Also
Background(), TIMEOUT

WaitForRing() Waits the specified number of seconds for a ring

WaitForRing(timeout)

Waits at least timeout seconds after the next ring has completed.

; wait five seconds for a ring, and then send some DTMF digits
exten => 123,1,Answer()
exten => 123,2,WaitForRing(5)
exten => 123,3,SendDTMF(1234)

Wait() | 445

See Also
WaitForSilence()

WaitForSilence() Waits for a specified amount of silence

WaitForSilence(silencerequired[,repeat[,timeout]])

Waits for repeat instances of silencerequired milliseconds of silence. If repeat is omit-
ted, the application waits for a single instance of silencerequired milliseconds of
silence.

If the timeout option is specified, this application will return to the next priority in the
dialplan after the specified number of seconds, even if silence has not been detected.

Please use the timeout with caution, as it may defeat the purpose of this
application, which is to wait indefinitely until silence is detected on the
line. You may want to set the timeout to a high value only to avoid an
infinite loop in cases where silence is never detected.

This applications sets a channel variable named WAITSTATUS to either SILENCE or TIMEOUT.

; wait for three instances of 300 ms of silence
exten => 123,WaitForSilence(300,3)

See Also
WaitForRing()

WaitMusicOnHold() Waits the specified number of seconds, playing music on hold

WaitMusicOnHold(delay)

Plays hold music for the specified number of seconds. If no hold music is available, the
delay will still occur but with no sound.

Returns 0 when done, or -1 on hangup.

; allow caller to hear Music on Hold for five minutes
exten => 123,1,Answer()
exten => 123,2,WaitMusicOnHold(300)
exten => 123,3,Hangup()

See Also
SetMusicOnHold(), musiconhold.conf

While() Starts a while loop

While(expr)

446 | Appendix B: Application Reference

Starts a while loop. Execution will return to this point when EndWhile() is called, until
expr is no longer true. If a condition is met causing the loop to exit, Asterisk continues
execution of the dialplan on the next priority after the corresponding EndWhile().

exten => 123,1,Set(COUNT=1)
exten => 123,2,While($[${COUNT} < 5])
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} + 1])
exten => 123,5,EndWhile()

See Also
EndWhile(), ExitWhile(), GotoIf()

Zapateller() Uses a special information tone to block telemarketers

Zapateller(options)

Generates a special information tone to block telemarketers and other computer-dialed
calls from bothering you.

The options argument is a pipe-delimited list of options. The following options are
available:

answer
Causes the line to be answered before playing the tone.

nocallerid
Causes Zapateller to play the tone only if no Caller ID information is available.

; answer the line, and play the SIT tone if there is no Caller
ID information
exten => 123,1,Zapateller(answer|nocallerid)

See Also
PrivacyManager()

ZapBarge() Barges in on (monitors) a Zap channel

ZapBarge([channel])

Barges in on a specified Zap channel, or prompts if one is not specified. The people on
the channel won’t be able to hear you and will have no indication that their call is being
monitored.

If channel is not specified, you will be prompted for the channel number. Enter 4# for
Zap/4, for example.

exten => 123,1,ZapBarge(Zap/2)
exten => 123,2,Hangup()

Zapateller() | 447

See Also
ZapScan()

ZapRAS() Executes the Zaptel ISDN Remote Access Server

ZapRAS(args)

Executes an ISDN RAS server using pppd on the current channel. The channel must be
a clear channel (i.e., PRI source) and a Zaptel channel to be able to use this function
(no modem emulation is included).

Your pppd must be patched to be Zaptel-aware. args is a pipe-delimited list of
arguments.

This application is for use only on ISDN lines, and your kernel must be patched to
support ZapRAS(). You must also have ppp support in your kernel.

exten => 123,1,Answer()
exten => 123,1,ZapRas(debug|64000|noauth|netmask|255.255.255.0|
10.0.0.1:10.0.0.2)

ZapScan() Scans Zap channels to monitor calls

ZapScan([group])

Allows a call center manager to monitor Zap channels in a convenient way. Use # to
select the next channel, and use * to exit. You may limit scanning to a particular channel
group (as set with the GROUP() function) by setting the group argument.

exten => 123,1,ZapScan()

See Also
ZapBarge()

448 | Appendix B: Application Reference

APPENDIX C

AGI Reference

ANSWER

Answers the channel (if it is not already in an answered state).

Return values:

-1
Failure

0
Success

CHANNEL STATUS
CHANNEL STATUS [channelname]

Queries the status of the channel indicated by channelname or, if no channel is specified,
the current channel.

Return values:

0
Channel is down and available

1
Channel is down, but reserved

2
Channel is off-hook

3
Digits have been dialed

4
Line is ringing

5
Line is up

449

6
Line is busy

DATABASE DEL
DATABASE DEL family key

Deletes an entry from the Asterisk database for the specified family and key.

Return values:

0
Failure

1
Success

DATABASE DELTREE
DATABASE DELTREE family [keytree]

Deletes a family and/or keytree from the Asterisk database.

Return values:

0
Failure

1
Success

DATABASE GET
DATABASE GET family key

Retrieves a value from the Asterisk database for the specified family and key.

Return values:

0
Not set

1 (value)
Value is set (and is included in parentheses)

450 | Appendix C: AGI Reference

DATABASE PUT
DATABASE PUT family key value

Adds or updates an entry in the Asterisk database for the specified family and key, with
the specified value.

Return values:

0
Failure

1
Success

EXEC
EXEC application options

Executes the specified dialplan application, including options.

Return values:

-2
Failure to find the application

value
Return value of the application

GET DATA
GET DATA filename [timeout] [max_digits]

Plays the audio file specified by filename and accepts DTMF digits, up to the limit set
by max_digits. Similar to the Background() dialplan application.

Return value:

value
Digits received from the caller

GET FULL VARIABLE
GET FULL VARIABLE variablename [channelname]

If the variable indicated by variablename is set, returns its value in parentheses. This
command understands complex variable names and built-in variable names, unlike GET
VARIABLE.

Return values:

DATABASE PUT | 451

0
No channel, or variable not set

1 (value)
Value is retrieved (and is included in parentheses)

GET OPTION
GET OPTION filename escape_digits [timeout]

Behaves the same as STREAM FILE, but has a timeout option (in seconds).

Return value:

value
ASCII value of digits received, in decimal

GET VARIABLE
GET VARIABLE variablename

If the variable is set, returns its value in parentheses. This command does not under-
stand complex variables or built-in variables; use the GET FULL VARIABLE command if
your application requires these types of variables.

Return values:

0
No channel, or variable not set

1 (value)
Value is retrieved (and is included in parentheses)

HANGUP
HANGUP [channelname]

Hangs up the specified channel or, if no channel is given, the current channel.

Return values:

-1
Specified channel does not exist

1
Hangup was successful

452 | Appendix C: AGI Reference

NoOp
NoOp [text]

Performs no operation. As a side effect, this command prints text to the Asterisk con-
sole. Usually used for debugging purposes.

Return value:

0
No channel, or variable not set

RECEIVE CHAR
RECEIVE CHAR timeout

Receives a character of text on a channel. Specify a timeout in milliseconds as the max-
imum amount of time to wait for input, or set to 0 to wait infinitely. Note that most
channels do not support the reception of text.

Return values:

-1 (hangup)
Failure or hangup

char (timeout)
Timeout

value
ASCII value of character, in decimal

RECORD FILE
RECORD FILE filename format escape_digits timeout [offset_samples] [BEEP] [s=silence]

Records the channel audio to the specified file until the reception of a defined escape
(DTMF) digit. The format argument defines the type of file to be recorded (wav, gsm,
etc.). The timeout argument is the maximum number of milliseconds the recording can
last, and can be set to -1 for no timeout. The offset_samples argument is optional; if
provided, it will seek to the offset without exceeding the end of the file. The BEEP ar-
gument will play a beep to the user to signify the start of the record operation. The
silence argument is the number of seconds of silence allowed before the function re-
turns despite the lack of DTMF digits or reaching the timeout. The silence value must
be preceded by s= and is also optional.

Return values:

-1
Failure

NoOp | 453

0
Successful recording

SAY ALPHA
SAY ALPHA number escape_digits

Says a given character string, returning early if any of the given DTMF digits are received
on the channel.

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DATE
SAY DATE date escape_digits

Says a given date, returning early if any of the given DTMF digits are received on the
channel. The date is the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time (UTC).

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DATETIME
SAY DATETIME datetime escape_digits [format] [timezone]

Says the given datetime, returning early if any of the given DTMF digits are received on
the channel. The datetime is the number of seconds elapsed since 00:00:00 on January
1, 1970, Coordinated Universal Time (UTC). The optional format argument is the
format in which the time should be spoken. (See voicemail.conf for a complete descrip-
tion of the format options.) format defaults to "ABdY 'digits/at' IMp". Acceptable

454 | Appendix C: AGI Reference

values for timezone can be found in /usr/share/zoneinfo/. timezone defaults to the default
time zone of the Asterisk server.

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DIGITS
SAY DIGITS number escape_digits

Says a given digit string, returning early if any of the given DTMF digits are received
on the channel.

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY NUMBER
SAY NUMBER number escape_digits

Says a given number, returning early if any of the given DTMF digits are received on
the channel.

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DIGITS | 455

SAY PHONETIC
SAY PHONETIC string escape_digits

Says a given character string with phonetics, returning early if any of the given DTMF
digits are received on the channel.

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY TIME
SAY TIME time escape_digits

Says the indicated time, returning early if any of the given DTMF digits are received on
the channel. The time is the number of seconds elapsed since 00:00:00 on January 1,
1970, Coordinated Universal Time (UTC).

Return values:

-1
Error or hangup

0
Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SEND IMAGE
SEND IMAGE image

Sends the given image on the current channel. Most channels do not support the trans-
mission of images. Image names should not include extensions.

Return values:

-1
Error or hangup

0
Image sent, or channel does not support sending an image

456 | Appendix C: AGI Reference

SEND TEXT
SEND TEXT "text_to_send"

Sends the specified text on the current channel. Most channels do not support the
transmission of text. Text consisting of more than one word should be placed in quotes,
since the command accepts only a single argument.

Return values:

-1
Error or hangup

0
Text sent, or channel does not support sending text

SET AUTOHANGUP
SET AUTOHANGUP time

Causes the channel to automatically be hung up once time seconds have elapsed. Of
course, it can be hung up before then as well. Setting time to 0 will cause the auto
hangup feature to be disabled on this channel.

Return value:

0
Autohangup has been set

SET CALLERID
SET CALLERID number

Changes the Caller ID of the current channel.

Return value:

1
Caller ID has been set

SET CONTEXT
SET CONTEXT context

Sets the context for continuation upon exiting the AGI application.

Return value:

SEND TEXT | 457

0
Context has been set

SET EXTENSION
SET EXTENSION extension

Changes the extension for continuation upon exiting the AGI application.

Return value:

0
Extension has been set

SET MUSIC ON
SET MUSIC ON [on|off] [class]

Enables/disables the music-on-hold generator. If class is not specified, the default mu-
sic-on-hold class will be used.

Return value:

0
Always returns 0

SET PRIORITY
SET PRIORITY priority

Changes the priority for continuation upon exiting the AGI application. priority must
be a valid priority or label.

Return value:

0
Priority has been set

SET VARIABLE
SET VARIABLE variablename value

Sets or updates the value for the variable name specified by variablename. If the variable
does not exist, it is created.

Return value:

458 | Appendix C: AGI Reference

1
Variable has been set

STREAM FILE
STREAM FILE filename escape_digits [sample_offset]

Play the audio file indicated by filename, allowing playback to be interrupted by the
digits specified by escape_digits, if any. Use double quotes for the digits if you wish
none to be permitted. If sample_offset is provided, the audio will seek to sample_off-
set before playback starts.

Remember, the file extension must not be included in the filename.

Return values:

0
Playback completed with no digit pressed

-1
Error or hangup

value
ASCII value of digit (if pressed), in decimal

TDD MODE

Enables and disables Telecommunications Devices for the Deaf (TDD) transmission/
reception on this channel. Return values:

0
Channel not TDD-capable

1
Success

VERBOSE
VERBOSE message level

Sends message to the console via the verbose message system. The level argument is
the minimum verbosity level at which the message will appear on the Asterisk com-
mand-line interface.

Return value:

0
Always returns 0

STREAM FILE | 459

WAIT FOR DIGIT
WAIT FOR DIGIT timeout

Waits up to timeout milliseconds for the channel to receive a DTMF digit. Use -1 for
the timeout value if you want the call to block indefinitely.

Return values:

-1
Error or channel failure

0
Timeout

value
ASCII value of digit (if pressed), in decimal

460 | Appendix C: AGI Reference

APPENDIX D

Configuration Files

This appendix contains a reference to the configuration files not covered
in the previous appendices. If you are looking for VoIP channel config-
urations, refer to Appendix A. For a dialplan reference, you’ll want to
use Appendix B.

A configuration file is required for each Asterisk module you wish to use. These .conf
files contain channel definitions, describe internal services, define the locations of other
modules, or relate to the dialplan. You do not need to configure all of them to have a
functioning system, only the ones required for your configuration. Although Asterisk
ships with samples of all of the configuration files, it is possible to start Asterisk without
any of them. This will not provide you with a working system, but it clearly demon-
strates the modularity of the platform.

If no .conf files are found, Asterisk will make some decisions with respect to modules.
For example, the following steps are always taken:

• The Asterisk Event Logger is loaded, and events are logged
to /var/log/asterisk/event_log.

• Manager actions are registered.

• The PBX core is initialized.

• The RTP port range is allocated from 5,000 through 31,000.

• Several built-in applications are loaded, such as Answer(), Background(), GotoIf(),
NoOp(), and Set().

• The dynamic loader is started; this is the engine responsible for loading modules
defined in modules.conf.

This appendix starts with an in-depth look at the modules.conf configuration file. We’ll
then briefly examine all the other files that you may need to configure for your Asterisk
system.

461

modules.conf
The modules.conf file controls which modules are loaded or not loaded at Asterisk
startup. This is done through the use of the load => or noload => constructs.

This file is a key component to building a secure Asterisk installation:
best practice suggests that only required modules be loaded.

The modules.conf file always starts with the [modules] header. The autoload statement
tells Asterisk whether to automatically load all modules contained within the modules
directory or to load only those modules specifically defined by load => statements. We
recommend you manually load only those modules you need, but many people find it
easier to let Asterisk attempt to autoload whatever it finds in /usr/lib/asterisk/modules.
You can then exclude* certain modules with noload => statements.

Here’s a sample modules.conf file:

[modules]
 autoload=no ; set this to yes and Asterisk will load any
 ; modules it finds in /usr/lib/asterisk/modules

 load => res_adsi.so
 load => pbx_config.so ; Requires: N/A
 load => chan_iax2.so ; Requires: res_crypto.so, res_features.so
 load => chan_sip.so ; Requires: res_features.so
 load => codec_alaw.so ; Requires: N/A
 load => codec_gsm.so ; Requires: N/A
 load => codec_ulaw.so ; Requires: N/A
 load => format_gsm.so ; Requires: N/A
 load => app_dial.so ; Requires: res_features.so, res_musiconhold.so

Since we assume Asterisk is built on Linux, all the module names we use end in a .so
extension. However, this may not be the case if you have built Asterisk on a different
operating system.

As of this writing, there are eight module types: resources, applications,
Call Detail Record database connectors, channels, codecs, formats, PBX modules, and
standalone functions. Let’s take a look at each of them.

adsi.conf
The Analog Display Services Interface (ADSI) was designed to allow telephone com-
panies to deliver enhanced services across analog telephone circuits. In Asterisk, you

* With the advent of the new menuselect system, this best practice may no longer be necessary if you are
building only the modules you need in the first place

462 | Appendix D: Configuration Files

can use this file to send ADSI commands to compatible telephones. Please note that
the phone must be directly connected to a Zapata channel. ADSI messages cannot be
sent across a VoIP connection to a remote analog phone.

The res_adsi.so module is required for the Voicemail() application; however, the
adsi.conf file is not necessarily used. Detailed information about ADSI is not publicly
available, and documentation needs to be purchased from Telcordia.

adtranvofr.conf
Prior to Voice over IP, Voice over Frame Relay (VoFR) enjoyed brief fame as a means
of carrying packetized voice. Supporting VoFR through Adtran equipment is part of
the history of Asterisk.

This feature is no longer popular in the community, though, so it may be difficult to
find support for it.

agents.conf
This file allows you to create and manage agents for your call center. If you are using
the Queue() application, you may want to configure agents for the queue. The
agents.conf file is used to configure the AGENT channel driver.

The [general] section in agents.conf currently contains only two parameters. The
persistentagents parameter tells Asterisk whether or not to save the status of agents
who use the callback feature of queues in the local Asterisk database. If set to yes, a
logged-in remote agent will then remain logged in across a reboot (unless removed from
the database through some other means). The multiplelogin parameter tells Asterisk
whether or not multiple agents can log in from the same extension.

The following parameters, which are specified in the [agents] section, are used to define
agents and the way the system interacts with them. The settings apply to all agents,
unless otherwise specified in the individual agent definitions:

maxlogintries
The maximum number of times an agent may attempt to log in. Defaults to 3.

autologoff
Accepts an argument (in seconds) defining how long an agent channel should ring
for before the agent is deemed unavailable and logged off.

autologoffunavail
Define autologoffunavail to have agents automatically logged out when the Dial
() application returns a CHANUNAVAIL status while trying to dial that agent. Default
is “no”.

adtranvofr.conf | 463

ackcall
Accepts the arguments yes and no. If set to yes, requires a callback agent to ac-
knowledge log in by pressing the # key after logging in. This works in conjunction
with the AgentCallbackLogin() application.

endcall
If set to yes, allows an agent to hang up a call by pressing the * key. Defaults to
yes. Set this to no to have Asterisk do nothing when the agent presses the * key.

wrapuptime
You can configure this parameter to allow agents a few seconds of downtime after
completing a call before the queue presents them with another call. This setting is
measured in milliseconds.

musiconhold => class
Accepts a music-on-hold class as its argument. This setting applies to all agents.

agentgoodbye
Defines the default goodbye sound for agents.

updatecdr
Accepts the arguments yes and no. Used to define whether the source channel in
the CDRs should be set to agent/agent_id to determine which agent generated the
calls.

group
Defines the groups to which an agent belongs, specified with integers. Specify that
an agent belongs to multiple groups by separating the integers with commas.

recordagentcalls
Accepts the arguments yes and no. Defines whether or not agent calls should be
recorded.

recordformat
Defines the format to record files in. The argument specified should be wav, gsm,
or wav49. The default recording format is wav.

urlprefix
Accepts a string as its argument. The string can be formed as a URL and is appended
to the start of the text to be added to the name of the recording.

savecallsin
Accepts a filesystem path as its argument. Allows you to override the default path
of /var/spool/asterisk/monitor/ with one of your choosing.

Since the storage of calls will require a large amount of hard drive
space, you will want to define a strategy to handle storing and
managing these recordings.

This location should probably reside on a separate volume, one
with very high performance characteristics.

464 | Appendix D: Configuration Files

custom_beep
Accepts a filename as its argument. Can be used to define a custom notification
tone to signal to an always-connected agent that there is an incoming call.

The final parameter is used to define agents. Just like in the zapata.conf file, configu-
ration parameters are inherited from above the agent => definition. Agents are defined
with the following format:

agent => agent_id,agent_password,name

For example, we can define agent Happy Tempura with the agent ID 1000 and pass-
word 1234, as follows.

agent => 1000,1234,Happy Tempura

Be aware that an agents.conf file is a complement to the queue configuration process.
The most critical configuration file for your queues is queues.conf. You can configure
a very basic queue without agents.conf.

alarmreceiver.conf
The AlarmReceiver() application is not approved by Underwriter’s Lab-
oratory (UL) and should not be used as the primary or sole means of
receiving alarm messages or events. This application is not guaranteed
to be reliable, so don’t depend on it unless you have extensively tested
it. Use of this application without extensive testing may place your life
and/or property at risk.

The alarmreceiver.conf file is used by the AlarmReceiver() application, which allows
Asterisk to accept alarms using the SIA (Ademco) Contact ID protocol. When a call is
received from an alarm panel, it should be directed to a context that calls the AlarmRe
ceiver() application. In turn, AlarmReceiver() will read the alarmreceiver.conf config-
uration file and perform the configured actions as required. All parameters are specified
under the [general] heading.

The sample configuration file will contain the current settings for this application and
is very well documented.

alsa.conf
The alsa.conf file is used to configure Asterisk to use the Advanced Linux Sound Ar-
chitecture (ALSA) to provide access to a sound card, if desired. You can use this file to
configure the CONSOLE channel, which is most commonly used to create an overhead
paging system (although, as with any other channel, there are all kinds of creative ways
this can be used). Keep in mind that the usefulness of the ALSA channel by itself is
limited due to its lack of a user interface.†

alarmreceiver.conf | 465

amd.conf
This is the configuration for the answering matching detection application in Asterisk,
called AMD(). It is used to adjust the different parameters for detecting an answering
machine based on items such as initial silence, greeting length, silence after the greeting,
and so forth.

asterisk.conf
The asterisk.conf file defines the locations for the configuration files, the spool direc-
tory, and the modules, as well as a location to write logfiles to. The default settings are
recommended unless you understand the implications of changing them. The
asterisk.conf file is generated automatically when you run the make samples command,
based on information it collects about your system. It will contain a [directories]
section such as the following:

[directories]
astetcdir => /etc/asterisk
astmoddir => /usr/lib/asterisk/modules
astvarlibdir => /var/lib/asterisk
astdatadir => /var/lib/asterisk
astagidir => /var/lib/asterisk/agi-bin
astspooldir => /var/spool/asterisk
astrundir => /var/run
astlogdir => /var/log/asterisk

Additionally, you can specify an [options] section, which will allow you to define
startup options (command-line switches) in the configuration file. The following ex-
ample shows the available options and the command-line switches that they effectively
enforce:

[options]
;Under "options" you can enter configuration options
;that you also can set with command line options

verbose = 0 ; Verbosity level for logging (-v)
debug = 3 ; Debug: "No" or value (1-4)
nofork=yes | no ; Background execution disabled (-f)
alwaysfork=yes | no ; Always background, even with -v or -d (-F)
console= yes | no ; Console mode (-c)
highpriority = yes | no ; Execute with high priority (-p)
initcrypto = yes | no ; Initialize crypto at startup (-i)
nocolor = yes | no ; Disable ANSI colors (-n)
dumpcore = yes | no ; Dump core on failure (-g)
quiet = yes | no ; Run quietly (-q)
timestamp = yes | no ; Force timestamping in CLI verbose output (-T)

† Yes, we are aware that the user interface to the channel interface is the Asterisk CLI; however, this is not
usable as a telephone and therefore does not meet the criteria of an interface from the perspective of a
telephone user.

466 | Appendix D: Configuration Files

runuser = asterisk ; User to run asterisk as (-U) NOTE: will require changes to
 ; directory and device permissions
rungroup = asterisk ; Group to run asterisk as (-G)
internal_timing = yes | no ; Enable internal timing support (-I)
 ; These options have no command line equivalent
cache_record_files = yes | no ; Cache record() files in another directory until
 ; completion
record_cache_dir = <dir>
transcode_via_sln = yes | no ; Build transcode paths via SLINEAR
transmit_silence_during_record = yes | no ; send SLINEAR silence while channel is
 ; being recorded
maxload = 1.0 ; The maximum load average we accept calls for
maxcalls = 255 ; The maximum number of concurrent calls you want
 ; to allow
execincludes = yes | no ; Allow #exec entries in configuration files
dontwarn = yes | no ; Don't over-inform the Asterisk sysadm, he's a guru
systemname = <a_string> ; System name. Used to prefix CDR uniqueid and to
 ; fill ${SYSTEMNAME}
languageprefix = yes | no ; Should language code be last component of sound file
 ; name or first?
 ; When off, sound files are searched as
 ; <path>/<lang>/<file>
 ; When on, sound files are search as <lang>/<path>/<file>
 ; (only affects relative paths for sound files)

cdr.conf
The cdr.conf file is used to enable call detail record logging to a flat file or a database.
Storing call records is useful for all sorts of purposes including billing, fraud prevention,
QoS evaluations, and more. The cdr.conf file contains some general parameters that
are not specific to any particular database, but rather indicate how Asterisk should
handle the passing of information to the database. All options are under the
[general] heading of the cdr.conf file:

enable
Accepts the arguments yes and no. Specifies whether or not to use CDR logging. If
set to no, this will override any CDR module explicitly loaded. The default is yes.

batch
Accepts the arguments yes and no. Allows Asterisk to write data to a buffer instead
of writing to the database at the end of every call, to reduce load on the system.

Note that if the system dies unexpectedly when this option is set
to yes, data loss may occur.

cdr.conf | 467

size
Sets the maximum number of CDRs to accumulate in the buffer before posting to
the backend CDR storage systems. This setting only takes effect if the batch setting
is set to yes. This setting defaults to 100 records.

time
Accepts an integer (in seconds) as its argument. Sets the number of seconds before
Asterisk flushes the buffer and writes the CDRs to the database, regardless of the
number of records in the buffer (as defined by size). The default is 300 seconds (5
minutes).

scheduleronly
Accepts the arguments yes and no. If you are generating a massive volume of CDRs
on a system that is pushing them to a remote database, setting scheduleronly to
yes may be of benefit. Since the scheduler cannot start a new task until the current
one is finished, slow CDR writes may adversely affect other processes needing the
scheduler. This setting will instruct Asterisk to handle CDR writes in a new thread,
essentially assigning a dedicated scheduler to this function. In normal operation,
this would yield very little benefit.

safeshutdown
Accepts the arguments yes and no. Setting safeshutdown to yes will prevent Asterisk
from shutting down completely until the buffer is flushed and all information is
written to the database. If this parameter is set to no and you shut down Asterisk
with information still residing in the buffers, that information will likely be lost.

endbeforehexten
Normally, CDR records are not closed out until after all extensions are finished
executing. By enabling this option, the CDR will be ended before executing the h
extension so that CDR values such as end and billsec may be retrieved inside of
this extension. Defaults to no.

The rest of cdr.conf contains setup for several of the backend CDR engines. See the
sample cdr.conf for more information.

cdr_manager.conf
The cdr_manager.conf file simply contains a [general] heading and a single option,
enabled, which you can use to specify whether or not the Asterisk Manager API gen-
erates CDR events. If you want CDR events to be generated, you will need the following
lines in your cdr_manager.conf file:

[general]
enabled=yes

The Manager API will then output CDR events containing the following fields:

Event: Cdr
AccountCode:

468 | Appendix D: Configuration Files

Source:
Destination:
DestinationContext:
CallerID:
Channel:
DestinationChannel:
LastApplication:
LastData:
StartTime:
AnswerTime:
EndTime:
Duration:
BillableSeconds:
Disposition:
AMAFlags:
UniqueID:
UserField:

cdr_odbc.conf
Asterisk can store CDR data in a local or remote database via the ODBC interface. The
cdr_odbc.conf file contains the information Asterisk needs to connect to the database.
The cdr_odbc.so module will attempt to load the cdr_odbc.conf file, and if information
is found for connecting to a database, the CDR data will be recorded there.

If you are going to use a database for storing CDR data, you will have
to select one of the many that are available. Asterisk does not like having
multiple CDR databases to connect to, so do not have extra
cdr_engine.conf files hanging about your Asterisk configuration
directory.

cdr_pgsql.conf
Asterisk can store CDR data in a PostgreSQL database via the cdr_pgsql.so module.
When the module is loaded the necessary information will be read from the
cdr_pgsql.conf file, and Asterisk will connect to the PostgreSQL database to write and
store CDR data.

cdr_tds.conf
Asterisk can also store CDR data to a FreeTDS database (including MS SQL) with the
use of the cdr_tds.so module. The configuration file cdr_tds.conf is read once the module
is loaded. Upon a successful connection, CDR data will be written to the database.

cdr_odbc.conf | 469

codecs.conf
Most codecs do not have any configurable parameters; they are what they are, and
that’s all they are.

Some codecs, however, are capable of behaving in different ways. This primarily means
that they can be optimized for a particular goal, such as cutting down on latency, mak-
ing best use of a network, or perhaps delivering high quality audio.

The codecs.conf file is fairly new in Asterisk, and as of this writing it allows configuration
of Speex parameters only. The settings are self-explanatory, as long as you are familiar
with the Speex protocol (see http://www.speex.org).

codecs.conf also allows you to configure Packet Loss Concealment (PLC). You need to
define a [plc] section and indicate genericplc => true. This will cause Asterisk to
attempt to interpolate any packets that are missed. (Enabling this functionality will
incur a small performance penalty.)

dnsmgr.conf
This file is used to configure whether Asterisk should perform DNS lookups on a regular
basis, and how often those lookups should be performed.

dundi.conf
The DUNDi protocol is used to dynamically look up the VoIP address of a phone
number on a network, and to connect to that address. Unlike the ENUM standard,
DUNDi has no central authority. The dundi.conf file contains DUNDi extensions used
to control what is advertised; it also contains the peers to whom you will submit lookup
requests and from whom you will accept lookup requests. The DUNDi protocol was
explored in Chapter 14.

enum.conf
The Electronic Numbering (ENUM) system is used in conjunction with the Internet’s
DNS system to map E.164 ITU standard (ordinary telephone) numbers to email ad-
dresses, web sites, VoIP addresses, and the like. An ENUM number is created in DNS
by reversing the phone number, separating each digit with a period, and appending
e164.arpa (the primary DNS zone). If you want Asterisk to perform ENUM lookups,
configure the domain(s) in which to perform the lookups within the enum.conf file. In
addition to the official e164.arpa domain, you can have Asterisk perform lookups in
the publicly accessible e164.org domain.

470 | Appendix D: Configuration Files

http://www.speex.org

extconfig.conf
Asterisk can write configuration data to and load configuration data from a database
using the external configuration engine (also known as realtime). This enables you to
map external configuration files (static mappings) to a database, allowing the infor-
mation to be retrieved from the database. It also allows you to map special runtime
entries that permit the dynamic creation and loading of objects, entities, peers, and so
on without a reload. These mappings are assigned and configured in the
extconfig.conf file, which is used by both res_odbc and realtime.

extensions.conf
At the center of every good universe is a dialplan. The extensions.conf file is the means
by which you tell Asterisk how you want calls to be handled. The dialplan contains a
list of instructions that, unlike traditional telephony systems, is entirely customizable.
The dialplan is so important that rather than defining it in this appendix, we have
dedicated all of Chapters 5 and 6, as well as Appendix B, to this topic. Go forth, read,
and enjoy!

extensions.ael
This file is the equivalent of extensions.conf, only it’s for dialplans written in the AEL
language. When Asterisk loads the dialplan, it reads the AEL dialplan from exten
sions.ael and merges it with the dialplan from extensions.conf.

features.conf
features.conf, the file formally known as parking.conf, contains configuration informa-
tion related to call parking and call transfers. Call parking configuration options
include:

• The extension to dial to park calls (parkext =>)

• The extension range to park calls in (parkpos =>)

• Which context to park calls in (context =>)

• How long a call can remain parked for before ringing the extension that parked it
(parkingtime =>)

• The sound file played to the parked caller when the call is removed from parking
(courtesytone =>)

• ADSI parking announcements (asdipark=yes|no)

extconfig.conf | 471

In addition to the call parking options, in this file you can configure the button map-
pings for blind transfers, attended transfers, one-touch recording, disconnections, and
the pickup extension (which allows you to answer a remotely ringing extension).

festival.conf
The Festival text-to-speech engine allows Asterisk to read text files to the end user with
a computer-generated voice. Festival is covered in Chapter 14.

followme.conf
The term findme/follow me is intended to give the impression that a PBX system has
the intelligence to locate a user wherever they may be, such that their calls will find
them and follow them. The followme.conf file is used to configure the FollowMe() dia-
lplan application.

func_odbc.conf
The func_odbc dialplan function was one of the most anticipated capabilities to have
been added to Asterisk 1.4. This function provides a simple mechanism with which to
connect to ODBC databases through the dialplan. The SQL queries are defined in this
configuration file, and a dialplan function is automatically created.

gtalk.conf
This configuration file is used to specify the parameters for connectivity with Google
Talk.

http.conf
Asterisk has a very simple HTTP daemon built into it, which is used by the Asterisk
GUI and AJAM. This functionality is discussed in Chapter 11.

iax.conf
Similar to sip.conf, the iax.conf file is where you configure options related to the IAX
protocol. Your end devices and service providers are also configured here. The
iax.conf file is covered in detail in Appendix A.

472 | Appendix D: Configuration Files

iaxprov.conf
This file is used by Asterisk to allow the system to provision and upgrade the firmware
on an IAXy device.

indications.conf
The indications.conf file is used to tell Asterisk how to generate the various telephone
sounds common in different parts of the world; a dial tone in England sounds very
different from a dial tone in Canada, but your Asterisk system will be pleased to make
the sounds you want to hear. This file consists of a list of sounds a telephone system
might need to produce (dial tone, busy signals, and so forth), followed by the frequen-
cies used to generate those sounds.

By default (and without an indications.conf file), Asterisk will use the tones common
in North America. You can change the default country for your system by specifying
the two-letter country code in the [general] section. Supported country codes are listed
in the indications.conf.sample file located in /usr/src/asterisk/configs. If you have the
required information, your country can easily be added. Here’s what the configuration
for North America looks like:

[general]
country=us
;
[us]
description = United States / North America
ringcadance = 2000,4000
dial = 350+440
busy = 480+620/500,0/500
ring = 440+480/2000,0/4000
congestion = 480+620/250,0/250
callwaiting = 440/300,0/10000
dialrecall = !350+440/100,!0/100,!350+440/100,!0/100,!350+440/100,!0/100,350+440
record = 1400/500,0/15000
info = !950/330,!1400/330,!1800/330,0

jabber.conf
The jabber.conf file specifies the information needed to allow Asterisk to interact with
an XMPP (Jabber) server.

logger.conf
The logger.conf file specifies the type and verbosity of messages logged to the various
logfiles in the /var/log/asterisk/ directory. It has two sections, [general] and [logfile].

iaxprov.conf | 473

[general]
Settings under the [general] section are used to customize the output of the logs (and
can safely be left blank, as the defaults serve most people very well). However, if you
love to customize such things, read on.

You can define exactly how you want your timestamps to look through the use of the
dateformat parameter:

dateformat=%F %T

The Linux manpage for strftime(3) lists all of the ways you can do this.

If you want to append your system’s hostname to the names of the logfiles, set append
hostname=yes. This can be useful if you have a lot of systems delivering logfiles to you.

If for some reason you do not want to log events from your queues, you can set
queue_log=no.

If generic events do not interest you, instruct Asterisk to omit them from the logfiles
by setting event_log=no.

[logfiles]
The [logfiles] section defines the types of information you wish to log. There are
multiple ranks for the various bits of information that will be logged, and it can be
desirable to separate log entries into different files. The general format for lines in the
[logfiles] section is filename => levels, where filename is the name of the file to save
the logged information to and levels are the types of information you wish to save.

Using console for the filename is a special exception that allows you to
control the type of information sent to the Asterisk console.

A sample [logfiles] section might look like this:

[logfiles]
console => notice,warning,error
messages => notice,warning,error

You can specify logging of the following types of information:

debug
Enabling debugging gives far more detailed output about what is happening in the
system. For example, with debugging enabled, you can see what DTMF tones the
users entered while accessing their voicemail boxes. Debugging information should
be logged only when you are actually debugging something, as it will create massive
logfiles very rapidly.

474 | Appendix D: Configuration Files

verbose
When you connect to the Asterisk console and set a verbosity of 3 or higher, you’ll
see output on the console showing what Asterisk is doing. You can save this output
to a logfile by adding a line such as verbose_log => verbose to your logger.conf file.
Note that a high amount of verbosity can quickly eat up hard drive space.

notice
A notice is used to inform you of minor changes to the system, such as when a peer
changes state. It is normal to see these types of messages, and the events they
indicate generally have no adverse effects on the server.

warning
A warning happens when Asterisk attempts to do something and is unsuccessful.
These types of errors are usually not fatal, but they should be investigated, espe-
cially if a lot of them are seen.

error
Errors are often related to Out of Memory errors. They generally indicate serious
problems that may lead to Asterisk to crash or freeze.

manager.conf
The Asterisk Manager Interface is an API that external programs can use to commu-
nicate with and control Asterisk, much as you would do from the Asterisk console.

The Manager gives programs the ability to run commands and request
information from the Asterisk server. However, it is not very secure; its
authentication mechanism defaults to using plain-text passwords, and
all connected terminals default to receiving all events. The Asterisk
Manager should be used only on a trusted local area network, or locally
on the box. The permit and deny constructs allow you to restrict access
to certain extensions or subnets.

Many of the available graphical interfaces to Asterisk—such as the Flash Operator
Panel—use the Manager to pull data and determine the status of applications. The
manager.conf file defines the way programs authenticate with the Manager.

The Manager commands (which you can list by typing show manager commands at the
Asterisk console) have varying degrees of privilege. You can control the read and write
permissions for these commands with the use of the read and write options in the
manager.conf file.

Here’s a sample manager.conf file:

[general]
enabled = no
port = 5038
bindaddr = 0.0.0.0

manager.conf | 475

[oreilly]
secret = notvery
deny=0.0.0.0/0.0.0.0
permit= 192.168.1.0/255.255.255.0
read = system,call,log,verbose,command,agent,user,config
write = system,call,log,verbose,command,agent,user,config

For more information on the Asterisk Manager Interface, see Chapter 10.

meetme.conf
MeetMe is one of the more remarkable applications in Asterisk. It allows you to set up
predefined audio conference rooms. This rather simple concept has proven to be ex-
tremely expensive to implement in every other PBX, but what seems like a big deal to
them is simple to Asterisk. Whether by using a dedicated server, or through the use of
a service, Asterisk now delivers this functionality as a standard application.

MeetMe conferences can be created either dynamically, with the d flag in the Dial()
application, or statically in the meetme.conf file. The format for creating conference
rooms is as follows:

conf => conference_number[,pin][,administrator_pin]

All conferences must be defined under the [rooms] section header.

[rooms]
conf => 4569
conf => 5060,54377017
conf => 3389,4242,1337
conf => 333,,2424

mgcp.conf
The Media Gateway Control Protocol (MGCP) has only primitive support in Asterisk.
This is likely due to the fact that SIP has stolen the limelight from every other VoIP
protocol (except IAX, of course). Because of this, you should attempt to use Asterisk’s
MCGP channel in a production environment only if you are prepared to perform ex-
tensive testing, are willing to pay to have features and patches implemented within your
time frames, and have in-house expertise with the protocol.

Having said that, we are not prepared to pronounce MGCP dead. SIP is not yet the
panacea it has been touted as, and MGCP has proven itself to be very useful in carrier
backbone environments. Many believe MGCP will fill a niche or void that has not yet
been discovered, and we remain interested in it.

476 | Appendix D: Configuration Files

modem.conf
The modem.conf file is used by Asterisk to communicate with ISDN-BRI interfaces
through the ISDN4Linux driver. Since ISDN4Linux lacks many core ISDN features, it
is not generally used. For BRI, the most popular add-on seems to be chan_capi, available
from http://www.junghanns.net.

musiconhold.conf
The musiconhold.conf file is used to configure different classes of music and their lo-
cations for use in music-on-hold applications. Asterisk can play hold music in any
native file formats. Asterisk can also makes use of a certain version of mpg123 to play
MP3 files, but this is discouraged. You can specify arguments for a class, allowing you
to use an external application to stream music either locally or over a network.

osp.conf
The Open Settlement Protocol (OSP) is officially documented in ETSI TS 101 321, a
European Telecommunication Standards Institute (ETSI) document that came out of
the work of the TIPHON working group. As far as we can tell, OSP is another attempt
to apply old-style telecom thinking to disruptive technologies.

oss.conf
The oss.conf file is used to configure Asterisk to use the Open Sound System (OSS)
driver to allow communications with the sound card via the CONSOLE channel. Note
that ALSA is now the preferred interface for the CONSOLE channel.

phone.conf
The phone.conf file is used to configure a Quicknet PhoneJACK card. The PhoneJACK
card seems to provide something like an FXS interface, in that you can plug an analog
telephone into it and pass calls through Asterisk.

privacy.conf
The privacy.conf file is used to control the maximum number of tries a user has to enter
his 10-digit telephone number in the PrivacyManager() application. The
PrivacyManager() application determines if a Caller ID is set for the incoming call. The
user enters his 10-digit number within the number of tries configured in privacy.conf,
the application sets the PRIVACYMGRSTATUS channel variable to either SUCCESS or
FAILED. If the Caller ID is set, the application does nothing.

modem.conf | 477

http://www.junghanns.net

The PrivacyManager() application can also accept the arguments in the
dialplan. This allows the value to remain in memory, instead of an I/O
operation to the disk to read the configuration file, which you would
only worry about with high usage of this application (many calls per
second).

queues.conf
Asterisk provides basic call center functionality via its queueing system, but those who
are using it in more mission-critical environments often report that their solutions re-
quired customization. You can do this customization in the queues.conf file.

The [general] section of queues.conf contains settings that will apply to all queues. If
the persistentmembers parameter is set to yes, a member that is added to the system
via the AddQueueMember() application or through the Asterisk Manager Interface will be
stored in the AstDB, and therefore retained across a restart.

The autofill parameter allows Asterisk to be more efficient in the way it distributes
calls to queue members, especially if there are multiple callers in the queue and multiple
queue members available to receive the call. It is recommended you set autofill to yes.

Another general parameter of queues.conf is MonitorType. If set to MixMonitor, it will
mix the inbound and outbound audio streams. If set to Monitor, it will revert to the
older method of recording the inbound and outbound audio in separate files.

Next you can define one or more queues by placing its name inside of square brackets
([]). Within each queue, the following parameters are available:

musiconhold
This parameter allows you to configure which music-on-hold class (configured in
musiconhold.conf) to use for the queue.

announce
When a call is presented to a member of the queue, the prompt specified by
announce will be played to that agent before the caller is connected. This can be
useful for agents who are logged in to more than one queue. You can specify either
the full path to the file, or a path relative to /var/lib/asterisk/sounds/.

strategy
Asterisk can use six strategies to distribute calls to agents:

ringall
The queue rings every available agent and connects the call to whichever agent
answers first (this is the default).

roundrobin (deprecated)
The queue cycles through the agents until it finds one who is available to take
the call. roundrobin does not take into account the workload of the agents.
Also, because roundrobin always starts with the first agent in the queue, this

478 | Appendix D: Configuration Files

strategy is suitable only in an environment where you want your higher-ranked
agents to handle all calls unless they are busy, in which case the lower-ranked
agents may get a call.

leastrecent
The call is presented to the agent who has not been presented a call for the
longest period of time.

fewestcalls
The call is presented to the agent who has received the least amount of calls.
This strategy does not take into account the actual agent workloads; it con-
siders only the number of calls they have taken (for example, an agent who
has had 3 calls that each lasted for 10 minutes will be preferred over an agent
who has had 5 calls each lasting 2 minutes).

random
As its name suggests, the random strategy chooses an agent at random. In a
small call center, this strategy may prove to be the most fair.

rrmemory
The queue cycles through the list of queue members, keeping track of which
member last received a call. The next time a call needs to be distributed, As-
terisk will continue from this point in the list of queue members. (This strategy
is known as round-robin memory). This ensures that call presentation cycles
through the agents as fairly as possible.

servicelevel
In a call center, the service level represents the maximum amount of time a caller
should ideally have to wait before being presented to an agent. For example, if
servicelevel is set to 60 and the service level percentage is 80 percent, that means
80 percent of the calls that came into the queue were presented to an agent in less
than 60 seconds.

context
If a context is assigned to a queue, the caller will be able to press a single digit to
exit to the corresponding extension within the configured context, if it exists. This
action takes the caller out of the queue, which means that she will lose her place
in line—be aware of this when you use this feature.

timeout
The timeout value defines the maximum amount of time (in seconds) to let an
agent’s phone ring before deeming the agent unavailable and placing the call back
into the queue.

retry
When a timeout occurs, the retry value specifies how many seconds to wait before
presenting the call again to an available agent.

queues.conf | 479

weight
The weight parameter assigns a rank to the queue. If calls are waiting in multiple
queues, those queues with the highest weight values will be presented to agents
first. When you are designing your queues, be aware that this strategy can prevent
a call in a lower-weighted queue from ever being answered. Always ensure that
calls in lower-weighted queues eventually get promoted to higher-weighted queues
to ensure that they don’t have to hold forever.

maxlen
maxlen is the maximum number of calls that can be added to the queue before the
call goes to the next priority of the current extension.

announce-frequency
The announce-frequency value (defined in seconds) determines how often to an-
nounce to the caller his place in the queue and estimated hold time.

announce-holdtime
There are three possible values for this parameter: yes, no, and once. The announce-
holdtime parameter determines whether or not to include the estimated hold time
within the position announcement. If set to once, it will be played to the caller only
once.

monitor-format
This parameter accepts three possible values: wav, gsm, and wav49. By enabling this
option, you are telling Asterisk that you wish to record all completed calls in the
queue in the format specified. If this option is not specified, no calls will be
recorded.

monitor-join
The Monitor() application in Asterisk normally records either end of the conver-
sation in a separate file. Setting monitor-join to yes instructs Asterisk to merge the
files at the end of the call. This should be set only if the MonitorType parameter is
set to Monitor.

joinempty
This parameter accepts three values: yes, no, and strict. It allows you to determine
whether callers can be added to a queue based on the status of the members of the
queue. The strict option will not allow callers to join the queue if all members are
unavailable.

leavewhenempty
This parameter determines whether you want your holding callers to be removed
from the queue when the conditions preventing a caller from joining exist (i.e.,
when all of your agents log out and go home).

eventwhencalled
Set eventwhencalled to yes if you wish to have queue events presented on the Man-
ager Interface.

480 | Appendix D: Configuration Files

eventmemberstatusoff
Setting this parameter to no will generate extra information pertaining to each
queue member.

reportholdtime
If you set this parameter to yes, the amount of time the caller held before being
connected will be announced to the queue member answering the call.

memberdelay
This parameter defines whether a delay will be inserted between the time when the
queue identifies a free agent and the time when the call is connected to that agent.

member => member_name
Members of a queue can be either channel types or agents. Any agents you list here
must be defined in the agents.conf file.

res_odbc.conf
The purpose of the res_odbc.so module is to store configuration file information in a
database and retrieve that information from the database. The res_odbc.conf file speci-
fies how to access the table within the database. The extconfig.conf file is used to
determine how to connect to the database.

res_snmp.conf
The res_snmp.conf file is used to configure SNMP support in Asterisk. There are two
options in the [general]. The subagent option specifies whether res_snmp should run
as a subagent or a full SNMP agent. Asterisk defaults to running as a subagent. The
enabled option specifies whether SNMP support in Asterisk is enabled. This defaults
to no, so you’ll need to change this if you want SNMP support.

rpt.conf
The rpt.conf file is used to configure Jim Dixon’s newest project, Jim’s Radio Repeater
Application (app_rpt), allows Asterisk to communicate using VoIP via radio repeater
technology. This allows people to efficiently provide large-area coverage of wireless
networking and routing information to the amateur radio public through their local
high-speed Internet connections.

rtp.conf
The rtp.conf file controls the Real-time Transport Protocol (RTP) ports that Asterisk
uses to generate and receive RTP traffic. The RTP protocol is used by SIP, H.323,
MGCP, and possibly other protocols to carry media between endpoints.

res_odbc.conf | 481

The default rtp.conf file uses the RTP port range of 10,000 through 20,000. However,
this is far more ports than you’re likely to need, and many network administrators may
not be comfortable opening up such a large range in their firewalls. You can limit the
RTP port range by changing the upper and lower bound limits within the rtp.conf file.

For every bidirectional SIP call between two endpoints, five ports are generally used:
port 5060 for SIP signaling, one port for the data stream and one port for the Real-Time
Control Protocol (RTCP) in one direction, and an additional two ports for the data
stream and RTCP in the opposite direction.

UDP datagrams contain a 16-bit field for a Cyclic Redundancy Check (CRC), which is
used to verify the integrity of the datagram header and its data. It uses polynomial
division to create the 16-bit checksum from the 64-bit header. This value is then placed
into the 16-bit CRC field of the datagram, which the remote end can then use to verify
the integrity of the received datagram.

Setting rtpchecksums=no requests that the OS not do UDP checksum creating/checking
for the sockets used by RTP. If you add this option to the sample rtp.conf file, it will
look like this:

[general]
rtpstart=10000
rtpend=20000
rtpchecksums=no

say.conf
The say.conf file is used to configure spoken language grammar rules for a number of
applications, such as SayNumber(). If you’re looking to use Asterisk in a language that
isn’t currently supported, you can script support through the configuation options in
this file.

sip.conf
The sip.conf file defines all the SIP protocol options for Asterisk. The authentication
for endpoints, such as SIP phones and service providers, is also configured in this file.
Asterisk uses the sip.conf file to determine which calls you are willing to accept and
where those calls should go in relation to your dialplan. Many SIP-related options are
configured in sip.conf, which was covered in depth in Appendix A.

sip_notify.conf
Asterisk has the ability to remotely notify a SIP phone to recheck its configuration files
or reboot by sending it a specially formatted, manufacturer-specific NOTIFY message

482 | Appendix D: Configuration Files

(defined in sip_notify.conf). Because each of these messages is manufacturer-specific,
support varies from phone to phone.

skinny.conf
If you wish to connect to phones using Cisco’s proprietary Skinny Client Control Pro-
tocol (SCCP), you can use the skinny.conf file to define the parameters and channels
that will use it. However, since the SCCP protocol is proprietary, you may find that
support in Asterisk for this protocol is less than perfect but steadily improving over time.

sla.conf
Even though Asterisk is a modern PBX, many people still want it to behave like an old
key system with shared lines. Asterisk can emulate a key system by configuring shared
lines in sla.conf.

smdi.conf
This file configures the Station Message Desk Interface. SMDI is a very useful addition
to Asterisk, as it will allow it to act as a voicemail system for legacy PBXes that support
the SMDI protocol.

udptl.conf
This file is used for the configuration of Asterisk’s support for UDPTL packets. UDPTL
packets are one of the transports used by T.38 faxing over IP connections.

users.conf
With the advent of the Asterisk GUI, the Asterisk developers found it would be helpful
to create a configuration file where user accounts can be specified, instead of having
different pieces spread across a myriad of files (such as extensions.conf, sip.conf, and
voicemail.conf. This file is also updated by the Asterisk GUI when new users are added
to the system or when user settings are modified.

voicemail.conf
The voicemail.conf file controls the Asterisk voicemail system (called Comedian Mail).
It consists of three main sections. The first, called [general], sets the general system-
wide settings for the voicemail system. The second, called [zonemessages], allows you
to configure different voicemail zones, which are a collection of time and time zone

skinny.conf | 483

settings. The third and final section is where you create one or more groups of voicemail
boxes, each containing the mailbox definitions. For more information on adding voi-
cemail capabilities to your dialplan, see Chapter 6.

General Voicemail Settings
The [general] section of voicemail.conf contains a plethora of options that affect the
entire voicemail system:

format
Lists the codecs that should be used to save voicemail messages. Codecs should be
separated with the pipe character (|). The first format specified is the format used
when attaching a voicemail message to an email. Defaults to wav49|gsm|wav. The
reason that the voicemail might be saved in several different formats is to minimize
the amount of transcoding that Asterisk does when the voicemail is played back.

serveremail
Provides the email address from which voicemail notifications should be sent.

attach
Specifies whether or not Asterisk should attach the voicemail sound file to the
voicemail notification email.

maxmsg
Sets the maximum number of messages that may be kept in any voicemail folder.

maxmessage
Sets the maximum length of a voicemail message, in seconds.

minmessage
Sets the minimum length of a voicemail message, in seconds.

maxgreet
Sets the maximum length of voicemail greetings, in seconds.

skipms
Specifies how many milliseconds to skip forward/back when the user skips forward
or backward during message playback.

maxsilence
Indicates how many seconds of silence to allow before ending the recording.

silencethreshold
Sets the silence threshold (what we consider “silence”—the lower the threshold is,
the more sensitive it is).

maxlogins
Sets the maximum allowed number of failed login attempts.

userscontext
Specifies which voicemail context the mailboxes defined in users.conf should be a
part of. This defaults to the default voicemail context.

484 | Appendix D: Configuration Files

externnotify
Supplies the full path and filename of an external program to be executed when a
voicemail is left or delivered, or when a mailbox is checked. It can also be set to
smdi to use SMDI for external notification. If it is smdi, the smdiport should be set
to a valid port as specified in smdi.conf.

smdiport
Specifies the communications port used by SMDI. This should correspond to a
valid port as specified in smdi.conf. This is used when the externnotify setting is
set to smdi.

externpass
Supplies the full path and filename of an external program to be executed whenever
a voicemail password is changed.

directoryintro
If set, overrides the default introduction to the dial-by-name directory.

charset
Defines the character set for voicemail messages.

adsifdn
Specifies the ADSI feature descriptor number to download to.

adsisec
Sets the ADSI security lock code.

adsiver
Indicates the ADSI voicemail application version number.

pbxskip
Causes Asterisk not to add the string [PBX]: to the beginning of the subject line of
a voicemail notification email.

fromstring:
Changes the From: string of voicemail notification email messages.

usedirectory
Permits a mailbox owner to select entries from the dial-by-name directory for for-
warding and/or composing new voicemail messages.

odbcstorage
If support for ODBC voicemail storage has been compiled into Asterisk, this option
allows you to specify which ODBC connection to use. ODBC connections are
defined in res_odbc.conf.

odbctable
This option is used in conjunction with the odbcstorage option. This option speci-
fies which database table to use for voicemail messages.

emailsubject
Specifies the email subject of voicemail notification email messages.

voicemail.conf | 485

pagerfromstring
Changes the From: string of voicemail notification pager messages.

emailbody
Supplies the email body of voicemail notification email messages.

Please note that all the emailsubject, emailbody, pagersubject, and
pagerbody settings can use the following variables to provide more
in-depth information about the voicemail:

• VM_NAME

• VM_DUR

• VM_MSGNUM

• VM_MAILBOX

• VM_CALLERID

• VM_CIDNUM

• VM_CIDNAME

• VM_DATE

emaildateformat
Specifies the format of the date and time for outbound email notifications. For
more information on the format, see the strftime(3) manpage.

mailcmd
Supplies the full path and filename of the program Asterisk should use to send
notification emails. This option is useful if you want to override the default email
program.

nextaftercmd
Skips to the next message after the user hits 7 or 9 to delete or save the current
message. This can be set only globally at this time, not on a per-mailbox basis.

Voicemail Zones
As voicemail users may be located in different geographical locations, Asterisk provides
a way to configure the time zone and the way the time is announced for different callers.
Each unique combination is known as a voicemail zone. You configure your voicemail
zones in the [zonemessages] section of voicemail.conf. Later, you can assign your voi-
cemail boxes to use the settings for one of these zones.

Each voicemail zone definition consists of a line with the following syntax:

zonename=timezone | time_format

The zonename is an arbitrary name used to identify the zone. The timezone argument is
the name of a system time zone, as found in /usr/share/zoneinfo. The time_format ar-

486 | Appendix D: Configuration Files

gument specifies how times should be announced by the voicemail system. The
time_format argument is made up of the following elements:

' filename '
The filename of a sound file to play (single quotes around the filename are required)

${VAR}
Variable substitution

A or a
The day of the week (Saturday, Sunday, etc.)

B or b or h
The name of the month (January, February, etc.)

d or e
The numeric day of the month (first, second... thirty-first)

Y
The year

I or l
The hour, in 12-hour format

H
The hour, in 24-hour format—single-digit hours are preceded by “oh”

k
The hour, in 24-hour format—single-digit hours are not preceded by “oh”

M
The minute

P or p
A.M. or .P.M.

Q
“today”, “yesterday,” or ABdY (note: not standard strftime value)

q
“” (for today), “yesterday”, weekday, or ABdY (note: not standard strftime value)

R
24-hour time, including minutes

For example, the following example sets up two different voicemail zones, one for the
Central time zone in 12-hour format, and a second in the Mountain time zone, in 24-
hour format:

[zonemessages]
central=America/Chicago|'vm-received' Q 'digits/at' IMp
mountain24=America/Denver|'vm-received' q 'digits/at' H 'digits/hundred' M 'hours'

voicemail.conf | 487

Defining Voicemail Contexts and Mailboxes
Now that the system-wide settings and voicemail zones have been set, you can define
your voicemail contexts and individual mailboxes.

Voicemail contexts are used to separate out different groups of voicemail users. For
example, if you are using Asterisk to host voicemail for more than one company, you
should place each company’s mailboxes in different voicemail contexts, to keep them
separate. You might also use voicemail contexts to create per-department dial-by-name
directories.

To define a new voicemail context, simply put the context name inside of square
brackets, like this:

[default]

Inside a voicemail context, each mailbox definition takes the following syntax:

mailbox=password,name[,email[,pager_email[,options]]]

The mailbox argument is the mailbox number.

The password argument is the numeric code the mailbox owner must enter to access
his voicemail. If the password is preceded by a minus sign (-), the password may not
be changed by the mailbox owner.

If the password is set to d, then this line is assumed to provide an alter-
nate name that can be used for this mailbox in the dial-by-name
directory. In the following example, people can reach extension 123 by
searching for either Robert or Bob, along with a popular misspelling of
his last name:

123 => 4444,Robert Schauerhamer
123 => d,Bob Schauerhamer
123 => d,Robert Showerhammer

The email and pager_email arguments are email addresses where voicemail notifica-
tions will be sent. These may be left blank if you don’t want to send voicemail
notifications via email. The message sent to the pager_email address is usually shorter
and suitable for sending to a cell phone (via an email to SMS gateway) or to an alpha-
numeric pager.

The options argument is a pipe-separated list of voicemail options that may be specified
for the mailbox. (These options may also be set globally by placing them in the
[general] section.) Valid voicemail options include:

tz
Sets the voicemail zone from the [zonemessages] section earlier. This option is
irrelevant if envelope is set to no.

488 | Appendix D: Configuration Files

attach
Attaches the voicemail to the notification email (but not to the pager email). May
be set to either yes or no.

attachfmt
Specifies the format of the voicemail message that should be attached to the mes-
sage sent to the notification email. Ordinarily, Asterisk uses the first format
specified in the format parameter listed in [general] (covered earlier), but this may
also be changed on a per-mailbox basis. This option may be set only on a per-
mailbox basis.

This option is often used if Windows users want wav49 attachments but Linux
users want their attachments in gsm format.

saycid
Says the Caller ID information before the message.

cidinternalcontexts
Sets the internal context for name playback instead of extension digits when saying
the Caller ID information.

sayduration
Turns on/off the duration information before the message. Defaults to on.

saydurationm
Specifies the minimum duration to say when sayduration is on. Default is two
minutes.

dialout
Specifies the context to dial out from (by choosing option 4 from the advanced
menu). If not specified, dialing out from the voicemail system will not be permitted.

sendvoicemail
Specifies the context to send voicemail from (by choosing option 5 from the ad-
vanced menu). If not specified, sending messages from within the voicemail system
will not be permitted.

searchcontexts
By default, Asterisk searches only the default context if no context is specified. To
have Asterisk search all contexts, set this option to yes.

callback
Specifies the context to call back from. If not specified, calling the sender back from
within the voicemail system will not be permitted.

review
Allows senders to review/re-record their messages before saving them. Defaults to
off.

operator
Allows senders to hit 0 before, after, or while leaving a voicemail message to reach
an operator. Defaults to off.

voicemail.conf | 489

envelope
Turns on/off envelope playback before message playback. Defaults to on. This does
not affect option 3,3 from the advanced options menu.

delete
Deletes voicemails from the server after notification is sent. This option may be set
only on a per-mailbox basis; it is intended for use with users who wish to receive
their voicemail messages only by email.

volgain
If your voicemail attachments to email are too quiet, you can set this option to
increase the gain on the message before it is attached to the email notification.

This option only works if the sox application has been installed on
your Asterisk system.

forcename
Forces new users to record their names. A new user is determined by the password
being the same as the mailbox number. Defaults to no.

forcegreetings
Forces new users to record greetings. A new user is determined by the password
being the same as the mailbox number. Defaults to no.

hidefromdir
Hides the mailbox from the dial-by-name directory. Defaults to no.

tempgreetwarn
Warns users that their temporary greeting is still enabled.

You can specify multiple options by separating them with the pipe character, as shown
in the definitions for mailboxes 102 and 103 below.

Here are some sample mailbox definitions:

[default]
; regular mailbox with email notification
101 => 4242,Example Mailbox,somebody@asteriskdocs.org

; more advanced mailbox with email and pager notification and a couple of
; special options
102 => 9855,Another User,another@asteriskdocs.org,pager@asteriskdocs.org,
attach=no|tz=central

; a mailbox with no email notification and lots of extra options
103 => 6522,John Q. Public,,,tz=central|attach=yes|saycid=yes|dialout=fromvm|
callback=fromvm|review=yes

490 | Appendix D: Configuration Files

vpb.conf
This file is used to configure Voicetronix cards with Asterisk. See the sample vpb.conf
for more information.

zapata.conf
The zapata.conf file is used to define the relationship between Asterisk and the Zaptel
driver. Because zapata.conf is specific to Asterisk, it is located with the other Asterisk
configuration files in /etc/asterisk/. As with zaptel.conf, the zapata.conf file contains a
multitude of choices reflecting the multitude of hardware it supports, and we won’t try
to list all of the options here. In this book we’ve covered only the analog interfaces to
the Zaptel driver, as described in Chapter 3.

zaptel.conf
The zaptel.conf file is not located with the other Asterisk .conf files; the Zaptel driver is
available to any application that can make use of it, so it makes more sense to store it
in a non-Asterisk-specific directory (/etc/). zaptel.conf is parsed by the ztcfg program to
configure the TDM hardware elements in your system. You configure three main ele-
ments in the zaptel.conf file:

• A way of identifying the interfaces on the card within the dialplan

• The type of signaling the interface requires

• The tone language associated with a particular interface, as found in zonedata.c

Be very careful not to plug your FXS module into a telephone line. The
voltage associated with the phone line, especially during an incoming
call, will be much too high for the module to handle and may perma-
nently damage it, rendering it useless!

Within the zaptel.conf file, we define the type of signaling that the channel is going to
use. We also define which channels to load. The options in the configuration file are
the information that will be used to configure the channels with the ztcfg command.

The actual parameters available in the zaptel.conf file are quite extensive, as a wide
variety of PSTN interfaces make use of the Zaptel telephony engine. Also, as this tech-
nology is rapidly evolving, anything we write now may not be accurate by the time you
read it. Consequently, we won’t try to list all of the options here.

In this book, we have focused on the Zaptel analog interfaces as provided by the Digium
TDM400P card (see Chapter 3).

vpb.conf | 491

APPENDIX E

Asterisk Dialplan Functions

Dialplan functions are very powerful, and once you begin using them, you will wonder
how you got along without them. Functions are used in the dialplan in a similar manner
to variables. If it helps, you can think of them as intelligent variables (or for those of
you from the database world, variables with triggers). When you invoke them, they
perform a specific action, and their result becomes a part of the command in which
you have included the function (in exactly the same way as a variable would).

AGENT Returns information about an agent

AGENT(agentid[:item])

This function allows you to retrieve information pertaining to agents and may only be
read, not set.

The valid items to retrieve are:

status (default)
The status of the agent (LOGGEDIN | LOGGEDOUT)

password
The password of the agent

name
The name of the agent

mohclass
Music-on-hold class

exten
The callback extension for the Agent (AgentCallbackLogin)

channel
The name of the active channel for the Agent (AgentLogin)

493

ARRAY Allows one to define several variables at one time

ARRAY(var1[|var2[...][|varN]])

The comma-separated list, which the function equals, will be interpreted as a set of
values to which the comma-separated list of variable names in the argument should be
set. This function may only be set, not read.

; Set var1 to 1 and var2 to 2.
exten => 123,1,Set(ARRAY(var1,var2)=1\,2)

Remember to either backslash your commas in extensions.conf or quote
the entire argument, since Set() can take multiple arguments itself.

See Also
Set()

BASE64_DECODE Decodes a BASE64 encoded string

BASE64_DECODE(base64_string)

Decodes a BASE64 string. This function may only be read, not set.

See Also
BASE64_ENCODE()

BASE64_ENCODE Encodes a string in BASE64

BASE64_ENCODE(string)

Encodes a string in BASE64. This function may only be read, not set.

See Also
BASE64_DECODE()

BLACKLIST Checks if the Caller ID is on the blacklist

When read, BLACKLIST() uses the AstDB to check if the Caller ID is in family
blacklist. Returns 1 or 0.

This function may only be read, not set.

494 | Appendix E: Asterisk Dialplan Functions

See Also
DB()

CALLERID Gets or sets Caller ID data on the channel

CALLERID(datatype[,optional-CID])

CALLERID() parses the Caller ID string within the current channel and returns all or part,
as specified by datatype. The allowable datatypes are all, name, num, ani, dnid, or
rdnis. Optionally, an alternative Caller ID may be specified if you wish to parse that
string instead of the Caller ID set on the channel.

This function may be both read and set.

CDR Gets or sets CDR information for this call (which will be written to the CDR log)

CDR(fieldname[,options])

Here is a list of all the available CDR field names:

clid
Read-only. Use the CALLERID(all) function to set this value.

lastapp
Read-only. Denotes the last application run.

lastdata
Read-only. Denotes the arguments to the last application run.

src
Read-only. Use the CALLERID(ani) function to set this value.

dst
Read-only. Corresponds to the final extension in the dialplan.

dcontext
Read-only. Corresponds to the final context in the dialplan.

channel
Read-only. The name of the channel on which the call originated.

dstchannel
Read-only. The name of the channel on which the call terminated.

disposition
Read-only. Maximum reached state of the channel. If the u option is specified, this
value will be returned as an integer, instead of a string: 1 = NO ANSWER, 2 = BUSY, 3 =
FAILED, 4 = ANSWERED.

amaflags
Read/write. Billing flags. If the u option is specified, this value will be returned as
an integer, instead of a string: 1 = OMIT, 2 = BILLING, 3 = DOCUMENTATION.

CALLERID | 495

accountcode
Read/write. Billing account (19 char maximum).

userfield
Read/write. User-defined field.

start
Read-only. Time when the call started. If the u option is specified, this value will
be returned as an integer (seconds since the epoch) instead of a formatted date/
time string.

answer
Read-only. Time when the call was answered (may be blank if the call is not yet
answered). If the u option is specified, this value will be returned as an integer
(seconds since the epoch) instead of a formatted date/time string.

end
Read-only. Time when the call was completed (may be blank if the call is not yet
complete). If the u option is specified, this value will be returned as an integer
(seconds since the epoch) instead of a formatted date/time string.

duration
Read-only. The difference between start and end, in seconds. May be 0, if the call
is not yet complete.

billsec
Read-only. The difference between answer and end, in seconds. May be 0, if the
call is not yet complete.

uniqueid
Read-only. A string that will be unique per-call within this Asterisk instance.

The following options may be specified:

l
All results will be retrieved from the last Call Detail Record for the call, in the case
of using multiple CDRs via ForkCDR().

r
Custom CDR variables will be retrieved from the last Call Detail Record, but the
standard fields will be retrieved from the first.

u
The unparsed value will be returned. See the fieldname list above for entries that
are affected by this flag.

You may also supply a fieldname not on the above list, and create your own variable,
whose value can be changed with this function, and this variable will be stored in the
CDR.

496 | Appendix E: Asterisk Dialplan Functions

See Also
CHANNEL()

CHANNEL Gets or sets various channel parameters

CHANNEL(item)

Standard items (provided by all channel technologies) are:

audioreadformat
Read-only. Format currently being read.

audionativeformat
Read-only. Format used natively for audio.

videonativeformat
Read-only. Format used natively for video.

audiowriteformat
Read-only. Format currently being written.

callgroup
Read/write. Callgroups for call pickup.

channeltype
Read-only. Technology used for channel.

language
Read/write. Language used for sounds played and recorded.

musicclass
Read/write. Class used (from musiconhold.conf) for hold music.

rxgain
Read/write. Receive gain (in dB) on channel drivers that support it.

txgain
Read/write. Transmit gain (in dB) on channel drivers that support it.

tonezone
Read/write. Regional zone for indications played.

state
Read-only. Current channel state.

transfercapability
Read/write. What can be transferred on an ISDN circuit. Current valid values are:

SPEECH
Speech (default, voice calls)

DIGITAL
Unrestricted digital information (data calls)

CHANNEL | 497

RESTRICTED_DIGITAL
Restricted digital information

3K1AUDIO
3.1 kHz Audio (fax calls)

DIGITAL_W_TONES
Unrestricted digital information with tones/announcements

VIDEO
Video

Additional items may be available from the channel driver providing the channel; see
its documentation for details. Any item requested that is not available on the current
channel will return an empty string.

See Also
CDR()

CHECK_MD5 Validate an MD5 digest

CHECK_MD5(digest,data)

Returns 1 on success, 0 on failure.

This function is deprecated in favor of using the MD5() function with the built-in ex-
pression parser.

See Also
MD5()

CHECKSIPDOMAIN Checks if a domain is local

CHECKSIPDOMAIN(domain|IP)

This function checks if the domain in the argument is configured as a local SIP domain
that this Asterisk server is configured to handle. Returns the domain name if it is locally
handled, otherwise an empty string. Check the domain configuration option in sip.conf.

CURL Returns the data resulting from a GET or POST to a URI

CURL(url[|post-data])

By default, CURL() will perform an HTTP GET to retrieve the url. However, if post-
data is specified, an HTTP POST will be performed instead.

498 | Appendix E: Asterisk Dialplan Functions

See Also
SendURL()

CUT Cuts a string based on a given delimiter

CUT(varname,char-delim,range-s)

CUT() works in a similar manner to the cut(1) Unix command-line tool, and is, in fact,
designed based upon that tool.

In the dialplan, you may specify character offsets to select a substring of a variable based
purely on the uniform length of characters (namely 1). CUT() is designed to help you
work with data that may have multiple, variable-length sections, divided by a common
delimiter.

The most common case is the name of a channel, which is composed of two parts, a
base name and a unique identifier (e.g., SIP/tom-abcd1234 or SIP/bert-1a2b3c4d).
CUT() may be used to trim the unique identifier, no matter how long the base name may
be:

; Trim the unique identifier from the current channel name
exten => 123,1,Set(chan=${CUT(CHANNEL,-,1)})

varname is the name of the variable that will be operated on. Note that CUT() operates
on the name of a variable, rather than upon the value of a variable. CUT() is somewhat
unique in this regard.

char-delim is the character that will serve as the delimiter ('-' is the default)

range-spec allows you to define which fields are returned. The range-spec can be speci-
fied as a range with - (e.g., 1-3) or a group of ranges and field numbers by separating
each with & (e.g., 1&3-4). Note that if multiple field numbers are specified, the resulting
value will have its fields separated by the same delimiter.

range-spec uses a 1-based offset. That is, the first field is field 1 (as
opposed to a 0-based offset, where the first field would be 0).

See Also
FIELDQTY()

DB Read or write to AstDB

DB(family/key)

CUT | 499

Will return the value of the entry in the database (or blank if it does not exist), or set
the value in the database.

See Also
DBdel(), DB_DELETE(), DBdeltree(), DB_EXISTS()

DB_DELETE Deletes a key or key family from the AstDB database

DB_DELETE(family/key)

Returns a value from the database and delete it.

See Also
DBdel(), DB(), DBdeltree()

DB_EXISTS Checks AstDB for specified key

DB_EXISTS(family/key)

Check to see if a key exists in the Asterisk database.

See Also
DB()

DUNDILOOKUP Queries DUNDi peers for a particular number

DUNDILOOKUP(number[|context[|option)

Does a DUNDi lookup of a phone number.

ENUMLOOKUP Queries the ENUM database for a particular number

ENUMLOOKUP(number[|Method-type[|options[|record#[|zone-suffix]]]])

Allows for general or specific querying of NAPTR records or counts of NAPTR types
for ENUM or ENUM-like DNS pointers.

ENV References environment variables

ENV(envname)

Gets or sets the environment variable specified by envname.

500 | Appendix E: Asterisk Dialplan Functions

EVAL Evaluates stored variables

EVAL(variable)

EVAL() is one of the most powerful dialplan functions. It permits one to store variable
expressions in a location other than extensions.conf, such as a database, yet evaluate
them in the dialplan, as if they were included there all along. You can bet that EVAL()
is a cornerstone in making a dialplan truly dynamic.

; We might store something like "SIP/${DB(ext2chan/123)}" in the
; database entry for extension/123, which tells us to look up yet
; another database entry.
exten => _XXX,1,Set(dialline=${DB(extension/${EXTEN})})
exten => _XXX,n,Dial(${EVAL(${dialline})})

; Real world example (taken from production code)
exten => _1NXXNXXXXXX,n(generic),Set(provider=${DB(rt2provider/${route})}-nanp)
exten => _1NXXNXXXXXX,n(provider),Dial(${EVAL(${DB(provider/${provider})})})
exten => _1NXXNXXXXXX,n,Goto(nextroute)

See Also
Exec()

EXISTS Checks if value is non-blank

EXISTS(data)

Existence test: returns 1 if non-blank, 0 otherwise

FIELDQTY Counts fields

FIELDQTY(varname|delim)

Counts the fields, with an arbitrary delimiter

See Also
CUT()

FILTER Strips string of illegal characters

FILTER(allowed-chars|string)

Filters the string to include only the characters shown in allowed-chars:

; Ensure that the Caller*ID number contains only digits
exten => Set(CALLERID(num)=${FILTER(0123456789,${CALLERID(num)})})

This function may only be read, not set.

EVAL | 501

See Also
QUOTE()

GLOBAL References global namespace

GLOBAL(varname)

Gets or sets the global variable specified.

GROUP Associates the channel into a set group

GROUP([category])

Gets or sets the channel group.

; Permit only one user to access the paging system at once.
exten => 8000,1,Set(GROUP()=pager)
exten => 8000,n,GotoIf($[${GROUP_COUNT(pager)} > 1]?hangup)
exten => 8000,n,Page(SIP/101&SIP/102&SIP/103&SIP/104)
exten => 8000,n(hangup),Hangup

See Also
GROUP_COUNT(), GROUP_LIST(), GROUP_MATCH_COUNT()

GROUP_COUNT Counts the number of channels in the specified group.

GROUP_COUNT([groupname][@category])

Counts the number of channels in the specified group. Will return the count of the
current channel if the groupname is not specified.

See Also
GROUP(), GROUP_LIST(), GROUP_MATCH_COUNT()

GROUP_LIST Lists channel groups

GROUP_LIST()([groupname][@category])

Gets a list of the groups set on a channel.

See Also
GROUP(), GROUP_COUNT(), GROUP_MATCH_COUNT()

502 | Appendix E: Asterisk Dialplan Functions

GROUP_MATCH_COUNT Counts channels in a matching group name

GROUP_MATCH_COUNT(groupmatch[@category])

Counts the number of channels in the groups matching the specified pattern.

See Also
GROUP(), GROUP_COUNT(), GROUP_LIST()

IAXPEER Obtains IAX channel information

IAXPEER(peername[|item])
IAXPEER(CURRENTCHANNEL[|item])

Gets IAX peer information.

If peername is specified, valid items are:

ip
The IP address of this peer. If item is not specified, the IP address will be given.

status
The peer’s status (if qualify=yes).

mailbox
The peer’s configured mailbox.

context
The peer’s configured context.

expire
The epoch time of the next registration expiration for this peer.

dynamic
Does this peer register with Asterisk? (yes/no)

callerid_name
The Caller ID name configured on this peer.

callerid_num
The Caller ID number configured on this peer.

codecs
The peer’s configured codecs.

codec[x]
Preferred codec index number x (beginning with zero).

See Also
SIPPEER()

GROUP_MATCH_COUNT | 503

IF Conditional value selection

IF(expr?[true][:false])

Conditional: returns the data following ? if true, otherwise the data following :.

; Returns foo
exten => 123,1,Set(something=${IF($[2 > 1]?foo:bar)})
; Returns bar
exten => 123,n,Set(something=${IF($[2 < 1]?foo:bar)})

See Also
GotoIf()

IFTIME Compares the current system time to a time specification

IFTIME(times,days_of_week,days_of_month,months?[true][:false])

Conditional: Returns the data following ? if true, otherwise the data following :

times
Time ranges, in 24-hour format

days_of_week
Days of the week (mon, tue, wed, thu, fri, sat, sun)

days_of_month
Days of the month (1–31)

months
Months (jan, feb, mar, apr, etc.)

See Also
GotoIfTime()

ISNULL Checks if a value is blank

ISNULL(data)

Returns 1 if data is blank or 0 otherwise.

See Also
LEN(), EXISTS()

KEYPADHASH Converts letters into numbers

KEYPADHASH(string)

504 | Appendix E: Asterisk Dialplan Functions

Hashes the letters in string into the equivalent keypad numbers.

; Calculate the hashes of the authors' last names. So, the
; corresponding values would be 623736, 76484, and 82663443536.
exten => 123,1,Set(lastname1=${KEYPADHASH(Madsen)})
exten => 123,n,Set(lastname2=${KEYPADHASH(Smith)})
exten => 123,n,Set(lastname3=${KEYPADHASH(VanMeggelen)})

See Also
Directory()

LANGUAGE Accesses the channel language

LANGUAGE()

Gets or sets the channel’s language.

This function is deprecated in favor of CHANNEL(language).

See Also
CHANNEL()

LEN Calculates the string length

LEN(string)

Returns the length of string.

MATH Mathematical calculations

MATH(number1op number2[,type_of_result])

Performs mathematical functions.

exten => 123,1,Set(value1=${MATH(1+2)})

MD5 Calculates MD5 digest

MD5(data)

Computes the MD5 digest of data.

See Also
SHA1()

LANGUAGE | 505

MUSICCLASS Access a channel’s music-on-hold setting

MUSICCLASS()

This function has been deprecated in favor of CHANNEL(musicclass).

Reads or sets the music-on-hold class.

See Also
CHANNEL()

QUEUE_MEMBER_COUNT Counts queue members

QUEUE_MEMBER_COUNT(queuename)

Counts the number of members answering a queue.

See Also
QUEUE_MEMBER_LIST()

QUEUE_MEMBER_LIST Lists queue members

QUEUE_MEMBER_LIST(queuename)

Returns a list of interfaces in a queue.

See Also
QUEUE_MEMBER_COUNT()

QUEUE_WAITING_COUNT Count waiting calls

QUEUE_WAITING_COUNT(queuename)

Counts number of calls currently waiting in a queue.

QUEUEAGENTCOUNT
QUEUEAGENTCOUNT(queuename)

506 | Appendix E: Asterisk Dialplan Functions

This function has been deprecated in favor of QUEUE_MEMBER_COUNT().

Counts number of agents answering a queue.

See Also
QUEUE_MEMBER_COUNT(), QUEUE_MEMBER_LIST()

QUOTE Escapes a string

QUOTE(string)

Quotes a given string, escaping embedded quotes as necessary.

See Also
FILTER()

RAND Random number

RAND([min][|max])

Chooses a random number within a range.

RAND() randomly picks an integer between min and max, inclusive, and returns that in-
teger. If min is not specified, it defaults to 0. If max is not specified, it defaults to the C
constant INT_MAX, which is 2,147,483,647 on 32-bit platforms. Note that INT_MAX is
quite a bit larger on 64-bit platforms.

REALTIME Retrieves real-time data

REALTIME(family|fieldmatch[|value[||delim1[|delim2]]])

Real-time read/write functions. Use the above syntax for a read and the following syntax
for a write:

REALTIME(family|fieldmatch|value|field)

REGEX Compares based upon a regular expression

REGEX("regular expression" data)

QUOTE | 507

Matches based upon a regular expression.

SET Sets a variable

SET(varname=[value])

SET assigns a value to a channel variable. It is frequently used to set values that contain
the character |, since that character is normally a delimiter when used with the appli-
cation Set().

See Also
Set()

SHA1 SHA-1 digest

SHA1(data)

Computes the SHA-1 digest of data.

See Also
MD5()

SIP_HEADER Retrieves a SIP header

SIP_HEADER(name[,number])

Gets the specified SIP header.

SIPCHANINFO Retrieves info on a SIP channel

SIPCHANINFO(item)

Gets the specified SIP parameter from the current channel.

Valid items are:

peerip
The IP address of this SIP peer

recvip
The source IP address of this SIP peer

from
The SIP URI from the From: header

uri
The SIP URI from the Contact: header

508 | Appendix E: Asterisk Dialplan Functions

useragent
The name of the SIP user agent

peername
The name of the SIP peer

t38passthrough
1 if T38 is offered or enabled in this channel, otherwise 0

SIPPEER Retrieves info about a SIP peer

SIPPEER(peername[|item])

Gets SIP peer information.

Valid items are:

ip
The IP address of this peer. If item is not specified, the IP address will be given.

mailbox
This peer’s configured mailbox.

context
The peer’s configured context.

expire
The epoch time of the next registration expiration.

dynamic
Does this device register with Asterisk? (yes/no)

callerid_name
The Caller ID name configured on this peer.

callerid_number
The Caller ID number configured on this peer.

status
This peer’s status (if qualify=yes).

regexten
This peer’s registration extension, if configured.

limit
This peer’s call limit.

curcalls
Current number of calls. Only available if call-limit is set on this peer.

language
Default language for this peer.

accountcode
Account code for this peer.

SIPPEER | 509

useragent
The name of the SIP user agent.

codecs
The configured codecs for this peer.

codec[x]
Preferred codec index number x (beginning with zero).

See Also
IAXPEER()

SORT Sorts a list

SORT(key1:val1[...][,keyN:valN])

Sorts a list of key/vals into a list of keys, based upon the vals which can be any real
number (float).

SPEECH Retrieves info on speech recognition results

SPEECH(argument)

Gets information about speech recognition results.

SPEECH_ENGINE Modifies speech engine property

SPEECH_ENGINE(name)=value)

Changes a specific attribute of the speech engine.

SPEECH_GRAMMAR Retrieves speech grammar information

SPEECH_GRAMMAR(result number)

Gets the matched grammar of a result if available.

SPEECH_SCORE Retrieves speech recognition confidence score

SPEECH_SCORE(result number)

Gets the confidence score of a result.

510 | Appendix E: Asterisk Dialplan Functions

SPEECH_TEXT Retrieves recognized text

SPEECH_TEXT(result number)

Gets the recognized text of a result.

SPRINTF Formats a string

SPRINTF(format|arg1[|...argN])

Formats a variable or set of variables according to a format string.

The most common case for the use of SPRINTF is to zero-pad a number to a certain
length:

; Returns 00123
exten => 123,1,Set(padfive=${SPRINTF(%05d,${EXTEN})})

Most of the format options listed in the manpage for sprintf(3) are also implemented
in this dialplan function.

See Also
STRFTIME()

STAT Evaluates filesystem attributes

STAT(flag,filename)

Does a check on the specified file.

flag may be one of the following options:

e
Returns 1 if the file exists; 0 otherwise

s
Returns the size of the file, in bytes

f
Returns 1 if the path referenced is a regular file (and not a directory, symlink, socket,
or device) or 0 otherwise

d
Returns 1 if the path referenced is a directory (and not a regular file, symlink, socket,
or device) or 0 otherwise

M
Returns the epoch time when the file contents were last modified

C
Returns the epoch time when the file inode was last modified

SPEECH_TEXT | 511

m
Returns the permissions mode of the file (as an octal number)

STRFTIME Formats the date and time

STRFTIME([epoch][|[timezone][|format]])

Returns the current date/time in a specified format.

STRFTIME passes the epoch and format arguments directly to the underlying strftime
(3) C library call, so check out that manpage for more information. The timezone pa-
rameter should be the name of a directory/file in /usr/share/zoneinfo (e.g., America/
Chicago or America/New_York).

See Also
STRPTIME()

STRPTIME Converts a string into a date and time

STRPTIME(datetime|timezone|format)

Returns the epoch of the arbitrary date/time string structured as described in the for-
mat.

The purpose of this function is to take a formatted date/time and convert it back into
seconds since the epoch (January 1st, 1970, at midnight GMT), so that you may do
calculations with it, or simply convert it into some other date/time format.

STRPTIME passes the string and format directly to the underlying C library call strptime
(3), so check out that manpage for more information. The timezone parameter should
be the name of a directory/file in /usr/share/zoneinfo (e.g., America/Chicago or America/
New_York).

See Also
STRFTIME()

TIMEOUT Accesses channel timeout values

TIMEOUT(timeouttype)

Gets or sets timeouts on the channel.

The timeouts that can be manipulated are:

absolute
The absolute maximum amount of time permitted for a call. A setting of 0 disables
the timeout.

512 | Appendix E: Asterisk Dialplan Functions

digit
The maximum amount of time permitted between digits when the user is typing
in an extension. When this timeout expires, after the user has started to type in an
extension, the extension will be considered complete, and will be interpreted. Note
that if an extension typed in is valid, it will not have to timeout to be tested, so
typically at the expiry of this timeout, the extension will be considered invalid (and
thus control will be passed to the i extension, or if it doesn’t exist the call will be
terminated). The default timeout is five seconds.

response
The maximum amount of time permitted after falling through a series of priorities
for a channel in which the user may begin typing an extension. If the user does not
type an extension in this amount of time, control will pass to the t extension if it
exists, and if not the call will be terminated. The default timeout is 10 seconds.

TXTCIDNAME DNS lookup

TXTCIDNAME(number)

Looks up a caller name via DNS.

URIDECODE Decodes a URI

URIDECODE(data)

Decodes a URI-encoded string according to RFC 2396.

See Also
URIENCODE()

URIENCODE Encodes a URI

URIENCODE(data)

Encodes a string to URI-safe encoding according to RFC 2396.

See Also
URIDECODE()

TXTCIDNAME | 513

VMCOUNT Counts voicemail messages

VMCOUNT(mailbox[@context][|folder])

Counts the voicemail in a specified mailbox.

514 | Appendix E: Asterisk Dialplan Functions

APPENDIX F

Asterisk Manager Interface Actions

The following is a list of actions you can perform using the Manager Interface, or AMI.
See Chapter 14 for more information on the AMI.

AbsoluteTimeout Sets the sAbsoluteTimeout on a channel

Hangs up a channel after a certain time.

Parameters

Channel
[required] The name of the channel on which to set the absolute timeout.

Timeout
[required] The maximum duration of the call, in seconds.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Notes
Asterisk will acknowledge the timeout setting with a Timeout Set message.

Privilege
call, all

Example
Action: AbsoluteTimeout
 Channel: SIP/testphone-10210698
 Timeout: 15
 ActionID: 12345

 Response: Success
 Message: Timeout Set
 ActionID: 12345

515

AgentCallbackLogin Sets an agent as logged in to the queue system in callback mode

Logs the specified agent in to the Asterisk queue system in callback mode. When a call
is distributed to this agent, it will ring the specified extension.

Parameters

Agent
[required] Agent ID of the agent to log in to the system, as specified in
agents.conf.

Exten
[required] Extension to use for callback.

Context
[optional] Context to use for callback.

AckCall
[optional] Set to true to require an acknowledgement (the agent pressing the # key)
to accept the call when agent is called back.

WrapupTime
[optional] The minimum amount of time after disconnecting before the agent will
receive a new call.

ActionID
[optional] An identifier which can be used to identify the response to this action.

Privilege
agent, all

Example
Action: AgentCallbackLogin
Agent: 1001
Exten: 201
Context: Lab
ActionID: 24242424

Response: Success
Message: Agent logged in
ActionID: 24242424

Event: Agentcallbacklogin
Privilege: agent,all
Agent: 1001
Loginchan: 201@Lab

Notes
The AgentCallbackLogin action (along with the AgentCallbackLogin() application) has
been deprecated. It is suggested you use the QueueAdd action instead. See

516 | Appendix F: Asterisk Manager Interface Actions

doc/queues-with-callback-members.txt in the Asterisk source code for more informa-
tion.

AgentLogoff Sets an agent as no longer logged in

Logs off the specified agent for the queue system.

Parameters

Agent
[required] Agent ID of the agent to log off.

Soft
[optional] Set to true to not hangup existing calls.

ActionID
[optional] An identifier which can be used to identify the response to this action.

Privilege
agent, all

Example
Action: AgentLogoff
Agent: 1001
Soft: true
ActionID: blahblahblah

Response: Success
Message: Agent logged out
ActionID: blahblahblah

Event: Agentcallbacklogoff
Privilege: agent,all
Agent: 1001
Reason: CommandLogoff
Loginchan: 201@Lab
Logintime: 5698

Agents Lists agents and their status

This action lists information about all configured agents.

Privilege
agent, all

Example
Action: Agents
ActionID: mylistofagents

AgentLogoff | 517

Response: Success
Message: Agents will follow
ActionID: mylistofagents

Event: Agents
Agent: 1001
Name: Jared Smith
Status: AGENT_IDLE
LoggedInChan: 201@Lab
LoggedInTime: 1173237646
TalkingTo: n/a
ActionID: mylistofagents

Event: Agents
Agent: 1002
Name: Leif Madsen
Status: AGENT_LOGGEDOFF
LoggedInChan: n/a
LoggedInTime: 0
TalkingTo: n/a
ActionID: mylistofagents

Event: Agents
Agent: 1003
Name: Jim VanMeggelen
Status: AGENT_LOGGEDOFF
LoggedInChan: n/a
LoggedInTime: 0
TalkingTo: n/a
ActionID: mylistofagents

Event: AgentsComplete
ActionID: mylistofagents

ChangeMonitor Changes monitoring filename of a channel

The ChangeMonitor action may be used to change the file started by a previous
Monitor action. The following parameters may be used to control this.

Parameters

Channel
[required] Used to specify the channel to record.

File
[required] The new filename in which the monitored channel will be recorded.

ActionID
[optional] An identifier that can be used to identify the response to this action.

518 | Appendix F: Asterisk Manager Interface Actions

Privilege
call, all

Example
Action: ChangeMonitor
Channel: SIP/linksys-084c63c0
File: new-test-recording
ActionID: 555544443333

Response: Success
ActionID: 555544443333
Message: Changed monitor filename

Command Executes an Asterisk CLI command

Runs an Asterisk CLI command as if it had been run from the CLI.

Parameters

Command
[required] Asterisk CLI command to run.

ActionID
[optional] An action identifier that can be used to identify the response from
Asterisk.

Privilege
command, all

Example
Action: Command
Command: core show version
ActionID: 0123456789abcdef

Response: Follows
Privilege: Command
ActionID: 0123456789abcdef
Asterisk SVN-branch-1.4-r55869 built by jsmith @ hockey on a ppc running Linux
 on 2007-02-21 16:55:26 UTC
--END COMMAND--

DBGet Gets AstDB entry

This action retrieves a value from the AstDB database.

Command | 519

Parameters

Family
[required] The AstDB key family from which to retrieve the value

Key
[required] The name of the AstDB key.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
system, all

Example
Action: DBGet
Family: testfamily
Key: mykey
ActionID: 01234-astdb-43210

Response: Success
Message: Result will follow
ActionID: 01234-astdb-43210

Event: DBGetResponse
Family: testfamily
Key: mykey
Val: 42
ActionID: 01234-astdb-43210

DBPut Puts DB entry

Sets a key value in the AstDB database.

Parameters

Family
[required]The AstDB key family in which to set the value.

Key
[required] The name of the AstDB key.

Val
[required]The value to assign to the key.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
system, all

520 | Appendix F: Asterisk Manager Interface Actions

Example
Action: DBPut
Family: testfamily
Key: mykey
Val: 42
ActionID: testing123

Response: Success
Message: Updated database successfully
ActionID: testing123

Events Controls event flow

Enables or disables sending of events to this manager connection.

Parameters

EventMask
[required] Set to on if all events should be sent, off if events should not be sent, or
system,call,log to select which type of events should be sent to this manager
connection.

ActionID
[optional] An identifier which can be used to identify the response to this action.

Privilege
none

Example
Action: Events
EventMask: off
ActionID: 2938416

Response: Events Off
ActionID: 2938416

Action: Events
EventMask: log,call
ActionID: blah1234

Response: Events On
ActionID: blah1234

ExtensionState Checks extension status

This command reports the extension state for the given extension. If the extension has
a hint, this will report the status of the device connected to the extension.

Events | 521

Parameters

Exten
[required] The name of the extension to check.

Context
[required] The name of the context that contains the extension.

ActionId
[optional] An action identifier that can be used to identify this manager transaction.

Privilege
call, all

Example
Action: ExtensionState
Exten: 200
Context: lab
ActionID: 54321

Response: Success
ActionID: 54321
Message: Extension Status
Exten: 200
Context: lab
Hint: SIP/testphone
Status: 0

Notes
The following are the possible extension states:

-2
Extension removed

-1
Extension hint not found

0
Idle

1
In use

2
Busy

GetConfig Retrieves configuration

Retrieves the data from an Asterisk configuration file.

522 | Appendix F: Asterisk Manager Interface Actions

Parameters

Filename
[required]Name of the configuration file to retrieve.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
config, all

Example
Action: GetConfig
Filename: musiconhold.conf
ActionID: 09235012

Response: Success
ActionID: 09235012
Category-000000: default
Line-000000-000000: mode=files
Line-000000-000001: directory=/var/lib/asterisk/moh
Line-000000-000002: random=yes

GetVar Retrieves the value of a variable

Gets the value of a local channel variable or global variable

Parameters

Channel
[optional] The name of the channel from which to retrieve the variable value.

Variable
[required] Variable name.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: GetVar
Channel: SIP/linksys2-1020e2b0
Variable: SIPUSERAGENT
ActionID: abcd1234

Response: Success
Variable: SIPUSERAGENT
Value: Linksys/SPA962-5.1.5

GetVar | 523

ActionID: abcd1234

Action: GetVar
Variable: TRUNKMSD

Response: Success
Variable: TRUNKMSD
Value: 1

Hangup Hangs up channel

Hangs up the specified channel.

Parameters

Channel
[optional] The channel name to be hung up

ActionID
[optional] An identifier that can be used to identify the response to this action

Privilege
call, all

Example
Action: Hangup
Channel: SIP/labrat-8d3a

Response: Success
Message: Channel Hungup

Event: Hangup
Privilege: call,all
Channel: SIP/labrat-8d3a
Uniqueid: 1173448206.0
Cause: 0
Cause-txt: Unknown

IAXNetstats Shows IAX statistics

Shows a summary of network statistics for the IAX2 channel driver.

Privilege
none

524 | Appendix F: Asterisk Manager Interface Actions

Example
Action: IAXNetstats

IAX2/216.207.245.8:4569-1 608 -1 0 -1 -1 0 -1 1 288 508 10 1 3 0 0

IAXPeers Lists IAX peers

Lists all IAX2 peers and their current status.

Privilege
none

Example
Action: IAXPeers

Name/Username Host Mask Port Status
jared/jared 192.168.0.71 (S) 255.255.255.255 4569 UNREACHABLE
jaredsmith 192.168.0.72 (S) 255.255.255.255 4569 OK (43 ms)
arrivaltel/8017 172.20.95.2 (S) 255.255.255.255 4569 Unmonitored
sokol/jsmith 172.17.122.217 (S) 255.255.255.255 4569 OK (48 ms)
demo/asterisk 216.207.245.47 (S) 255.255.255.255 4569 Unmonitored
5 iax2 peers [2 online, 1 offline, 2 unmonitored]

ListCommands Lists the manager commands

Lists the action name and synopsis for every Asterisk Manager Interface action.

Privilege
none

Example
Action: ListCommands

Response: Success
AbsoluteTimeout: Set Absolute Timeout (Priv: call,all)
AgentCallbackLogin: Sets an agent as logged in by callback (Priv: agent,all)
AgentLogoff: Sets an agent as no longer logged in (Priv: agent,all)
. . .
ZapTransfer: Transfer Zap Channel (Priv: <none>)

Logoff Logs off manager session

Logs off this manager session.

IAXPeers | 525

Privilege
none

Example
Action: Logoff

Response: Goodbye
Message: Thanks for all the fish.

MailboxCount Checks mailbox message count

Retrieves the number of messages for the specified voice mailbox.

Privilege
call, all

Example
Action: MailboxCount
Mailbox: 100@lab
ActionID: 54321abcde

Response: Success
ActionID: 54321abcde
Message: Mailbox Message Count
Mailbox: 100@lab
NewMessages: 2
OldMessages: 0

MailboxStatus Checks mailbox status

Checks the status for the specified voicemail box.

Parameters

Mailbox
[required] The full mailbox ID, including mailbox and context (box context).

ActionID
[optional] A unique identifier that can be used to identify responses to this manager
command.

Privilege
call, all

Example
Action: MailboxStatus
Mailbox: 100@lab

526 | Appendix F: Asterisk Manager Interface Actions

ActionID: abcdef0123456789

Response: Success
ActionID: abcdef0123456789
Message: Mailbox Status
Mailbox: 100@lab
Waiting: 1

MeetmeMute Mutes a MeetMe user

Mutes a particular user in a MeetMe conference bridge.

Parameters

Meetme
[required] The MeetMe conference bridge number.

Usernum
[required] The user number in the specified bridge.

ActionID
[optional] A unique identifier to help you identify responses to this command.

Privilege
call, all

Example
Action: MeetmeMute
Meetme: 104
Usernum: 1
ActionID: 5432154321

Response: Success
ActionID: 5432154321
Message: User muted

Event: MeetmeMute
Privilege: call,all
Channel: SIP/linksys2-10211dc0
Uniqueid: 1174008176.3
Meetme: 104
Usernum: 1
Status: on

Notes
To find the Usernum number for a particular caller, watch the Asterisk Manager Interface
when a new member joins a conference bridge. When it happens, you’ll see an event
like this:

Event: MeetmeJoin
Privilege: call,all

MeetmeMute | 527

Channel: SIP/linksys2-10211dc0
Uniqueid: 1174008176.3
Meetme: 104
Usernum: 1

MeetMeUnmute Unmutes a MeetMe user

Unmutes the specified user in a MeetMe conference bridge.

Parameters

Meetme
[required] The MeetMe conference bridge number.

Usernum
[required] The user number in the specified bridge.

ActionID
[optional] A unique identifier to help you identify responses to this command.

Privilege
call, all

Example
Action: MeetmeUnmute
Meetme: 104
Usernum: 1
ActionID: abcdefghijklmnop

Response: Success
ActionID: abcdefghijklmnop
Message: User unmuted

Event: MeetmeMute
Privilege: call,all
Channel: SIP/linksys2-10211dc0
Uniqueid: 1174008176.3
Meetme: 104
Usernum: 1
Status: off

Monitor Monitors a channel

Records the audio on a channel to the specified file.

Parameters

Channel
[required] Specifes the channel to be recorded.

528 | Appendix F: Asterisk Manager Interface Actions

File
[optional] The name of the file in which to record the channel. The path defaults
to the Asterisk monitor spool directory, which is usual-
ly /var/spool/asterisk/monitor. If no filename is specified, the filename will be the
name of the channel, with slashes replaced with dashes.

Format
[optional] The audio format in which to record the channel. Defaults to wav.

Mix
[optional] A Boolean flag specifying whether or not Asterisk should mix the in-
bound and outbound audio from the channel in to a single file.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: Monitor
Channel: SIP/linksys2-10216e38
Filename: test-recording
Format: gsm
Mix: true

Response: Success
Message: Started monitoring channel

Originate Originates call

Generates an outbound call from Asterisk, and connect the channel to a context/
extension/priority combination or dialplan application.

Parameters

Channel
[required] Channel name to call. Once the called channel has answered, the control
of the call will be passed to the specified Exten/Context/Priority or Application.

Exten
[optional] Extension to use (requires Context and Priority).

Context
[optional] Context to use (requires Exten and Priority).

Priority
[optional] Priority to use (requires Exten and Context).

Application
[optional] Application to use.

Originate | 529

Data
[optional] Data to pass as parameters to the application (requires Application).

Timeout
[optional] How long to wait for call to be answered (in ms).

CallerID
[optional] Caller ID to be set on the outgoing channel.

Variable
[optional] Channel variable to set. Multiple variable headers are allowed.

Account
[optional] Account code.

Async
[optional] Set to true for asynchronous origination. Asynchronous origination al-
lows you to originate one or more calls without waiting for an immediate response.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: Originate
Channel: SIP/linksys2
Context: lab
Exten: 201
Priority: 1
CallerID:

Response: Success
Message: Originate successfully queued

Action: Originate
Application: MusicOnHold
Data: default
Channel: SIP/linksys2

Response: Success
Message: Originate successfully queued

Park Parks a channel

Parks the specified channel in the parking lot.

Parameters

Channel
[required] Channel name to park.

530 | Appendix F: Asterisk Manager Interface Actions

Channel2
[required] Channel to announce park info to (and return the call to if the parking
times out).

Timeout
[optional] Number of milliseconds to wait before callback.

ActionID
[optional] An identifier which can be used to identify the response to this action.

Privilege
call, all

Example
Action: Park
Channel: SIP/linksys-10228fb0
Channel2: SIP/linksys2-10231520
Timeout: 45
ActionID: parking-test-01

Response: Success
ActionID: parking-test-01
Message: Park successful

Notes
The call parking lot is configured in features.conf in the Asterisk configuration directory.

ParkedCalls Lists parked calls

Lists any calls that are parked in the call parking lot.

Privilege
none

Example
Action: ParkedCalls
ActionID: 0982350175

Response: Success
ActionID: 0982350175
Message: Parked calls will follow

Event: ParkedCall
Exten: 701
Channel: SIP/linksys2-101f98a8
From: SIP/linksys2-101f98a8
Timeout: 26
CallerID: linksys2
CallerIDName: linksys2

ParkedCalls | 531

ActionID: 0982350175

Event: ParkedCallsComplete
ActionID: 0982350175

Notes
The call parking lot is configured in features.conf in the Asterisk configuration directory.

PauseMonitor Pauses the recording of a channel

Pauses the monitoring (recording) of a channel if it is being monitored.

Parameters

Channel
[required] The channel identifier of the channel that is currently being monitored.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example

 Action: PauseMonitor
 Channel: SIP/linksys2-10212040
 ActionID: 987987987987

 Response: Success
 ActionID: 987987987987
 Message: Paused monitoring of the channel

Ping Keeps connection alive

Queries the Asterisk server to make sure it is still responding. Asterisk will respond
with a Pong response. This command can also be used to keep the manager connection
from timing out.

Example
Action: Ping

Response: Pong

532 | Appendix F: Asterisk Manager Interface Actions

PlayDTMF Plays DTMF on a channel

Plays a DTMF digit on the specified channel.

Parameters

Channel
[required] The identifier for the channel on which to send the DTMF digit.

Digit
[required] The DTMF digit to play on the channel.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: PlayDTMF
Channel: Local/201@lab-157a,1
Digit: 9

Response: Success
Message: DTMF successfully queued

QueueAdd Adds a member to the specified queue

Adds a queue member to a call queue.

Parameters

Queue
[required] The name of the queue.

Interface
[required] The name of the member to add to the queue. This will be a technology
and resource, such as SIP/Jane or Local/203@lab/n. Agents (as defined in
agents.conf) can also be added by using the Agent/1234 syntax.

MemberName
[optional] This is a human-readable alias for the interface, and will appear in the
queue statistics and queue logs.

Penalty
[optional] A numerical penalty to apply to this queue member. Asterisk will dis-
tribute calls to members with higher penalties only after attempting to distribute
the call to all members with a lower penalty.

PlayDTMF | 533

Paused
[optional] Whether or not the member should be initially paused.

ActionID
[optional] An action identifier that you can use to identify the response to this
manager transaction.

Privilege
agent, all

Example
Action: QueueAdd
Queue: myqueue
Interface: SIP/testphone
MemberName: Jared Smith
Penalty: 2
Paused: no
ActionID: 4242424242

Response: Success
ActionID: 4242424242
Message: Added interface to queue

Event: QueueMemberAdded
Privilege: agent,all
Queue: myqueue
Location: SIP/testphone
MemberName: Jared Smith
Membership: dynamic
Penalty: 2
CallsTaken: 0
LastCall: 0
Status: 1
Paused: 0

QueuePause Pauses or unpauses a member in a call queue

Pauses or unpauses a member in a call queue.

Parameters

Interface
[required] The name of the interface to pause or unpause.

Paused
[required] Whether or not the interface should be paused. Set to true to pause the
member, or false to unpause the member.

534 | Appendix F: Asterisk Manager Interface Actions

Queue
[optional] The name of the queue in which to pause or unpause this member. If
not specified, the member will be paused or unpaused in all the queues it is a
member of.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
agent, all

Example
Action: QueuePause
Interface: SIP/testphone
Paused: true
Queue: myqueue

Response: Success
Message: Interface paused successfully

Event: QueueMemberPaused
Privilege: agent,all
Queue: myqueue
Location: SIP/testphone
MemberName: Jared Smith
Paused: 1

Action: QueuePause
Interface: SIP/testphone
Paused: false

Response: Success
Message: Interface unpaused successfully

Event: QueueMemberPaused
Privilege: agent,all
Queue: myqueue
Location: SIP/testphone
MemberName: Jared Smith
Paused: 0

QueueRemove Removes interface from queue

Removes interface from queue.

Parameters

Queue
[required] Which queue to remove the member from.

QueueRemove | 535

Interface
[required] The interface (member) to remove from the specified queue.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
agent, all

Example
Action: QueueRemove
Queue: myqueue
Interface: SIP/testphone

Response: Success
Message: Removed interface from queue

Event: QueueMemberRemoved
Privilege: agent,all
Queue: myqueue
Location: SIP/testphone
MemberName: Jared Smith

QueueStatus Checks queue status

Checks the status of one or more queues.

Parameters

Queue
[optional] If specified, limits the response to the status of the specified queue.

Member
[optional] An action identifier that you can use to identify the response to this
manager transaction.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
none

Example
Action: QueueStatus
Queue: inbound-queue
ActionID: 11223344556677889900

Response: Success
ActionID: 11223344556677889900
Message: Queue status will follow

536 | Appendix F: Asterisk Manager Interface Actions

Event: QueueParams
Queue: inbound-queue
Max: 0
Calls: 1
Holdtime: 99
Completed: 540
Abandoned: 51
ServiceLevel: 60
ServicelevelPerf: 50.4
Weight: 0
ActionID: 11223344556677889900

Event: QueueMember
Queue: inbound-queue
Location: Local/4020@agents/n
Membership: dynamic
Penalty: 2
CallsTaken: 25
LastCall: 1175563440
Status: 2
Paused: 0
ActionID: 11223344556677889900

Event: QueueEntry
Queue: inbound-queue
Position: 1
Channel: Zap/25-1
CallerID: 8012317154
CallerIDName: JOHN Q PUBLIC
Wait: 377
ActionID: 11223344556677889900

Event: QueueStatusComplete
ActionID: 11223344556677889900

Queues Shows basic queue information

Shows the call queues along with the queue members, callers, and basic queue statistics.

Privilege
none

Example
Action: Queues

inbound-queue has 0 calls (max unlimited) in 'rrmemory' strategy (81s holdtime),
 W:0, C:542, A:51, SL:50.4% within 60s
 Members:
 Local/4020@agents/n with penalty 2 (dynamic) (Unknown) has taken
 27 calls (last was 124 secs ago)
 No Callers

Queues | 537

Notes
This manager command gives the same output as the show queues command from the
Asterisk command-line interface. However, the output of this command is somewhat
hard to parse programmatically. You may want to use the QueueStatus command
instead.

Redirect Redirects (transfers) a channel

Redirects a channel to a new context, extension, and priority in the dialplan.

Parameters

Channel
[required] Channel to redirect.

ExtraChannel
[optional] Channel identifier of the second call leg to transfer.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Exten
[required] Extension in the dialplan to transfer to.

Context
[required] Context to transfer to.

Priority
[required] Priority to transfer to.

Privilege
call, all

Example
Action: Redirect
Channel: SIP/linksys2-10201e90
Context: lab
Exten: 500
Priority: 1
ActionID: 010123234545

Response: Success
ActionID: 010123234545
Message: Redirect successful

538 | Appendix F: Asterisk Manager Interface Actions

SIPpeers Lists all SIP peers

Lists the currently configured SIP peers along with their status.

Parameters

ActionID
[optional] An action identifier that you can use to identify the response to this
manager transaction.

Privilege
system, all

Example
Action: SIPPeers
ActionID: 555444333222111

Response: Success
ActionID: 555444333222111
Message: Peer status list will follow

Event: PeerEntry
ActionID: 555444333222111
Channeltype: SIP
ObjectName: labrat
ChanObjectType: peer
IPaddress: 10.0.0.75
IPport: 5060
Dynamic: no
Natsupport: no
VideoSupport: no
ACL: no
Status: OK (318 ms)
RealtimeDevice: no

Event: PeerEntry
ActionID: 555444333222111
Channeltype: SIP
ObjectName: guineapig
ChanObjectType: peer
IPaddress: 172.18.227.72
IPport: 5060
Dynamic: no
Natsupport: no
VideoSupport: no
ACL: no
Status: Unmonitored
RealtimeDevice: no

Event: PeerEntry

SIPpeers | 539

ActionID: 555444333222111
Channeltype: SIP
ObjectName: another
ChanObjectType: peer
IPaddress: 172.18.227.73
IPport: 5060
Dynamic: yes
Natsupport: no
VideoSupport: no
ACL: no
Status: Unmonitored
RealtimeDevice: no

Event: PeerlistComplete
ListItems: 7
ActionID: 555444333222111

SIPShowPeer Shows information about a SIP peer

Shows detailed information about a configured SIP peer.

Parameters

Peer
[required] The name of the SIP peer.

ActionID
[optional] An action identifier that you can use to identify the response to this
manager transaction.

Privilege
system, all

Example
Action: SIPShowPeer
Peer: linksys2
ActionID: 9988776655

Response: Success
ActionID: 9988776655
Channeltype: SIP
ObjectName: linksys2
ChanObjectType: peer
SecretExist: Y
MD5SecretExist: N
Context: lab
Language:
AMAflags: Unknown
CID-CallingPres: Presentation Allowed, Not Screened
Callgroup:
Pickupgroup:
VoiceMailbox:

540 | Appendix F: Asterisk Manager Interface Actions

TransferMode: open
LastMsgsSent: -1
Call-limit: 0
MaxCallBR: 384 kbps
Dynamic: Y
Callerid: "Linksys #2" <555>
RegExpire: 2516 seconds
SIP-AuthInsecure: no
SIP-NatSupport: RFC3581
ACL: N
SIP-CanReinvite: Y
SIP-PromiscRedir: N
SIP-UserPhone: N
SIP-VideoSupport: N
SIP-DTMFmode: rfc2833
SIPLastMsg: 0
ToHost:
Address-IP: 192.168.5.71
Address-Port: 5061
Default-addr-IP: 0.0.0.0
Default-addr-port: 5056
Default-Username: linksys2
RegExtension: 6100
Codecs: 0x4 (ulaw)
CodecOrder: ulaw
Status: Unmonitored
SIP-Useragent: Linksys/SPA962-5.1.5
Reg-Contact : sip:linksys2@192.168.5.71:5061

SetCDRUserField Sets the CDR UserField

Sets the UserField setting for the CDR record on the specified channel.

Parameters

Channel
[required] The channel on which to set the CDR UserField.

UserField
[required] The value to assign to the UserField in the CDR record.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: SetCDRUserField
Channel: SIP/test-10225140
UserField: abcdefg

SetCDRUserField | 541

Response: Success
Message: CDR Userfield Set

SetVar Sets channel variable

Sets a global or channel variable.

Parameters

Channel
[optional] Channel on which to set the variable. If not set, the variable will be set
as a global variable.

Variable
[required] Variable name.

Value
[required] Value.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
call, all

Example
Action: SetVar
Channel: SIP/linksys2-10225140
Variable: MyOwnChannelVariable
Value: 42

Response: Success
Message: Variable Set

Action: SetVar
Variable: MyOwnGlobalVariable
Value: 25

Response: Success
Message: Variable Set

Status Lists channel status

Lists the status of one or more channels, showing details about their current state.

Parameters

Channel
[optional] Limits the status output to the specified channel.

542 | Appendix F: Asterisk Manager Interface Actions

ActionID
[optional] An action identifier that you can use to identify the response to this
manager transaction.

Privilege
call, all

Example
Action: Status
Channel: SIP/test-10225140
ActionID: 101010101010101

Response: Success
ActionID: 101010101010101
Message: Channel status will follow

Event: Status
Privilege: Call
Channel: SIP/test-10225140
CallerID: "Bob Jones" <501>
CallerIDNum: 501
CallerIDName: "Bob Jones"
Account:
State: Up
Context: lab
Extension: 201
Priority: 1
Seconds: 865
Link: Local/200@lab-4d13,1
Uniqueid: 1177550165.0
ActionID: 101010101010101
Event: StatusComplete
ActionID: 101010101010101

StopMonitor Stops the recording of a channel

Stops a previously started monitoring (recording) on a channel.

Parameters

Channel
[required] The name of the channel to stop monitoring.

ActionID
[optional] A unique identifier to help you identify responses to this command.

Privilege
call, all

StopMonitor | 543

Example
Action: StopMonitor
Channel: SIP/linksys2-10216e38

Response: Success
Message: Stopped monitoring channel

UnpauseMonitor Unpauses monitoring

Unpauses the monitoring (recording) of the specified channel.

Parameters

Channel
[required] The name of the channel on which to unpause the monitoring.

ActionID
[optional] A unique identifier to help you identify responses to this command.

Privilege
call, all

Example
Action: UnpauseMonitor
Channel: SIP/linksys2-10212040
ActionID: 282828282828282

Response: Success
ActionID: 282828282828282
Message: Unpaused monitoring of the channel

UpdateConfig Updates a config file

Dynamically updates an Asterisk configuration file.

Parameters

SrcFilename
[required] The filename of the configuration file from which to read the current
information.

DstFilename
[required] The filename of the configuration file to be written.

Reload
[optional] Specifies whether or not a reload should take place after the configura-
tion update, or the name of a specific module that should be reloaded.

544 | Appendix F: Asterisk Manager Interface Actions

Action-XXXXXX
[required] An action to take. Can be one of NewCat, RenameCat, DelCat, Update,
Delete, or Append.

Cat-XXXXXX
[required] The name of the category to operate on.

Var-XXXXXX
[optional] The name of the variable to operate on.

Value-XXXXXX
[optional] The value of the variable to operate on.

Match-XXXXXX
[optional] If set, an extra parameter that must be matched on the line.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
config, all

Example
Action: UpdateConfig
SrcFilename: sip.conf
DstFilename: test.conf
Action-000000: update
Cat-000000: linksys
Var-000000: mailbox
Value-000000: 101@lab

Response: Success

Notes
Note that the first set of parameters should be numbered 000000, the second 000001,
and so on. This allows you to update many different configuration values at the same
time. It should also be noted that the Asterisk GUI uses this its primary mechanism for
updating the configuration of Asterisk.

UserEvent Sends an arbitrary event

Sends an arbitrary event to the Asterisk Manager Interface.

Parameters

UserEvent
[required] The name of the arbitrary event to send.

UserEvent | 545

Header
[optional] The name and value of an arbitrary parameter to your event. You may
add as many additional headers (along with their values) to your event.

ActionID
[optional] An identifier which can be used to identify the response to this action.

Privilege
user, all

Example
Action: UserEvent
Blah: one
SomethingElse: two
ActionID: 63346

Event: UserEvent
Privilege: user,all
UserEvent:
Action: UserEvent
Blah: one
SomethingElse: two
ActionID: 63346

WaitEvent Waits for an event to occur

After calling this action, Asterisk will send you a Success response as soon as another
event is queued by the Asterisk Manager Interface. Once WaitEvent has been called on
an HTTP manager session, events will be generated and queued.

Parameters

Timeout
[optional] Maximum time to wait for events.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
none

Example
Action: WaitEvent
Timeout: 30

Action: Ping

Response: Success
Message: Waiting for Event...

546 | Appendix F: Asterisk Manager Interface Actions

Event: WaitEventComplete

Response: Pong

ZapDNDoff Sets a Zap channel’s do not disturb status to off

Toggles the do not disturb state on the specified Zap channel to off.

Parameters

ZapChannel
[required] The number of the Zap channel on which to turn off the do not disturb
status.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
none

Example
Action: ZapDNDoff
ZapChannel: 1
ActionID: 01234567899876543210

Response: Success
ActionID: 01234567899876543210
Message: DND Disabled

ZapDNDon Sets a Zap channel’s do not disturb status to on

Toggles the do not disturb state on the specified Zap channel to on.

Parameters

ZapChannel
[required] The number of the Zap channel on which to turn on the Do Not Disturb
status.

ActionID
[optional] An identifier that can be used to identify the response to this action.

Privilege
none

ZapDNDoff | 547

Example
Action: ZapDNDon
ZapChannel: 1
ActionID: 98765432100123456789

Response: Success
ActionID: 98765432100123456789
Message: DND Enabled

ZapDialOffhook Dials over Zap channel while off-hook

Dials the specified number on the Zap channel while the phone is off-hook.

Parameters

ZapChannel
[required] The Zap channel on which to dial the number.

Number
[required] The number to dial.

ActionID
[optional] A unique identifier to help you identify responses to this command.

Privilege
none

Example
Action: ZapDialOffhook
ZapChannel: 1
Number: 543215432154321
ActionID: 5676

Response: Success
ActionID: 5676
Message: ZapDialOffhook

ZapHangup Hangs up Zap channel

Hangs up the specified Zap channel.

Parameters

ZapChannel
[required] The Zap channel to hang up.

ActionID
[optional] A unique identifier to help you identify responses to this command.

548 | Appendix F: Asterisk Manager Interface Actions

Privilege
none

Example
Action: ZapHangup
ZapChannel: 1-1
ActionID: 98237892

Response: Success
ActionID: 98237892
Message: ZapHangup

ZapRestart Fully restarts Zaptel channels

Completly restarts the Zaptel channels, terminating any calls in progress.

Privilege
none

Example
Action: ZapRestart

Response: Success
Message: ZapRestart: Success

ZapShowChannels Shows status Zapata channels

Shows the status of all the Zap channels.

Parameters

ActionID
[optional] An action identifier that can be used to identify the response from
Asterisk.

Privilege
none

Example
Action: ZapShowChannels
ActionID: 9999999999

Response: Success
ActionID: 9999999999
Message: Zapata channel status will follow

ZapRestart | 549

Event: ZapShowChannels
Channel: 1
Signalling: FXO Kewlstart
Context: incoming
DND: Disabled
Alarm: No Alarm
ActionID: 9999999999

Event: ZapShowChannels
Channel: 4
Signalling: FXS Kewlstart
Context: incoming
DND: Disabled
Alarm: No Alarm
ActionID: 9999999999

Event: ZapShowChannelsComplete
ActionID: 9999999999

ZapTransfer Transfers Zap channel

Transfers a Zap channel.

Privilege
none

Example
Action: ZapTransfer
ZapChannel: 1
ActionID: 4242

Response: Success
Message: ZapTransfer
ActionID: 4242

550 | Appendix F: Asterisk Manager Interface Actions

APPENDIX G

An Example of func_odbc

This appendix contains the examples from the hot-desking feature in the “Getting
Funky with func_odbc: Hot-Desking” section in Chapter 12. It may be useful to follow
along with this example in Chapter 12 as it can be useful to see where the code is going
while reading along with the explanation.

Hot-Desking (extensions.conf) Dialplan code

; Hot Desking Feature
[hotdesk]
; Hot Desk Login
exten => _11XX,1,NoOp()
exten => _11XX,n,Set(E=${EXTEN})
exten => _11XX,n,Verbose(1|Hot Desk Extension ${E} is changing status)
exten => _11XX,n,Verbose(1|Checking current status of extension ${E})
exten => _11XX,n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
exten => _11XX,n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})
exten => _11XX,n,GotoIf($[${ISNULL(${${E}_STATUS})}]?invalid_user)

exten => _11XX,n,GotoIf($[${${E}_STATUS} = 1]?logout,1:login,1)

exten => login,1,NoOp()
exten => login,n,Set(PIN_TRIES=0)
exten => login,n,Set(MAX_PIN_TRIES=3)
exten => login,n(get_pin),NoOp()
exten => login,n,Set(PIN_TRIES=$[${PIN_TRIES} + 1])
exten => login,n,Read(PIN_ENTERED|enter-password|${LEN(${${E}_PIN})})
exten => login,n,GotoIf($[${PIN_ENTERED} = ${${E}_PIN}]?valid_login,1)
exten => login,n,Playback(invalid-pin,1)
exten => login,n,GotoIf($[${PIN_TRIES} <= ${MAX_PIN_TRIES}]?get_pin:login_fail,1)

exten => valid_login,1,NoOp()
exten => valid_login,n,Set(LOCATION=${CUT(CHANNEL,/,2)})
exten => valid_login,n,Set(LOCATION=${CUT(LOCATION,-,1)})
exten => valid_login,n,Set(ARRAY(USERS_LOGGED_IN)=${HOTDESK_CHECK_PHONE_LOGINS
(${LOCATION})})
exten => valid_login,n,GotoIf($[${USERS_LOGGED_IN} > 0]?logout_login,1)

551

exten => valid_login,n(set_login_status),NoOp()
exten => valid_login,n,Set(HOTDESK_STATUS(${E})=1\,${LOCATION})

exten => valid_login,n,GotoIf($[${ODBCROWS} < 1]?error,1)
exten => valid_login,n,Playback(agent-loginok)
exten => valid_login,n,Hangup()

exten => logout_login,1,NoOp()
exten => logout_login,n,Set(ROW_COUNTER=0)
exten => logout_login,n,While($[${ROW_COUNTER} < ${USERS_LOGGED_IN}])
exten => logout_login,n,Set(WHO=${HOTDESK_LOGGED_IN_USER(${LOCATION},${ROW_COUNTER})})
exten => logout_login,n,Set(HOTDESK_STATUS(${WHO})=0)
exten => logout_login,n,Set(ROW_COUNTER=$[${ROW_COUNTER} + 1])
exten => logout_login,n,EndWhile()
exten => logout_login,n,Goto(valid_login,set_login_status)

exten => logout,1,NoOp()
exten => logout,n,Set(HOTDESK_STATUS(${E})=0)
exten => logout,n,GotoIf($[${ODBCROWS} < 1]?error,1)
exten => logout,n,Playback(silence/1&agent-loggedoff)
exten => logout,n,Hangup()

exten => login_fail,1,NoOp()
exten => login_fail,n,Playback(silence/1&login-fail)
exten => login_fail,n,Hangup()

exten => error,1,NoOp()
exten => error,n,Playback(silence/1&connection-failed)
exten => error,n,Hangup()

exten => invalid_user,1,NoOp()
exten => invalid_user,n,Verbose(1|Hot Desk extension ${E} does not exist)
exten => invalid_user,n,Playback(silence/2&invalid)
exten => invalid_user,n,Hangup()

include => hotdesk_outbound

[hotdesk_outbound]
exten => _X.,1,NoOp()
exten => _X.,n,Set(LOCATION=${CUT(CHANNEL,/,2)})
exten => _X.,n,Set(LOCATION=${CUT(LOCATION,-,1)})
exten => _X.,n,Set(WHO=${HOTDESK_PHONE_STATUS(${LOCATION})})
exten => _X.,n,GotoIf($[${ISNULL(${WHO})}]?no_outgoing,1)
exten => _X.,n,Set(${WHO}_CID_NAME=${HOTDESK_INFO(cid_name,${WHO})})
exten => _X.,n,Set(${WHO}_CID_NUMBER=${HOTDESK_INFO(cid_number,${WHO})})
exten => _X.,n,Set(${WHO}_CONTEXT=${HOTDESK_INFO(context,${WHO})})
exten => _X.,n,Goto(${${WHO}_CONTEXT},${EXTEN},1)

[international]
exten => _011.,1,NoOp()
exten => _011.,n,Set(E=${EXTEN})
exten => _011.,n,Goto(outgoing,call,1)

552 | Appendix G: An Example of func_odbc

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

include => longdistance

[longdistance]
exten => _1NXXNXXXXXX,1,NoOp()
exten => _1NXXNXXXXXX,n,Set(E=${EXTEN})
exten => _1NXXNXXXXXX,n,Goto(outgoing,call,1)

exten => _NXXNXXXXXX,1,Goto(1${EXTEN},1)

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

include => local

[local]
exten => _416NXXXXXX,1,NoOp()
exten => _416NXXXXXX,n,Set(E=${EXTEN})
exten => _416NXXXXXX,n,Goto(outgoing,call,1)

exten => i,1,NoOp()
exten => i,n,Playback(silence/2&sorry-cant-let-you-do-that2)
exten => i,n,Hangup()

[outgoing]
exten => call,1,NoOp()
exten => call,n,Set(CALLERID(name)=${${WHO}_CID_NAME})
exten => call,n,Set(CALLERID(number)=${${WHO}_CID_NUMBER})
exten => call,n,Dial(SIP/service_provider/${E})
exten => call,n,Playback(silence/2&pls-try-call-later)
exten => call,n,Hangup()

[hotdesk_phones]
exten => _11XX,1,NoOp()
exten => _11XX,n,Set(E=${EXTEN})
exten => _11XX,n,Set(LOCATION=${HOTDESK_LOCATION(${E})})
exten => _11XX,n,GotoIf($[${ISNULL(${LOCATION})}]?voicemail,1)
exten => _11XX,n,Dial(SIP/${LOCATION},30)
exten => _11XX,n,Goto(voicemail,1)

exten => voicemail,1,NoOp()
exten => voicemail,n,Voicemail(${E}@hotdesk,u)
exten => voicemail,n,Hangup()

Hot-Desking (extensions.conf) | 553

See Also
Hot-Desking (sip.conf), Hot-Desking (func_odbc.conf), Chapter 5, Chapter 6, Read(),
CUT, While(), ISNULL, VoiceMail(), CALLERID, Dial(), GotoIf()

Hot-Desking (func_odbc.conf) Custom dialplan functions

[INFO]
prefix=HOTDESK
dsn=asterisk
read=SELECT ${ARG1} FROM ast_hotdesk WHERE extension = '${ARG2}'

[STATUS]
prefix=HOTDESK
dsn=asterisk
write=UPDATE ast_hotdesk SET status = '${VAL1}', location = '${VAL2}' WHERE extension
= '${ARG1}'

[CHECK_PHONE_LOGINS]
prefix=HOTDESK
dsn=asterisk
read=SELECT COUNT(status) FROM ast_hotdesk WHERE status = '1' AND location = '${ARG1}'

[LOGGED_IN_USER]
prefix=HOTDESK
dsn=asterisk
read=SELECT extension FROM ast_hotdesk WHERE status = '1' AND location = '${ARG1}'
ORDER BY id LIMIT '1' OFFSET '${ARG2}'

[PHONE_STATUS]
prefix=HOTDESK
dsn=asterisk
read=SELECT extension FROM ast_hotdesk WHERE location = '${ARG1}' AND status = '1'

See Also
Hot-Desking (extensions.conf), Hot-Desking (sip.conf), res_odbc.conf

Hot-Desking (sip.conf) Two sample phone configurations and sample service provider configuration

; HOT DESK USERS
[desk_1]
type=friend
host=dynamic
secret=my_special_secret
context=hotdesk
qualify=yes

[desk_2]
type=friend
host=dynamic
secret=my_special_secret

554 | Appendix G: An Example of func_odbc

context=hotdesk
qualify=yes

; END HOT DESK USERS

See Also
Hot-Desking (extensions.conf), Hot-Desking (func_odbc.conf), Chapter 4

Hot-Desking (sip.conf) | 555

Index

Symbols
! (bang), matching characters with, 138
!= operator, 147
$ (dollar sign), using expressions, 145
% (remainder of sign), 147
& (ampersand)

and boolean operator, 147
dialing multiple channels, 131

' (single quotes)
using the makerequest function, 259

* (asterisk), 70
GotoIfTime() function), 153
multiplication sign, 147

* (wildcard), 70
*** termcap support not found, 52
+ (plus sign), 147
, (commas), using Set(), 282
- (minus sign), 147
. (period), matching characters with, 138
/ (forward slash)

integer division sign, 147
using Dial(), 130

7960 (Cisco) telephone, 93–95
: (regular expression operator), 147
< (less than) operator, 147
<= operator, 147
= (equal sign) comparison operator, 147
=> (extensions), 122
> (greater than) comparison operator, 147
>= operator, 147
[] (square brackets), 337

contexts and, 120
DUNDi peers, defining, 311
editing the iax.conf file, 109

Manager interface and, 228
\ (backslash), using Set(), 282
^ (caret), in regular expressions, 147
_ (underscores), using pattern-matching, 137
{ } (curly braces)

functions and, 148
variables and, 135

| (pipe), 337
as a separator, 124
boolean operator, 146
mailboxes, creating, 155
Set() application and, 282

μlaw, 177

A
AADK (Asterisk Appliance Developers Kit,

246
AbsoluteTimeout (AMI action), 515
AC (alternating current), 168
accountcode

CSV value, 293
parameter (IAX), 338
SIP parameter, 358

ActiveRecord, 237
adaptors (telephony), 33
AddQueueMember() application, 368
Adhearsion, 231–243

code, distributing and reusing, 239
dialplans and, 232
installing, 233–234
Micromenus, using, 241

adsi parameter (IAX), 338
adsi.conf file, 462
ADSIProg() application, 368
adtranvofr.conf file, 463

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

557

AGENT dialplan function, 493
AgentCallbackLogin() application, 369, 516
AgentLogin() application, 369
AgentLogoff() application, 517
AgentMonitorOutgoing() application, 370
Agents (AMI action), 517
agents.conf file, 463
AGI (Asterisk Gateway Interface), 207–225

communication, 208
debugging, 223–225

agi debug command, 224
AGI() application, 209, 370
agi-bin/ directory, 59
AJAM (Asynchronous JavaScript and Asterisk

Manager), 246, 254–257
Ajax (Asynchronous JavaScript and XML), 246,

248, 254–257
form (HTML) processing, 255

AlarmReceiver() application, 371
alarmreceiver.conf file, 465
Algebraic-Code-Excited Linear Prediction (CS-

ACELP), 195
aliasing, 178
allow parameter

IAX, 338
SIP, 358

allowexternalinvites SIP parameter, 350
allowguest SIP parameter, 350
allowoverlap SIP parameter, 350
allowsubscribe SIP parameter, 350
allowtransfers SIP parameter, 350
alsa.conf file, 465
alternate installations of AsteriskNOW, 66
alwaysauthreject SIP parameter, 350
AMA (Automatic Message Accounting), 338
amaflags CSV value, 294, 338
amaflags SIP parameter, 359
AMD CPUs, 16
AMD() application, 372
AMI (Asterisk Manager Interface), 227–243,

248
HTTP, commands over, 251

ampersand (&)
and boolean operator, 147
dialing multiple channels, 131

analog interfaces, 70
cards, 26

analog telephones, 30
FXS channels, configuring, 79

analog telephony, 167–170
Analog Terminal Adaptors (ATAs), 33, 95
analog waveforms, 171

digitizing, 15
analog-to-digital (A/D) converters, 179
and (&) boolean operator, 147
ANSWER (AGI), 449
answer CSV value, 294
Answer() application, 124, 125, 373

Festival, using, 305
AppendCDRUserField() application, 374
applications, 122, 124

dialplan, 119
ARA (Asterisk Realtime Architecture), 13, 268–

272
arguments

applications, 124
macros, using, 159
Makefiles, 49

${ARG n} variable, 158
ARRAY() function, 279, 494
AstDB (Asterisk database, 160–162
Asterisk

Appliance Developers Kit (AADK), 246
Documentation Project, 8
Gateway Interface (AGI), 207–225
GUI project, 246
Guru, 106
Manager Interface (AMI), 227–243, 248,

249
HTTP, commands over, 251

Realtime Architecture (ARA), 13, 268–272
User Groups (AUGs), 8
Web Voicemail, 49
Wiki, 7

asterisk (*)
GotoIfTime() function, 153
multiplication sign, 147
wildcard, 70

Asterisk GUI, 62
#asterisk IRC channel, 8
Asterisk-Biz mailing list, 7
Asterisk-BSD mailing list, 7
#asterisk-dev IRC channel, 8
Asterisk-Dev mailing list, 7
asterisk-sounds package, 38
Asterisk-Users mailing list, 7
asterisk.conf file, 268, 466
AsteriskNOW (Ruby), 233

558 | Index

AsteriskNOW software, 62–66
Astlinux, 17
Astricon, 48
Asynchronous JavaScript and Asterisk Manager

(AJAM), 246, 254–257
Asynchronous JavaScript and XML (see Ajax)
ATAs (Analog Terminal Adaptors), 33, 95
attach options, creating mailboxes, 155
AUGs (Asterisk User Groups), 8
Authenticate() application, 374
auto-attendants, 127
autobug parameter (IAX), 338
autoconf, 42
autodomain SIP parameter, 351
autokill parameter (IAX), 339
Automatic Message Accounting (AMA), 338
Automatic Partitioning screen, 64

B
Back-To-Back User Agent (B2BUA), 82
Background() application, 72, 127, 298, 375
BackgroundDetect() application, 376
backslash (\), using Set(), 282
bandwidth parameter (IAX), 339
bang (!), matching characters with, 138
BASE64_DECODE dialplan function, 494
BASE64_ENCODE dialplan function, 494
bash shell, compiling Asterisk source code, 42
Basic Rate Interface (BRI), 28, 31, 183
bidirectional communication (full duplex), 73
billsec CSV value, 294
binaries (Asterisk), 50
bindaddr SIP parameter, 351
bindport SIP parameter, 351
bison, 38
BLACKLIST dialplan function, 494
bland line feed (\n), 223
BLOB (Binary Large Object), storing

voicemails, 286
Boehnlein, Greg, 17
Boolean operators, 146
Boot server host name, 86
bootROM (Polycom sets), 91
Branch, 40
BRI (Basic Rate Interface), 28, 31, 183
buggymwi SIP parameter, 351
business systems, 12
Busy() application, 376

C
-c (console) switch, 57
-c flag (Asterisk console), 117
C programming language, 240
C++ preprocessors, 52
C7960 (Cisco) telephone, 93–95
Call Detail Records (CDR), 272

information, storing, 293
call files, 306
call parking, 163
CALLER ID dialplan function, 495
callerid parameter (IAX), 348
callerid SIP parameter, 359
callevents SIP parameter, 351
callgroup SIP parameter, 359
callingpres SIP parameter, 359
canreinvite SIP parameter, 360
caret (^), in regular expressions, 147
CAS (Channel Associated Signaling, 182
category module, 269
Cathedral and the Bazaar (Raymond), 320
cat_metric module, 269
CDR (Call Detail Records), 272

information, storing, 293
CDR dialplan function, 495
cdr.conf file, 268, 467
cdr_manager.conf file, 468
cdr_odbc.conf file, 469
cdr_pgsql.conf file, 469
cdr_tds.conf file, 469
CentOS directory, 37
central office (CO), 168
central processing unit (CPU), 15
CEPT (European Conference of Postal and

Telecommunications
Administrations), 181

cfgbasic.html file, 257
CHALLENGE action, 251
ChangeMonitor() application, 377, 518
ChanIsAvail() application, 377
channel =>, defining channels and, 78
channel CSV value, 294
CHANNEL dialplan function, 497
CHANNEL STATUS (AGI), 449
ChannelRedirect() application, 378
channels, 69

banks, 27
variables, 136

ChanSpy() application, 378

Index | 559

chan_h323.so, 191
chan_sip.so module, 188
chan_zap, 43
checkmwi SIP parameter, 351
CHECKSIPDOMAIN dialplan function, 498
CHECK_MD5 dialplan function, 498
Christensen, Clayton M., 95
circuit types (digital circuit-switched), 180
circuit-switched network, 30
circuits (electrical), 24, 30
Cisco 7960 telephone, 93–95
Cisco Call Manager PBX, 193
Cisco VoIP equipment, 193
Citel, 31
clean (make), 46
CLI (command-line interface), 55
clid CSV value, 294
clients, 81
codecpriority parameter (IAX), 339
codecs (COder/DECoder), 15, 193–196
codecs.conf file, 470
Colp, Joshua, 13
columns (database)

ActiveRecord databases, 238
PostgreSQL, defining for in static realtime,

269
comma separated values (CSV), 293
Command (AMI action), 519
command-line interface (CLI), 55
commands (applications), 122, 124
commas (,), using Set(), 282
commented module, 270
communications terminals, 33
community (Asterisk), 6
compactheaders SIP parameter, 351
companding, 177
compiling

Asterisk, 48–50
bash and, 42
Linux package requirements and, 38

issues with, 51–54
libpri, 47
Zapter, 43

computer power supplies, 21
conditional branching, 149–153

GotoIfTime(), 151–153
config (make), 47, 50, 54
configuration files, 71

Asterisk GUI and, 253

dialplan, 120
Polycom sets, 91
using templates and, 115

configuration of Asterisk, 69–117
configure: error: *** termcap support not found,

52
Congestion() application, 379
console (Asterisk), 116
console commands, starting Asterisk without

scripts, 57
context setting (features.conf file), 163
context SIP parameter, 360
contexts, 119
contiguous connections (circuits), 30
ContinueWhile() application, 380
contrib/ directory, configuring Festival, 304
ControlPlayback() application, 380
cookies, 252
cords (waveforms), 177
Core sounds package, 38
CounterPath X-Lite Softphone, 87–89
Courier-IMAP, 313
cpp, 52
CPUs (central processing unit), 15
crackers, 5
Creative Commons licensed music, 300
CRM (Customer Relationship Management),

227
cross-platform softphones, 106
Crossing the Chasm (Moore, Geoffrey), 8
CS-ACELP (Algebraic-Code-Excited Linear

Prediction), 195
CSV (comma separated values), 293
CURL dialplan function, 498
curly braces ({ })

functions and, 148
variables and, 135

Customer Relationship Management (CRM),
227

CUT dialplan function, 499

D
DATABASE DEL (AGI), 450
DATABASE DELTREE (AGI), 450
DATABASE GET (AGI), 450
DATABASE PUT (AGI), 451
databases, 160–162

Adhearsion, 237–239
func_odbc function, 274–285

560 | Index

installing, 263–265
relational integration, 263–291

DateTime() application, 381
days_of_month argument (GotoIfTime()

function), 152
days_of_week argument (GotoIfTime()

function), 152
DB dialplan function, 500
DBdel() application, 381
DBdeltree() application, 381
DBGet (AMI action), 519
DBget() application, 160
DBPut (AMI action), 520
DBput() application, 160
DB_DELETE dialplan function, 500
DB_EXISTS dialplan function, 500
DC (direct current) voltage, 168
dcontext CSV value, 294
DeadAGI() application, 209, 382
debugging, 116

AGI, 223–225
decoder (codec), 15
defaultexpiry SIP parameter, 351
defaultip parameter

IAX, 348
SIP, 361

delayreject parameter (IAX), 340
Denial of Service (DoS), 190
deny parameter, 99
deny SIP parameter, 361
depmod errors, 54
dev directory, 55
devfs, 55
DHCP servers, 85

Polycom IP 430, 90
DHTML, 254
dial pad, 168
Dial() application, 130, 164, 347, 382
dial-by-name directories, creating, 156
dialplan, 114, 119–144

Adhearsion, developing with, 232
AGI scripts, 209
building an interactive, 127–144
concepts, 145–166
configuring, 79, 81

connecting two Asterisk boxes, 104
for testing, 97

Festival, 305
functions, 148

macros, calling from, 158
reload command, 72
scripting logic, 14
setting up, 73
syntax, 119–124
voicemail, adding to, 155

DIALSTATUS variable, 131
Dictate() application, 388
dictate/ directory, 60
DID (Direct Inward Dialing), 110
DiffServ (differentiated service), 198
digital

circuit-switched networks, 180–184
circuits, 70
interface cards, 26
signaling protocols, 182–184
telephones, 30
telephony, 170–179

circuit-switched networks, 180
Digital Signal Processing (DSP), 2, 14
digital-to-analog (D/A) converters, 173
Digium, 6, 26

X100P card, 74
Digium TDM11B, 69
direct current (DC) voltage, 168
Direct Inward Dialing (DID), 110
directories, used by Asterisk, 59–62
Directory() application, 156, 389
directrtpsetup SIP parameter, 352
DISA() application, 390
disallow parameter (IAX), 338
disallow SIP parameter, 358, 361
disposition CSV value, 294
distclean (make), 49
Distributed Universal Number Discovery (see

DUNDi)
division sign (/), 147
Dixon, Jim, 2
DNS (Domain Name System), 331
dnsmgr.conf file, 470
doc/ subdirectory, 121
dollar signs ($), using expressions, 145
DOM, 254
Domain Name System (DNS), 331
domain SIP parameter, 352
DoS (Denial of Service) attacks, 190
Dovecot IMAP servers, 313
downloading configurations (Polycom

phones), 90

Index | 561

doxygen system, 49
DPDISCOVER query, 309
DS-0, 180
DSP (Digital Signal Processing), 2, 14
dst CSV value, 294
dstchannel CSV value, 294
\dt (describe tables) command, 273
DTMF (Dual-Tone Multi Frequency), 169
dtmfmode SIP parameter, 361
Dual-Tone Multi Frequency (DTMF), 169
DumpChan() application, 391
dumphistory SIP parameter, 352
DUNDi (Distributed Universal Number

Discovery), 39, 307–312
DUNDi protocol, 13
dundi.conf file, 308, 470

peers, defining, 311
DUNDILOOKUP dialplan function, 500
duration CSV value, 294
dust and electronics, 25
dynamic realtime, 268

E
E&M (Ear & Mouth or recEive & transMit)

signaling, 182
E.164, 331
E1 (CEPT-1), 181
E1 cards, 26, 70
e164.org, 331
EAGI() application, 209, 391
Ear & Mouth (E&M), 182
echo, 11, 200
echo cancellation, 14, 28
Echo() application, 73, 79, 391
/ect/asterisk/ directory, 59
electrical

circuits, 24
supplies, 21

elements (GUI), 247
email, notifying of voicemail, 154
encryption, 206
end CSV value, 294
EndWhile() application, 392
Enebo, Thomas, 242
ENUM, 331
enum.conf file, 470
ENUMLOOKUP dialplan function, 500
ENV dialplan function, 136, 500
environment variables, 136

environments, 11, 21
equal sign (=) comparison operator, 147
equipment conditions, 24
errors, compiling, 52
/etc/ directory, 75
/etc/asterisk directory, 268

dialplan syntax, 119
European Conference of Postal and

Telecommunications
Administrations (CEPT), 181

EVAL dialplan function, 501
Events (AMI action), 521
EXEC (AGI), 451
Exec() application, 392
ExecIf() application, 392
EXISTS dialplan function, 501
ExitWhile() application, 393
Express Installation (AsteriskNOW), 63
expressions, 145
extconfig.conf file, 268, 471
${EXTEN} channel variable, 140
extensions, 121

dialplan, 119
extensions.ael file, 471
extensions.conf file, 71, 119, 237, 471

[hotdesk] context and, 276
mapping contexts, creating, 309
voicemail, storing and, 289

ExtensionState (AMI action), 521
ExtenSpy() application, 393
ExternalIVR() application, 394
externhost SIP parameter, 352
externip SIP parameter, 352
externrefresh SIP parameter, 353
extracting Asterisk source code, 41
Extras sound package, 38

F
families (database groupings), 160
family key values (AstDB), 160
FastAGI() application, 209, 395
features.conf file, 163, 471
Festival, 303–305, 327
Festival() application, 304, 395
festival.conf file, 472
festival.scm file, 304
fflush function (PHP), 219
fgets function (PHP), 219
FIELDQTY dialplan function, 501

562 | Index

file handles, 207
filename module, 269
FILTER dialplan function, 501
Firefox browser, 63, 254
firewalls, configuring, 98, 111

connecting two Asterisk boxes together,
102

firmware/ directory, 60
flags (console), 116
flash events, 169
Flash Operator Panel (FOP), 231
Flash() application, 396
floating point unit (FPU), 15

processors, choosing, 16
FollowMe() application, 396
FOP (Flash Operator Panel), 231
forcejitterbuffer parameter (IAX), 340
Foreign eXchange Office (see FXO)
Foreign eXchange Station (see FXS)
ForkCDR() application, 396
forms (HTML), 255
forward slash (/), using Dial(), 130
FPU (floating point unit), 15

processors, choosing, 16
FreeBSD, 7
friend type, 203
fromdomain SIP parameter, 361
fromuser parameter, 99
fromuser SIP parameter, 361
FTP servers, 86

configuring Polycom set with, 91
full duplex (bidirectional communication), 73
functions (dialplan), 148
func_odbc function, 274–285, 551–555
func_odbc.conf file, 274
FXO (Foreign eXchange Office), 26, 69

channels, 73
ports, 26
PSTN connections, configuring for, 75–79

FXS (Foreign eXchange Station), 69
channels, 73
configuring for analog telephones, 79
ports, 26

fxsks, 76

G
-g (core dumb) switch, 58
g parameter (makerequest function), 259
G.711 codec, 14, 194

G.726 codec, 195
G.729 codec, 14, 38
G.729A codec, 195
g726nonstandard SIP parameter, 353
GCC compiler, 38, 48
gcc-c++ package, 52
General Peering Agreement (GPA), 308
[general] section, 84, 228, 337

Asterisk GUI, setting up, 250
dundi.conf file and, 308

Gentoo, 50
GET DATA (AGI), 451
GET DATA command, 222
GET FULL VARIABLE (AGI), 451
GET OPTION (AGI), 452
GET VARIABLE (AGI), 452
GetConfig (AMI action), 522
GETCONFIG command, 253
GetCPEID() application, 397
getekeepers, 192
getElementById() method, 256
GetVar (AMI action), 523
glibc-devel, 52
glibc-headers, 52
glibc-kernheaders, 52
GLOBAL dialplan function, 502
global variables, 135
GLOBAL() function, 136
GNU make, 39
Gosub() application, 397
GosubIf() application, 397
Goto() application, 127, 398
GotoIf() application, 149, 399
GotoIfTime() application, 399
GotoIfTime() function, 151–153
GPA (General Peering Agreement), 308
Grandstream, 28
graphical user interfaces (see GUI)
greater than (>) comparison operator, 147
ground starts (gs), 76
grounding, 22
GROUP dialplan function, 502
GROUP_COUNT dialplan function, 502
GROUP_LIST dialplan function, 502
GROUP_MATCH_COUNT dialplan function,

503
gs (ground starts), 76
GSM, 14
GSM codec, 38, 195, 299

Index | 563

GUI (Asterisk), 62, 66, 245–261
architecture of, 248
customization of, 257–260
developing, 251–261
installing, 249–251

Guy, Ed, 219

H
H.323, 191
hackers, 5
half duplex communication, 73
handsets, 170
HANGUP (AGI), 452
Hangup (AMI action), 524
Hangup() application, 124, 400
hardware

server, 13–21
telephony, 25–29

HasNewVoicemail() application, 401
HasVoicemail() application, 401
Hello World! example, 126
high option (bandwidth parameter), 339
hobby systems, 12

grounding and, 24
hook switches, 169
host SIP parameter, 362
hostnames, installing AsteriskNOW, 65
hot-desking feature, 275–285
HOTDESK_CHECK_PHONE_LOGINS()

function, 282
HOTDESK_INFO() function, 280
HOTDESK_STATUS() function, 282
HTML, 254
HTTP protocol, using Polycom phones and,

90
httpd.conf file, setting up, 250
humidity and electronics, 24
hybrid transformers, 169

I
IAX (Inter-Asterisk eXchange), 106–109, 187,

337–349
connecting two Asterisk boxes, 111–114

iax.conf file, 71, 112, 202, 472
channel configuration, configuring, 107
dundi user, creating, 311

iax/ subdirectory or firmware/, 60
IAX2 protocol, 106–109

IAX2Provision() application, 402
iaxmaxthreads parameter (IAX), 340
IAXNetstats (AMI action), 524
IAXPEER dialplan function, 503
IAXPeers (AMI action), 525
iaxprov.conf file, 473
iaxthreads parameter (IAX), 340
ICES() application, 402
IETF (Internet Engineering Task Force), 106,

187, 188
H.323, 192

IF dialplan function, 504
IFTIME dialplan function, 504
ignoreregexpire SIP parameter, 353
iLBC (Internet Low Bitrate Codec), 196
image/ directory, 60
IMAP servers, storing voicemails, 313
ImportVar() application, 402
includes, 142
[incoming] context, 125, 163
incominglimit SIP parameter, 362
[incoming_osaka] context, 113
indications.conf file, 473
initialization script options, 55
inkeys parameter (IAX), 348
Innovator's Dilemma, 95
insecure SIP parameter, 362
installation, 37–67
integer division sign (/), 147
Integrated Services Digital Network (see ISDN)
Intel CPUs, 16
Inter-Asterisk eXchange (see IAX)
Interactive Voice Response (IVR), 324
interface configuration files, 71
internal calls, 133–135
[internal] context, 155
International Telecommunication Union

(ITU), 191, 318
Internet Engineering Task Force (see IETF)
Internet Explorer, 256
Internet Low Bitrate Codec (iLBC), 196
Internet Telephony Service Provider (ITSP), 98

connecting to, 110
interrupt request (IRQ) latency, 15
invalid entries, handling, 130
INVITE requests, sending DoS attacks and,

190
IP 430 (Polycom), 90–93
IP addresses, 87, 99

564 | Index

IP telephones, 32
${IPADDR} variable, 310
IRC (Internet Relay Chat) channels, 8
IRQ (interrupt request) latency, 15
ISDN (Integrated Services Digital Network),

182
telephones, 31

ISNULL dialplan function, 504
ISO file (AsteriskNOW), 64
ITSP (Internet Telephony Service Provider), 98

connecting to, 110
ITU (International Telecommunication

Union), 191, 318
IVR (Interactive Voice Response), 324

J
Jabber (XMPP), 315
Java programming language, 242
JavaScript, 246, 248, 254
jbenable SIP parameter, 353
jbforce SIP parameter, 353
jbimpl SIP parameter, 353
jblog SIP parameter, 354
jbmaxsize SIP parameter, 354
jbresyncthreshold SIP parameter, 354
jitter buffer parameter (IAX), 340
JRuby, 242

K
Kernel Development Headers, 39
kernel optimizations, 15
kewlstarts (ks), 76
key pairs, 311
Key Telephone Systems (KTS), 30
KEYPADHASH dialplan function, 505
keys (database groupings), 160
keys/ directory, 60
ks (kewlstarts), 76
KTS (Key Telephone Systems), 30

L
label argument (GotoIfTime() function), 153
labels (priority), 123
LANGUAGE dialplan function, 505
language parameter (IAX), 341
language SIP parameter, 362
laptops, 11
large object types (PostgreSQL), creating, 286

large systems, choosing processors for, 18
lastapp CSV value, 294
lastdata CSV value, 294
latency (IRQ), 15
LEN dialplan function, 505
LEN() application, 148
less than (<) operator, 147
libnewt, 38

ztcfg and zttool, using, 47
libpri (PRI) libraries, 38

compiling, 47
loading, 57

libstdc++-devel, 52
libtermcap-devel, 39
libtool package, 39
licenses for music, 300
limit option, 267
limitonpeers SIP parameter, 354
Linksys SPA-942, 95–97
Linksys WRT54G routers, 11
Linux, 34

distribution, 16
installing Asterisk and, 37
Ruby/RubyGems, installing on, 234

Linux Firewalls (Suehring/Ziegler), 98, 102,
111

linux-2.4 symbolic link, 45
ListCommands (AMI action), 525
LiveCD, 66
loadzone, 76
localAjaxinit function, 259
localnet SIP parameter, 354
Log() application, 403
logarithmic companding, 177
logger.conf file, 268, 473
logic ground, 22
LOGIN action, 251
login extension, 280
Logoff (AMI action), 525
logrotate utility, 295
logs, managing, 295
LookupBlacklist() application, 403
LookupCIDName() application, 404
loop starts (ls), 76
low option (bandwidth parameter), 339
low volume, 170
lo_list command, 290
ls (loop starts), 76
lsmod command, 56

Index | 565

M
MAC (Media Access Control), 309
Mac OS X, installing Ruby/RubyGems, 234
Macro() application, 158, 404
MacroExclusive() application, 406
MacroExit() application, 406
MacroIf() application, 406
macros, 157–160

arguments, using, 159
${MACRO_CONTEXT} variable, 158
${MACRO_EXTEN} variable, 158
${MACRO_PRIORITY} variable, 158
Madsen, Leif, 8
mailbox parameter

IAX, 348
SIP, 363

MailboxCount (AMI action), 526
mailboxdetail parameter (IAX), 341
mailboxes, creating, 154
MailboxExists() application, 407
MailboxStatus (AMI action), 526
mailing lists (Asterisk), 7
make clean, 46, 49
make config, 47, 50, 54
make distclean, 49
make progdocs, 49
make program, 48
make samples command, installing Asterisk,

48
make update, 49
make webvmail, 49
Makefiles, 42

arguments, 49
makerequest function, 259
Manager interface

commands, 228
Manager Interface (Asterisk), 227–243, 248,

249
HTTP, commands over, 251

manager.conf file, 227, 268, 475
Asterisk GUI, setting up, 250

master config files, 92
Master.csv, 62
matchexterniplocally SIP parameter, 354
MATH dialplan function, 505
maxcallbitrate SIP parameter, 363
maxexpiry SIP parameter, 354
maxjitterbuffer parameter (IAX), 341
maxjitterinterps parameter (IAX), 341

maxregexpire parameter (IAX), 341
MD5 dialplan function, 505
MD5 hashing, 188
md5secret SIP parameter, 363
media, 81
Media Access Control (MAC), 309
Media Gateway Control Protocol (MGCP),

192
medium option (bandwidth parameter), 339
medium systems, choosing processors for, 18
MeetMe() application, 164, 407
meetme.conf file, 164, 476
meetme/ directory, 60
MeetMeAdmin() application, 409
MeetMeCount() application, 165, 411
MeetmeMute (AMI action), 527
MeetMeUnmute (AMI action), 528
menuselect, 42, 50
message waiting indication (MWI), 154, 348
metrics, 270
MGCP (Media Gateway Control Protocol),

192
mgcp.conf file, 476
Micromenus, integrating desk phones with,

241
Microsoft

DHCP environments, 86
NetMeeting client, 191
Ruby/RubyGems, installing, 234

Milliwatt() application, 411
minexpiry SIP parameter, 355
minregexpire parameter (IAX), 341
minus sign (-), 147
MixMonitor() application, 412
modem.conf file, 477
modems, 19
modprobe, 76
modules.conf file, 59, 268, 462
mohinterpret parameter (IAX), 342
mohinterpret SIP parameter, 363
mohmp3/ directory, 60
mohsuggest parameter (IAX), 342
mohsuggest SIP parameter, 363
Molex connectors, 75
Monitor (AMI action), 528
Monitor() application, 412
monitor/ directory, 60
months argument (GotoIfTime() function),

152

566 | Index

Moore, Geffrey, 8
MorseCode() application, 413
motherboard, choosing, 18–20
Mozilla (see Firefox browser)
MP3 (Moving Picture Experts Group Audio

Layer 3) codec, 196
MP3Player() application, 414
MP3s, 299
MPLS (Multiprotocol Label Switching), 199
multiplication sign (*), 147
Multiprotocol Label Switching (MPLS), 199
Music on Hold, 299–302
MUSICCLASS dialplan function, 506
musicclass SIP parameter, 363
MusicOnHold() application, 414
musiconhold.conf file, 270, 477
MWI (message waiting indication), 154, 348
MySQL, 160, 207, 263

CDRs, storing, 294

N
/n (blank line feed), 223
-n flag, 311
N, matching characters with, 138
names (functions), 148
NANP (North America Number Plan), 139
NAT (Network Address Translation), 185,

190
nat SIP parameter, 364
NATed firewalls, 187
NBScat() application, 414
ncursers, 38
NetMeeting client (Microsoft), 191
Network Address Translation (NAT), 185,

190
Network Configuration screen, 65
Network Interface Card (NIC), 19
network transformers, 169
newt-devel package, 39
NIC (Network Interface Card), 19
NoCDR() application, 415
nochecksums parameter (IAX), 342
non-root users, 295–298
nonces, 190
NoOP (AGI), 453
NoOp() application, 415
Nortel, 1
North America Number Plan (NANP), 139
notifyhold SIP parameter, 355

notifymimetype SIP parameter, 355
notifyringing SIP parameter, 355
${NUMBER} variable, 310
Nutter, Charles, 242
Nyquist's theorem, 176

O
ob_implicit_flush(false) command, 219
ODBC connector, 263

installing and configuring, 265–267
voicemail, 286–291, 315

ogg-Vorbis format, 300
OHCI USB controller chip, 46, 53
open architecture, 321
Open Settlement Protocol (OSP), 477
OpenH323 Gatekeeper, 192
OpenSER (SIP Express Router), 82
OpenSSL, 38
OpenWRT, 17
operating systems, debugging AGI scripts from,

223
operator option, creating mailboxes, 155
operators, 146
Originate (AMI action), 529
OS79XX.TXT file, 94
[Osaka] definition, 112
OSP (Open Settlement Protocol), 477
osp.conf file, 477
oss.conf file, 477
outbound dialing, 141
outgoing/ directory, 60
outkey parameter (IAX), 348

P
packet-based transmissions, 186
packet-switched networks, 184
packetization, 186
Page() application, 416
Park (AMI action), 530
Park() application, 417
ParkAndAnnounce() application, 417
ParkedCall() application, 418
ParkedCalls (AMI action), 531
parkext setting (features.conf file), 163
parkingtime setting (features.conf file), 163
parkpos setting (features.conf file), 163
parser generators, 38
password-protected voicemail boxes, 153

Index | 567

pattern matching, 137–140
PauseMonitor (AMI action), 532
PauseMonitor() application, 418
PauseQueueMember() application, 418
PBX (Private Branch eXchange), 1, 30

AsteriskNOW and, 62
legacy migration, 323
shortcoming of, 4

pbx_dundi.so module, 311
PCI-Express, 19
PCI-X, 19
PCM (Pulse-Code Modulation), 171
pedantic SIP parameter, 355
peer connections, 202
peer type, 99
peers (DUNDi), 311
Pentium 100s, 11
performance issues of hardware, 14–16
performance requirements, 12
period, matching characters with, 138
Perl, writing AGI scripts in, 210–214
permit parameter, 99
permit SIP parameter, 364
permit statements, 100
PGcluster, 286
phone trees, 127
phone.conf file, 477
phones

types of, 29–34
PHP, creating AGI scripts in, 214–219
PHPAGI project, 219
Pickup() application, 419
pickupgroup SIP parameter, 359, 364
Pika Technologies, 26
Ping (AMI action), 532
pipe (|), 337

as a separator, 124
boolean operator, 146
mailboxes, creating, 155
Set() application and, 282

play() method, 236
Playback() application, 13, 125, 298, 419
PlayDTMF (AMI action), 533
Player image, 66
Playtones() application, 419
plus sign (+), 147
Polycom, 85

IP 430, 90–93
pooling option, 267

port SIP parameter, 364
ports (FXO/FXS), configuring, 74
PostgreSQL, 160, 207, 263

CDRs, 273
CDRs, storing, 294
installing, 263–265
static realtime, defining tables, 269
voicemail, storing, 286

power conditioned UPS, 21
power supply requirements, 20
pre-connect option, 267
precompiled binaries (Asterisk), 50
preload directive, 268
PRI (Primary Rate Interface), 31
PRI libraries (libpri), 38

compiling, 47
loading, 57

Primary Rate Interface (PRI), 31, 183
priorities, 122–124
privacy.conf file, 477
PrivacyManager() application, 420
Private Branch eXchange (see PBX)
processors, choosing, 16–18
progdocs (make), 49
Progress() application, 421
progressinband SIP parameter, 364
promiscredir SIP parameter, 364
prompt, installing, 50
proprietary digital telephones, 30
proprietary protocols, 193
Prototype framework, 256
PSTN (Public Switch Telephone Network), 3,

14, 167
connecting to, 25–28
motherboard, choosing, 18

public domain music, 300
Public Switch Telephone Network (see PSTN)
Pulse-Code Modulation (PCM), 171–179
Python, writing AGI scripts in, 219–223

Q
-q option (PHP), 214
QoS (Quality of Service), 197–200
qualify parameter (IAX), 349
qualify SIP parameter, 364
qualifyfreqnotok parameter (IAX), 349
qualifyfreqok parameter (IAX), 349
qualifysmoothing parameter (IAX), 349
quantization, 171

568 | Index

queries (SQL), 274
Queue() application, 421
QueueAdd (AMI action), 533
QUEUEAGENTCOUNT dialplan function,

507
QueueLog() application, 423
QueuePause (AMI action), 534
QueueRemove (AMI action), 535
Queues (AMI action), 537
queues.conf file, 478
QueueStatus (AMI action), 536
QUEUE_MEMBER_COUNT dialplan

function, 506
QUEUE_MEMBER_LIST dialplan function,

506
QUEUE_WAITING_COUNT dialplan

function, 506
QUOTE dialplan function, 507

R
-r (remote) switch, 58
-r flag (Asterisk console), 117
RAND dialplan function, 507
Random() application, 423
Raymond, Eric S., 320
Read() application, 423
ReadFile() application, 424
README.festival file, 304
Real-Time Transport Protocol), 81
realm SIP parameter, 355
RealTime application, 424
Realtime Architecture (ARA), 13, 268–272

dynamic, 271
REALTIME dialplan function, 507
RealTimeUpdate() application, 425
recEive & transMit signaling, 182
RECEIVE CHAR (AGI), 453
RECORD FILE (AGI), 453
RECORD FILE command, 213
Record() application, 213, 425
recordhistory SIP parameter, 355
recording sound, 299
Redirect (AMI action), 538
REDIRECT action, 253
redundant power supplies, 21
references, 146
regcontext parameter

IAX, 342
SIP, 365

REGEX dialplan function, 508
regexten parameter

IAX, 342
SIP, 365

register => (register switch), 344
register statements, 203
registerattempts SIP parameter, 355
registertimeout SIP parameter, 355
regular expression (:), 147
relational database integration, 263–291
relaxdtmf SIP parameter, 356
releases of Asterisk source code, 40
reload service <option>, 55
remainder of sign (%), 147
remove module (rmmod) command, 77
RemoveQueueMember() application, 426
REN (Ringer Equivalence Number), 168
Reservation Protocol (RSVP), 199
ResetCDR() application, 426
restart service <option>, 55
resyncthreshold parameter (IAX), 342
res_crypto.so module, 311
res_odbc.conf file, 267, 288, 481
RetryDial() application, 427
Return() application, 427
review option, creating mailboxes, 155
RFC 3261, 81
Rhino analog cards, 26
Ringer Equivalence Number (REN), 168
ringers, 168
Ringing() application, 428
rmmod (remove module) command, 77
root users, 295–298
rows (database), 269
rpt.conf file, 481
RSA key exchange, 188
RSVP (Reservation Protocol), 199
rtautoclear parameter

IAX, 343
SIP, 356

rtcachefriends parameter (IAX), 343
rtcachefriends SIP parameter, 356
rtignoreregexpire parameter (IAX), 343
rtp.conf file, 102, 268, 481
RTP; RFC 3550 (Real-Time Transport

Protocol), 81
rtpholdtimeout SIP parameter, 365
rtpkeepalive SIP parameter, 365
rtptimeout SIP parameter, 365

Index | 569

rtsavesysname SIP parameter, 356
rtupdate parameter (IAX), 343
rtupdate SIP parameter, 356
Ruby, 233

S
s (start) extension, 125
sampling, 171

frequency, 176
Sangoma, 26, 27
SAY ALPHA (AGI), 454
SAY DATE (AGI), 454
SAY DATETIME (AGI), 454
SAY DIGITS (AGI), 455
SAY NUMBER (AGI), 455
SAY NUMBER command, 218
SAY PHONETIC (AGI), 456
SAY TIME (AGI), 456
SayAlpha() application, 428
saycid option, creating mailboxes, 155
SayDigits() application, 140, 428
SayNumber() application, 146, 429
SayPhonetic() application, 429
SayUnixTime() application, 429
SCCP (Skinny Client Control Protocol), 94,

193
scripts

AGI, 207–225
Perl, writing in, 210–214
PHP, writing in, 214
Python, writing in, 219–223

loading with, 54
loading without, 55

SCTP (Stream Control Transmission Protocol),
198

secret SIP parameter, 365
${SECRET} variable, 310
Secure RTP, 205
security (servers), 25
security (VoIP), 204–206
SELECT statement, 274
SEND IMAGE (AGI), 456
SEND IMAGE command, 212
SEND TEXT (AGI), 457
SEND TEXT command, 212
sendani parameter (IAX), 349
SendDTMF() application, 430
SendImage() application, 430
sendrpid SIP parameter, 356

SendText() application, 431
SendURL() application, 431
serverremail option, creating mailboxes, 155
servers

class motherboards, 19
components, 85
electrical circuits, 24
Festival, 304
hardware selection for, 13–21

service providers, connecting to, 97
SET AUTOHANGUP (AGI), 457
SET CALLERID (AGI), 457
SET CONTEXT (AGI), 457
SET dialplan function, 508
SET EXTENSION (AGI), 458
SET MUSIC ON (AGI), 458
SET PRIORITY (AGI), 458
SET VARIABLE (AGI), 458
Set() application, 146, 148, 432

arguments and, 282
AstDB database, storing data and, 160

set-specific config files, 92
SetAMAFlags() application, 432
SetCallerID() application, 432
SetCallerPres() application, 433
SetCDRUserField (AMI action), 541
SetCDRUserField() application, 434
SetGlobalVar() application, 434
SetMusicOnHold() application, 434
SetTransferCapability() application, 435
SetVar (AMI action), 542
setvar SIP parameter, 365
SHA1 dialplan function, 508
sidetones, 169
Signaling System 7 (SS7), 184
SIMPLE protocol, 315
sine waves, 172
single quotes ('), using the makerequest

function, 259
SIP (Session Initiation Protocol), 31, 69, 188–

191, 350–366
configuring, 81–97
connecting two Asterisk boxes, 101–106
service providers, connecting to, 97–101

SIP Express Router (OpenSER), 82
SIP RFC, 84
SIP trapezoid, 189
sip.cfg file, 92
sip.conf file, 71, 82, 202, 276, 482

570 | Index

connecting two Asterisk boxes together,
102

SIPAddHeader() application, 435
SIPCHANINFO dialplan function, 508
sipdebug SIP parameter, 356
SIPDefault.cnf file, 94
SIPDtmfMode() application, 436
SIPp applications, 13
SIPPEER dialplan function, 509
SIPpeers (AMI action), 539
SIPShowPeer (AMI action), 540
Sipura Technologies, 28, 95
SIP_HEADER dialplan function, 508
sip_notify.conf file, 482
Skinny Client Control Protocol (SCCP), 94,

193
skinny.conf file, 483
SLAStation() application, 436
SLATrunk() application, 436
small systems, choosing processors for, 17
Smith, Allison, 298
Smith, Jared, 8
SMP (Kernel Devleopment Headers), 39
Soekris systems, 11
SoftHangup() application, 437
softphones, 32, 73, 85, 108
SOHO (small office/home office) system, 12
SONET (Synchronous Optical Network), 181
SORT dialplan function, 510
sound cards, 70
sound recording, 299
sounds/ directory, 60
source code (Asterisk), 40–42
SoX (Sound eXchange) utility, 300
SPA-942 (Linksys), 95–97
Spam over Internet Telephony (SPIT), 204
speak() method, 236
SPEECH dialplan function, 510
speech processing, 327
SPEECH_ENGINE dialplan function, 510
SPEECH_GRAMMAR dialplan function, 510
SPEECH_SCORE dialplan function, 510
SPEECH_TEXT dialplan function, 511
Speex codec, 196
Spencer, Mark, 6, 246
SPIT (Spam over Internet Telephony), 204
SPRINTF dialplan function, 511
SQLite, 294
square brackets ([]), 337

contexts and, 120
DUNDi peers, defining, 311
editing the iax.conf file, 109
Manager interface and, 228

src CSV value, 293
srvlookup SIP parameter, 356
SS7 (Signaling System 7), 184
StackPop() application, 437
start CSV value, 294
start service <option>, 55
StartMusicOnHold() application, 438
STAT dialplan function, 511
static, 11, 170
static realtime, 268–271
stations, 33
Status (AMI action), 542
status service asterisk <option>, 55
STDERR (standard error), 207, 215
STDIN (standard input), 207, 215
STDOUT (standard output), 207, 215
stop service <option>, 55
StopMixMonitor() application, 438
StopMonitor (AMI action), 543
StopMonitor() application, 438
StopMusicOnHold() application, 439
StopPlaytones() application, 439
Stream Control Transmission Protocol (SCTP),

198
STREAM FILE (AGI), 459
STREAM FILE command, 211, 218
STRFTIME dialplan function, 512
STRPTIME dialplan function, 512
su (super-user), 296
subscribecontext SIP parameter, 357
Subversion (SVN), 40

Asterisk GUI, installing files, 250
AsteriskNOW, downloading, 247

Suehring, Steve, 98, 102, 111
SVN (Subversion), 40

Asterisk GUI, installing files, 250
AsteriskNOW, downloading, 247

switch hooks, 169
Synchronous Optical Network (SONNET),

181
syntax (dialplan), 119–124

pattern-matching, 137
system prompts, customizing, 298
System() application, 439
system/ directory, 60

Index | 571

systems, preparing for Asterisk, 11–35
environments, 21–25
motherboards, choosing, 18–20
processors, choosing for, 16–18

T
T-carrier circuits, 180
T1 cards, 26, 27, 70

ztcfg and zttool, using, 47
T1 digital circuits, 180
t1min SIP parameter, 357
t38pt_udpt1 SIP parameter, 357
Tab completion, 42
tables (database)

ActiveRecord database, 238
PostgreSQL, defining for in static realtime,

269
TCP (Transmission Control Protocol), 197
TDD MODE (AGI), 459
TDM (Time Division Multiplexing), 25, 47,

247
TDM11B (Digium), 69
TDM2400P card, 26
TDM400P cards, 26, 53

determining FXO/FXS ports on, 74
TDM800P card, 26
telco (telephone company), 74
Telecommunication Standardization Bureau

(TSB), 318
telecommunications, 1

flexibility and, 3–5
telephone lines, 70
telephones

FXS channels, configuring for, 79
SIP configuration for, 82
types of, 29–34

telephony, 167–184
adaptors, 33
analog, 167–170
future of, 317–335
gateway, 33
hardware, 25–29

temperature and electronics, 25
templates, using in configuration files, 115–

117
terminals, 33
text-to-speech engines, 303
text2wave utility, 305
TFTP servers, 86, 90

Cisco 7960 telephones and, 93
Thompson, James, 7
Time Division Multiplexing (TDM), 25, 47,

247
Time To Live (ttl) field, 309
Time Zone screen, 65
time-based conditional branching, 151–153
TIMEOUT dialplan function, 512
TIMEOUT() function, 149
timeouts, handling, 130
times argument (GotoIfTime() function), 152
tip and ring, 170
TLS (Transport Layer Security), 190
tmp/ directory, 60
TOS (Type of Service), 343
tos_audio SIP parameter, 357
tos_sip SIP parameter, 357
tos_video SIP parameter, 357
transcoding, 15
transfer parameter (IAX), 349
Transfer() application, 440
Transmission Control Protocol (TCP), 197
Transport Layer Security (TLS), 190
trapezoid (SIP), 189
trixbox, 4
Trunk, 40
trunk parameter (IAX), 343
trunkfreq parameter (IAX), 343
[trunkgroups], 78
trunking, 111, 347
trunktimestamps parameter (IAX), 344
trustrpid SIP parameter, 358
TryExec() application, 440
TrySystem() application, 440
TSB (Telecommunication Standardization

Bureau), 318
ttl (Time To Live), 309
TXTCIDNAME dialplan function, 513
Type of Service (TOS), 343
tz option, creating mailboxes, 155

U
-u option (Python), 220
u parameter (makerequest function), 259
udev daemon, 55
UDP (User Datagram Protocol), 198
underscores (_), using pattern-matching, 137
Unified Messaging, 313
uninterruptible power supplies, 21

572 | Index

UNISTIM, 193
unixODB package, 39
unixODBC, 294
unixODBC-devel package, 39, 265
unnumbered priorities, 123
UnpauseMonitor (AMI action), 544
UnpauseMonitor() application, 441
UnpauseQueueMember() application, 441
update (make), 49
UpdateConfig (AMI action), 544
UPDATECONFIG action, 254
URIDECODE dialplan function, 513
URIENCODE dialplan function, 513
usb-uhci module, 45, 46

unresolved symbol links and, 53
use strict (Perl), 210
user connections, 202
User Datagram Protocol (UDP), 198
user type, 99
useragent SIP parameter, 358
usereqphone SIP parameter, 358
UserEvent (AMI action), 545
UserEvent() application, 442
userfield CSV value, 294
username SIP parameter, 366
users.conf file, 253
/usr/bin/ directory, 210
/usr/lib/asterisk/modules/ directory, 59

V
-v (verbosity) switch, 57
valid_login extension, 281
values (functions), 148
/var/lib/asterisk directory, 59
/var/log/asterisk/ directory, 62
/var/log/asterisk/cdr-csv directory, 62
/var/run/ directory, 61
/var/spool/asterisk/ directory, 60
variables, 135–136, 145–148
var_metric module, 269
var_name module, 270
var_val module, 270
VERBOSE (AGI), 459
Verbose() application, 442
verbosity, enabling, 117
Very Secure FTP Daemon (see VSFTPD)
video, 328
videosupport SIP parameter, 358
Virtual Private Network (VPN), 188

VMAuthenticate() application, 443
VMCOUNT dialplan function, 514
vmexten SIP parameter, 358
voice menus, creating, 127
Voice over IP (see VoIP)
Voice over IP (VoIP)

Asterisk Wiki and, 7
voicemail, 153–157

accessing, 156
dial-by-name directories, 156
storage methods, 312–315
storing in databases, 286–291

VoiceMail() application, 155, 443
voicemail.conf file, 154, 288, 483
voicemail/ directory, 60
VoiceMailMain() application, 444
Voicetronix analog cards, 26
VoIP (Voice over IP), 2

echo cancellation and, 28
protocols for, 185–206
security, 204–206
spam, 332

voltage, 22
vpb.conf file, 491
VPN (Virtual Private Network), 188
VSFTPD (Very Secure FTP Daemon), 86

Polycom phones, configuring, 91
vsftpd config file, 86, 91

W
WAIT FOR DIGIT (AGI), 460
WAIT FOR DIGIT command, 213
Wait(), 13
Wait() application, 445
WaitEvent (AMI action), 546
WaitExten() application, 72, 127, 445
WaitForRing() application, 445
WaitForSilence() application, 446
WaitMusicOnHold() application, 446
Wallack, June, 298
waveforms (analog), 171
wcfxo driver, 53
wctdm driver, 53
web applications, 242
webvmail (make), 49
wget program, 40
While() application, 447
whitespace in AGI scripts, 219
Wi-Fi, 329

Index | 573

Wi-MAX, 330
Windows (see Microsoft)
wireless, 329
wizards, setting up GUIs, 247
WRAP boards, 11

X
-x (execute) switch, 58
X, matching characters with, 138
X-Lite softphone (ConuterPath), 87–89
X100P (Digium) card, 74
X101P (Digium) card, 74
Xen universal guest domain image, 66
XML, 249
XMLHttp ActiveX object, 255
XMLHttpRequest, 254
XMLHttpRequest object, 256
XMPP (Jabber), 315

Y
-y switch (yum application), 39
yacc, 38
yum application, 39

Z
Z, matching characters with, 138
Zapata, 2

hardware configuration for, 77, 80
telephony drivers, 38, 46

Zapata Telephony Project
Tormenta T1 card and, 27

Zapata, Emiliano, 3
zapata.conf, 80
zapata.conf file, 71, 77, 491
Zapateller() application, 163, 447
ZapBarge() application, 447
ZapDialOffhook (AMI action), 548
ZapDNDoff (AMI action), 547
ZapDNDon (AMI action), 547
ZapHangup (AMI action), 548
ZapRAS() application, 448
ZapRestart (AMI action), 549
ZapScan() application, 448
ZapShowChannels (AMI action), 549
Zaptel

cards, 18
compiling, 43–47
hardware configuration

FXO channels and, 75
FXS channels and, 79

loading, 54, 56
without scripts, 55–57

zaptel.conf file, 71, 75, 491
ZapTransfer (AMI action), 550
zconfig.h configuration file, 201
Ziegler, Robert, 98, 102, 111
zlib-devel package, 39
zonedata.c file, 76
[zonemessages] section (voicemail.conf file),

155
ztcfg program, 47
ztdummy driver, 28, 38, 44, 56

scripts, loading without, 55
unresolved symbol links when loading, 53

zttool program, 39, 47, 77

574 | Index

About the Authors
Jim Van Meggelen is President and CTO of Core Telecom Innovations, a Canadian-
based provider of open source telephony solutions. He has over 15 years of enterprise
telecom experience, for such companies as Nortel, Williams, and Telus, and has ex-
tensive knowledge of both legacy and VoIP equipment from manufacturers such as
Nortel, Cisco, and Avaya.

Jim was the architect of two of the world’s largest managed enterprise voice networks,
each solution serving roughly 20,000 users in more than 1,000 communities across
Canada and providing telecommunications in five different languages through six time
zones, administered completely from a central location. These networks pioneered the
use of extensive automation and database control in a branch voice network—func-
tionalities not generally available in proprietary telecommunications systems. Jim has
now moved on from the world of proprietary telecom, and is committed to open source
telephony.

Jim is one of the principal contributors to the Asterisk Documentation Project. He
enjoys teaching, public speaking, improvisational acting, and writing.

Leif Madsen is a graduate of the Telecommunications Technology program from the
Sheridan Institute of Technology and CEO of LeifMadsen Enterprise, Incorporated, a
documentation and consulting firm specializing in Asterisk. He was one of the first
Digium Certified Asterisk Professionals (dCAP), and assists with the Astricon confer-
ences and trainings organized by IPsando, LLC.

Leif first took an interest in Asterisk while attempting to find a voice conferencing
solution for himself and his friends. After someone suggested trying Asterisk, the ob-
session began. Wanting to contribute and be involved with the community, and
noticing the lack of Asterisk documentation, he co-founded the Asterisk Documenta-
tion Project.

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

Jared Smith is one of those rare individuals whose beloved hobby is the same as his
profession. The son of a computer store owner, Jared wrote his first computer program
at the age of seven on his Commodore 64. The obvious choice of major for this geek-
in-embryo was Computer Engineering, and Jared received his Bachelor of Science
degree with a minor in Computer Science from Utah State University. He now has more
than a decade of professional systems administration and programming experience in
the simulation, market research, and web analytics industries. As a key architect of one
of the world’s largest Asterisk installations, Jared has a wealth of hands-on telephony
and VoIP knowledge, which he shares through users groups and various public speak-
ing engagements. He is an active member of the Asterisk community and a co-founder
of the Asterisk Documentation Project.

Jared is active in his community, donating Asterisk services to local schools and serving
in his church. The greatest joy in Jared’s life comes from spending time with his chil-
dren, Caleb and Sydney Jo, and his wife, Jenny.

Colophon
The animals on the cover of Asterisk: The Future of Telephony are starfish. Starfish are
classified as Asteroidea. They are a group of echinoderms, spiny-skinned invertebrates
found only in the sea. Most starfish have fivefold symmetry (arms or rays in multiples
of five), though some species can have four or nine arms. But all starfish are radially
symmetrical: they have arms or rays branching out from a central body disc. There are
over 1,500 species of starfish.

Starfish live on the floor of the sea and in tidal pools, clinging to rocks and moving
(slowly) using a water-based vascular system to manipulate their hundreds of tiny, tube-
like legs, called podia. A small bulb or ampulla at the top of the tube contracts, expelling
water and expanding the starfish’s leg. The ampulla relaxes, and the leg retracts. Starfish
use muscles to bend their legs, but it is the flow of water pressure that keeps the feet
moving. At the tip of each leg, starfish have suction cups that allow them to pry open
clam, oyster, or mussel shells. Many starfish can push their stomachs out through their
mouths in order to digest their prey in its shell. Starfish are carnivores; they eat coral,
fish, and snails, as well as bivalves.

Starfish can flex and rearrange their arms to fit into small places as they move over the
ocean floor. At the end of each arm, they have eyespots, primitive sensors that detect
light and help the starfish determine direction. Starfish also have the ability to regen-
erate a missing limb. Some species can even regrow a complete, new starfish from a
severed arm.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSans Mono Condense.

	Table of Contents
	Foreword
	Preface
	Audience
	Organization
	Software
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Jim Van Meggelen
	Leif Madsen
	Jared Smith

	Chapter 1. A Telephony Revolution
	VoIP: Bridging the Gap Between Traditional and Network Telephony
	The Zapata Telephony Project

	Massive Change Requires Flexible Technology
	Asterisk: The Hacker’s PBX
	Asterisk: The Professional’s PBX
	The Asterisk Community
	The Asterisk Mailing Lists
	The Asterisk Wiki
	The IRC Channels
	Asterisk User Groups
	The Asterisk Documentation Project

	The Business Case
	This Book

	Chapter 2. Preparing a System for Asterisk
	Server Hardware Selection
	Performance Issues
	Choosing a Processor
	Small systems
	Medium systems
	Large systems

	Choosing a Motherboard
	Power Supply Requirements
	Computer power supplies
	Redundant power supplies

	Environment
	Power Conditioning and Uninterruptible Power Supplies
	Power-conditioned UPSes

	Grounding
	Electrical Circuits
	The Equipment Room
	Humidity
	Temperature
	Dust
	Security

	Telephony Hardware
	Connecting to the PSTN
	Analog interface cards
	Digital interface cards
	Channel banks
	Other types of PSTN interfaces

	Connecting Exclusively to a Packet-Based Telephone Network
	Echo Cancellation

	Types of Phones
	Physical Telephones
	Analog telephones
	Proprietary digital telephones
	ISDN telephones
	IP telephones

	Softphones
	Telephony Adaptors
	Communications Terminals

	Linux Considerations
	Conclusion

	Chapter 3. Installing Asterisk
	What Packages Do I Need?
	Linux Package Requirements

	Obtaining the Source Code
	Obtaining Asterisk Source Code
	Extracting the Source Code

	Menuselect
	Compiling Zaptel
	The ztdummy Driver
	The Zapata Telephony Drivers
	Using ztcfg and zttool

	Compiling libpri
	Compiling Asterisk
	Standard Installation
	Alternative make Arguments
	make clean
	make distclean
	make update
	make webvmail
	make progdocs
	make config

	Using Precompiled Binaries

	Installing Additional Prompts
	Common Compiling Issues
	Asterisk
	configure: error: no acceptable C compiler found in $PATH
	configure: error: C++ preprocessor "/lib/cpp" fails sanity check
	configure: error: *** termcap support not found

	Zaptel
	make: cc: Command not found
	FATAL: Module wctdm/fxs/fxo not found
	Unresolved symbol link when loading ztdummy
	Depmod errors during compilation

	Loading Asterisk and Zaptel Quickly
	Loading Zaptel Modules Without Scripts
	Systems Running udevd
	Loading Zaptel
	Loading ztdummy

	Loading libpri Without Script
	Starting Asterisk Without Scripts
	Console Commands

	Directories Used by Asterisk
	/etc/asterisk/
	/usr/lib/asterisk/modules/
	/var/lib/asterisk
	/var/spool/asterisk/
	/var/run/
	/var/log/asterisk/
	/var/log/asterisk/cdr-csv

	AsteriskNOW™
	What Is AsteriskNOW?
	Before You Begin
	What You Will Need
	Installation
	Quick installation
	Extended procedure

	Accessing the GUI
	Alternate Installations
	For More Information

	Conclusion

	Chapter 4. Initial Configuration of Asterisk
	What Do I Really Need?
	Working with Interface Configuration Files
	Setting Up the Dialplan for Some Test Calls
	FXO and FXS Channels
	Determining the FXO and FXS Ports on Your TDM400P

	Configuring an FXO Channel for a PSTN Connection
	Zaptel Hardware Configuration
	Zapata Hardware Configuration
	Dialplan Configuration
	Dialing In

	Configuring an FXS Channel for an Analog Telephone
	Zaptel Hardware Configuration
	Zapata Hardware Configuration
	Dialplan Configuration

	Configuring SIP Telephones
	Basic SIP Telephone Configuration in Asterisk
	Defining the SIP device in Asterisk

	Configuring the Device Itself
	Essential Server Components
	DHCP server
	FTP server

	CounterPath’s X-Lite Softphone
	Polycom’s IP 430
	DHCP server
	Protocol to use for downloading
	FTP
	The Polycom configuration files

	Cisco 7960 Telephone
	Linksys SPA-942
	Logging in to the phone
	Registering your phone to Asterisk

	Configuring the Dialplan for Testing

	Connecting to a SIP Service Provider
	Connecting Two Asterisk Boxes Together via SIP
	Configuring Our Asterisk Boxes
	SIP Phone Configuration
	Configuring the Dialplan

	Configuring an IAX Softphone
	Configuring the Channel Configuration File (iax.conf)
	Configure the Softphone
	Configuring the Dialplan for Testing

	Connecting to an IAX Service Provider
	Connecting Two Asterisk Boxes Together via IAX
	Configuring Our Asterisk Boxes
	IAX Phone Configuration
	Configuring the Dialplan

	Using Templates in Your Configuration Files
	Debugging
	Connecting to the Console
	Enabling Verbosity and Debugging

	Conclusion

	Chapter 5. Dialplan Basics
	Dialplan Syntax
	Contexts
	Extensions
	Priorities
	Unnumbered priorities
	Priority labels

	Applications

	A Simple Dialplan
	The s Extension
	The Answer(), Playback(), and Hangup() Applications
	Our First Dialplan

	Building an Interactive Dialplan
	The Background(), WaitExten(), and Goto() Applications
	Handling Invalid Entries and Timeouts
	Using the Dial() Application
	Adding a Context for Internal Calls
	Using Variables
	Global variables
	Channel variables
	Environment variables
	Adding variables to our dialplan

	Pattern Matching
	Pattern-matching syntax
	Pattern-matching examples
	Using the ${EXTEN} channel variable

	Enabling Outbound Dialing
	Includes

	Conclusion

	Chapter 6. More Dialplan Concepts
	Expressions and Variable Manipulation
	Basic Expressions
	Operators

	Dialplan Functions
	Syntax
	Examples of Dialplan Functions

	Conditional Branching
	The GotoIf() Application
	Time-Based Conditional Branching with GotoIfTime()

	Voicemail
	Creating Mailboxes
	Adding Voicemail to the Dialplan
	Accessing Voicemail
	Creating a Dial-by-Name Directory

	Macros
	Defining Macros
	Calling Macros from the Dialplan
	Using Arguments in Macros

	Using the Asterisk Database (AstDB)
	Storing Data in the AstDB
	Retrieving Data from the AstDB
	Deleting Data from the AstDB
	Using the AstDB in the Dialplan

	Handy Asterisk Features
	Zapateller()
	Call Parking
	Conferencing with MeetMe()

	Conclusion

	Chapter 7. Understanding Telephony
	Analog Telephony
	Parts of an Analog Telephone
	Ringer
	Dial pad
	Hybrid (or network)

	Tip and Ring

	Digital Telephony
	Pulse-Code Modulation
	Digitally encoding an analog waveform
	Increasing the sampling resolution and rate
	Nyquist’s Theorem
	Logarithmic companding
	Aliasing

	The Digital Circuit-Switched Telephone Network
	Circuit Types
	The humble DS-0―the foundation of it all
	T-carrier circuits
	SONET and OC circuits

	Digital Signaling Protocols
	Channel Associated Signaling (CAS)
	ISDN
	Signaling System 7

	Packet-Switched Networks
	Conclusion

	Chapter 8. Protocols for VoIP
	The Need for VoIP Protocols
	VoIP Protocols
	IAX (The “Inter-Asterisk eXchange” Protocol)
	History
	Future
	Security considerations
	IAX and NAT

	SIP
	History
	Future
	Security considerations
	SIP and NAT

	H.323
	History
	Future
	Security considerations
	H.323 and NAT

	MGCP
	Proprietary Protocols
	Skinny/SCCP
	UNISTIM

	Codecs
	G.711
	G.726
	G.729A
	GSM
	iLBC
	Speex
	MP3

	Quality of Service
	TCP, UDP, and SCTP
	Transmission Control Protocol
	User Datagram Protocol
	Stream Control Transmission Protocol

	Differentiated Service
	Guaranteed Service
	MPLS
	RSVP

	Best Effort

	Echo
	Why Echo Occurs
	Managing Echo on Zaptel Channels
	Hardware Echo Cancellation

	Asterisk and VoIP
	Users and Peers and Friends—Oh My!
	Users
	Peers
	Friends

	register Statements

	VoIP Security
	Spam over Internet Telephony (SPIT)
	Encrypting Audio with Secure RTP
	Spoofing
	What Can Be Done?
	Basic network security
	Encryption
	Physical security

	Conclusion

	Chapter 9. The Asterisk Gateway Interface (AGI)
	Fundamentals of AGI Communication
	What Are STDIN, STDOUT, and STDERR?
	The Standard Pattern of AGI Communication
	Calling an AGI Script from the Dialplan

	Writing AGI Scripts in Perl
	The Perl AGI Library

	Creating AGI Scripts in PHP
	The PHP AGI Library

	Writing AGI Scripts in Python
	The Python AGI Library

	Debugging in AGI
	Debugging from the Operating System
	Using Asterisk’s agi debug Command

	Conclusion

	Chapter 10. Asterisk Manager Interface (AMI) and Adhearsion
	The Manager Interface
	Connecting to the Manager Interface
	Sending Commands
	Transferring a call
	Reading a configuration file
	Updating configuration files

	The Flash Operator Panel
	Asterisk Development with Adhearsion
	A New Approach to Dialplans
	Asterisk Development with Adhearsion
	Installing Adhearsion
	Installing Ruby/RubyGems on AsteriskNOW
	Installing Ruby/RubyGems on Linux
	Installing Ruby/RubyGems on Mac OS X
	Ruby/RubyGems on Windows
	Installing Adhearsion from RubyGems

	Exploring a New Adhearsion Project
	Adhearsion dialplan writing
	Database integration
	Distributing and reusing code

	Integrate with Your Desk Phone Using Micromenus
	Integrating with a Web Application
	Using Java
	More Information

	Chapter 11. The Asterisk GUI Framework
	Why a GUI for Asterisk?
	What Is the GUI?
	Mark Spencer Talks About the GUI
	Using the GUI
	GUI elements

	Architecture of the Asterisk GUI
	Components of the Asterisk GUI
	Asterisk Manager Interface
	Manager over HTTP and the Asterisk web server
	AJAM and JavaScript

	Installing the Asterisk GUI
	Setting up httpd.conf and manager.conf

	Developing for the Asterisk GUI
	Issuing Manager Commands over HTTP
	LOGIN
	Transferring a call
	Reading a configuration file
	Updating configuration files using UPDATECONFIG
	Error response

	Ajax, AJAM, and Asterisk
	Form processing in a traditional web application
	Form processing in an Ajax application
	The Prototype framework

	Customization of the GUI
	Adding a new tab to the GUI
	Exposing configuration settings in the GUI

	For More Information

	Chapter 12. Relational Database Integration
	Introduction
	Installing the Database
	Installing and Configuring ODBC
	Configuring res_odbc for Access to Our Database

	Using Realtime
	Static Realtime
	Dynamic Realtime

	Storing Call Detail Records
	Getting Funky with func_odbc: Hot-Desking
	ODBC Voicemail
	Creating the Large Object Type
	Configuring voicemail.conf for ODBC Storage
	Testing ODBC Voicemail

	Conclusion

	Chapter 13. Managing Your Asterisk System
	Call Detail Recording
	Managing Logs
	Running Asterisk As a Non-root User
	Customizing System Prompts
	Music on Hold
	Conclusion

	Chapter 14. Potpourri
	Festival
	Getting Festival Set Up and Ready for Asterisk
	Configuring Asterisk for Festival
	Starting the Festival Server
	Calling Festival from the Dialplan

	Call Files
	DUNDi
	How Does DUNDi Work?
	Configuring Asterisk for Use with DUNDi
	The General Peering Agreement
	General configuration
	Creating mapping contexts
	Defining DUNDi peers
	Allowing remote connections
	Configuring the dialplan

	Alternative Voicemail Storage Methods
	Storing Voicemail in an IMAP Server
	Storing Voicemail in an ODBC Database

	Asterisk and Jabber (XMPP)
	Conclusion

	Chapter 15. Asterisk: The Future of Telephony
	The Problems with Traditional Telephony
	Closed Thinking
	Limited Standards Compliancy
	Slow Release Cycles
	Refusing to Let Go of the Past and Embrace the Future

	Paradigm Shift
	The Promise of Open Source Telephony
	The Itch That Asterisk Scratches
	Open Architecture
	Standards Compliance
	Lightning-Fast Response to New Technologies
	Passionate Community
	Some Things That Are Now Possible
	Legacy PBX migration gateway
	Low-barrier IVR
	Conference rooms
	Home automation

	The Future of Asterisk
	Speech Processing
	Festival
	Speech recognition

	High-Fidelity Voice
	Video
	The challenge of video-conferencing
	Why we love video-conferencing
	Why video-conferencing may never totally replace voice

	Wireless
	Wi-Fi
	Wi-MAX

	Unified Messaging
	Peering
	E.164
	ENUM
	e164.org
	DUNDi

	Challenges
	Too much change, too few standards
	VoIP spam
	Fear, uncertainty, and doubt
	Bottleneck engineering
	Regulatory wars
	Quality of service
	Complexity

	Opportunities
	Tailor-made private telecommunications networks
	Low barrier to entry
	Hosted solutions of similar complexity to corporate web sites
	Proper integration of communications technologies

	Appendix A. VoIP Channels
	IAX
	General IAX Settings
	Registering to Other Servers with register Statements
	IAX Channel Definitions
	Channel-specific parameters

	SIP
	General SIP Parameters
	SIP Channel Definitions

	Appendix B. Application Reference
	Appendix C. AGI Reference
	Appendix D. Configuration Files
	modules.conf
	adsi.conf
	adtranvofr.conf
	agents.conf
	alarmreceiver.conf
	alsa.conf
	amd.conf
	asterisk.conf
	cdr.conf
	cdr_manager.conf
	cdr_odbc.conf
	cdr_pgsql.conf
	cdr_tds.conf
	codecs.conf
	dnsmgr.conf
	dundi.conf
	enum.conf
	extconfig.conf
	extensions.conf
	extensions.ael
	features.conf
	festival.conf
	followme.conf
	func_odbc.conf
	gtalk.conf
	http.conf
	iax.conf
	iaxprov.conf
	indications.conf
	jabber.conf
	logger.conf
	[general]
	[logfiles]

	manager.conf
	meetme.conf
	mgcp.conf
	modem.conf
	musiconhold.conf
	osp.conf
	oss.conf
	phone.conf
	privacy.conf
	queues.conf
	res_odbc.conf
	res_snmp.conf
	rpt.conf
	rtp.conf
	say.conf
	sip.conf
	sip_notify.conf
	skinny.conf
	sla.conf
	smdi.conf
	udptl.conf
	users.conf
	voicemail.conf
	General Voicemail Settings
	Voicemail Zones
	Defining Voicemail Contexts and Mailboxes

	vpb.conf
	zapata.conf
	zaptel.conf

	Appendix E. Asterisk Dialplan Functions
	Appendix F. Asterisk Manager Interface Actions
	Appendix G. An Example of func_odbc
	Index

